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ABSTRACT This paper deals with the manipulation of first ordered equations and
systems of equations within the structure of the hyperringoid,

AMS-Classification number: 20N20

1. INTRODUCTION

In 1966 M. Krasner introduced a hypercompositional structure, which he
named hyperring [2} A hyperring is a triplet (H+,-), where (H,+) is a
canonical hypergroup, (H,:) is a semigroup, the neutral element of the
canonical hypergroup is bilaterally absorbing with regard to the

multiplication and also the multiplication distributes over the

hyperoperation from both sides.

In 1990, during the 4" AHA, we have presented with J. Mittas [5] a
hypercompositional structure, which is a generalization of Krasner’s
hyperring. This new structure has proved to be a very suitable tool for
the study of the theory of Automata and Languages from ‘the standpoint
of the theory of the Hypercompositional Structures. We have called it
hyperringolid and its definition is as follows:
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Definition 1.1. A non void set Y endowed with a composition “" and a
hypercomposition “+" Is called a hyperringoid if
l. (Y,+) Is a hypergroup
ii. (Y,-) Is a semigroup
fii. The composition distributes over the hypercomposition from both sides.

According to the properties of their additive part we distinguish several
types of hyperringoids. Therefore, if the hypergroup is a join one we
-have the Join hyperringoid, if it is a Fortified Join hypergroup we have
the Fortifled Join hyperringoid or the Join hyperring. Moreover if
x+y = {x, y} (B-hyperoperation) then we have the B-hyperringoid, which
is a Join hyperringoid. The above hyperoperation has derived in a natural
way from the theory of the Languages [S] [6] It is worth mentioning
though that this hypercomposition can be found in a paper by
L. Konguetsof, written as early as the 60’s [1].
Furthermore if the B-hyperoperation has a neutral element with regard
to which every element is selfopposite, ie. if

[ {xy} if x=y

Xty =

L{o,x} if x=y
then we have the. Dilated B-hyperringoid, which is a Join hyperring. The
properties of the hyperringoid have been studied in [7] Here appears the

subject regarding the equation and system solving in the hyperringoids.

2. SOLUTIONS OF EQUATIONS IN A HYPERRINGOID

In an additive group, as it is known from the relevant theory, there
always exists a unique solution for the equation y = x+. Also, in the
case of the hypergroups the relation y € x+B is being satisfied by all the
elements x of the set y:f, which, as it is known [3], [4] is non empty. In
a hyperringoid though (like in the case of the hyperring) there may not
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exist elements x which satisfy the relation y € ox+f, in an analogous
manner as in the case of the rings where there does not always exist a
solution in the equation v = ox+B. But in a hyperringoid there appear
equations for which it is possible to exist a solution. Such equations will

be dealt with in the following, where we assume that the hyperringoid Y
is unitary and that when (Y,+) has a neutral element 0, then aff = 0 if
o B # 0 and also the coefficient of the unknown set X is not zero.

Moreover o’ as well as A°, (where a €Y and A ¢ Y) will denote the

uvnit element of Y.

Proposition 2.1. The existence of the set 2.a"f provides a solution

n=0
of the equation
aX+f=X 0))

where qy €Y and X Y.

Proof. Substituting in the first part of the equation we have:

@3a"p +B= (aé:‘;aw 1)B= (gaw 1)B = goa"ﬂ

n=0

Now if we have the subset B of Y instead of the element [, then the set
(Za" )B satisfies the relation X ¢ oX+B. Indeed, in the case of sets,
=0

the distributivity is (A+B)I' c AT + BT" and so we have:
a(Ea )B+B o (0o +1)B= (Za+1)B= (3 )B
nul n=o na) na0

Therefore the next Proposition is valid:

Proposition 2.2. The existence of (Za" )B provides a set which

ned

verifies the relation:
XcaX+B 2

where a€ Y and B X Y.
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Corollary 2.1. In a B-hyperringoid the set D A"B is a solution of the

n=0
equation:
AX+B=X &)

where A, B X Y

The solution of the equation (1), which was given in Proposition 2.1 is not
unique. We will see it in the next Propositions, but before that it is

necessary to prove the following Lemma:

Lemma 2.1. If every two elements of Y are contained in their hypersum

then, every semi-subhyperringoid is a subhyperringoid.

Proof. Let Y be a semi-subhyperringoid of Y and a € Y. Then

a+ Y c Y. Moreover:

a+Y =) @po2U {oB}=Y

fer fer

Thus a4+ Y =Y and so the Lemma.

Proposition 2.3 If the fhypersum of every element of Y with itself
gives as a result only this element and also if every two elements of Y are
contained in their hypersum, then the set {1 a} P is another solution of (1)

Proof. Itisknown [7] that the semi-subhyperringoid A~ which is
generated by a set A consists of the union of finite sums whose addends

are products of the type:

k
I1e, whereg, € A,i=1...k

in]
Thus {1, a}, which is a subhyperringoid of Y (Lemma 2.1), is the union of
all the sums of the type:
2, =a'+a+ . +a¥

106



where k;, ..., k, € Ny So substituting {}, a} in (1) we have:
ofl, a} By + B=(ay, af + 1)B
But the set a{l, a}" consists of all the sums Za which do not contain the

unity and so, adding the unit element to this sum we get the whole
subhyperringoid {1, a}". Consequently a{l, a}+ 1= {a, 1}* and thus

[ofl, af +1]B={l, a} B
Also, analogously to Proposition 2.2, we have:

Proposition 2.4. If the hypersum of every element of Y with itself

gives as a result only this element and also if every two elements of Y are
contained in their hypersum, then the set {I a} B verifies the relation (2).

Moreover the next Proposition holds:

Proposition 25 I {L a}- is a subhyperringoid of Y such that its

multiplicative part is a subgroup of the multiplicative semigroup of Y,
then {1 a}~ B is a solution of (1), while the {i, a}"B satisfies the relation (2)

Proposition 2.6. If every two elements of Y are contained in their

hypersum, then the set {I a})~ B is also a solution of the equation:

z":aiX+ﬂ=X

im0

where q e Y and X Y.

Pr oo f. Because of Lemma 21, Y does not have any semi-
subhyperringoids, since all of them are subhyperringoids. Therefore
{L, a} is a subhyperringoid of Y and substituting to the equation we get:

,‘fv:“'{" afB+B = [ga’{l, o} + l] B = [ga" {La}+{L, a}+ 1] B

Moreover, since o € {I, a}" it derives that o {I, o} < {, a}". Hence
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2a'{l, afy c {l, af. Also {l, a} is a subhyperringoid and therefore
=)

A+{La} ={, a} forevery A c {l,a}. Thus
[Eatiar + oy +1]p=[(Lay 1] p= oy p

Corollary 2.2. If every two elements of Y are contained in their

hypersum, then the set [A U {1})] B is a solution of the equation:
Sax+p=x

‘where BeY and A XC Y.‘=°

Moreover, since (ZA" )X c 2 A'X, we have the

i=0 =D
Corollary 2.3, If every two elements of Y are contained in their

hypersum, then the set [A U {I})]" B verifies the relation:

xc(Za)x+B

{=0

where A B XCY

For the following it is necessary to define a relation in SO (Y). We can

give though = more general definition, which will apply in every

hypergroup and so we proceed with an arbitrary hypergroup H and we
introduce in SO (H) arelation “ <™ defined as follows:

A<B& A+B=B
for every A, B < H We note that if A is a singleton, e.g. A={a}, then for

the sake of simplicity of the symbolism we write a < B.

Lemma 2.2. The relation “ 5 ” Is transitive and antisymmetric.
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Proof. LetA<Band B< I Then A+B=B and B+I'=T. Thus
A=A+ BN =(A+B)+ '=B+I'=T

and so A <T, i.e. the relation “ <™ is transitive. Nextif A<Band BS A

then A+B = B and B+A = A, therefore A=B and so the antisymmetric

property. It is worth mentioning here that the relation A < B does not

imply that A ¢ B. Indeed, if (J, +) is the join hypergroup of the

Euclidean plane [8], B is the interior of a convex subset K of J and A is

the boundary of K, then A+B =B and AnB=(.

Next let (& be the family of the subsets of H with the property
A+A = A. For this family it holds:

Lemma 2.3, The relation “< ” is an order relation in (#

The above defined relation “ < can also be introduced in a hyperringoid
Y, where it holds:

Proposition 2.7. If A< B and I'< A, then
DA+TI' s B+A
and i) AA < BA forarbitrary A €Y.

Pro o f. From the relations A< B and T < A it derives that
A+B - B and I'tA = A. Adding these equalities we have:
A+B+T+A)=B+A &
&S A+D+B+A)=B+A &
& A+T<SB+A
" Moreover, if we multiply both sides of A+B=B with A € Y we have:
(A+BA=BA & AL +BA=BA & AA<BA

109



Proposition 2.8. In the family (¥ of the subsets of Y the equation (1)

has minimum (with regard to the order “<”’) solution, the set 2,a"f

n=0

Proof. Let ¥ be a solution of (I). Then
Y+B=@¥+B)+B=a¥+B+B)=a¥+B=¥
thus B<W¥ (i). Moreover
Y+a¥=@B+a¥)+a¥=B+@¥+a¥)=B+a¥ =¥
thusa® < ¥ (ii)
Multiplying now both sides of (i) with a we get aff < a¥, which, due to
(ii) becomes af§ < W. Repeating this procedure n times we get o' < ¥

and adding these inequalities for all n € N, we have:

ia"ﬁ < ¥

nu=0

Corollary 2.4. In a B-hyperringoid the equation (3) has minimum (with

regard to the order “< ” ) solution, the set J,A"B

n=0

3. SYSTEMS OF EQUATIONS IN A HYPERRINGOID

Let’s consider the system:
Y=a¥ +1

X=VYB (S1)
where c € Y and X, ¥, BC Y.

Then, according to Proposition 21, the existence of the set ¥ = 2 a”

nw0

provides with one solution the first equation. Substituting this to the

second equation we have X = (Za" )B. Moreover if Y is such that the

=0

hypersum of every one of its elements with itself gives as a result only
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this element and also the hypersum of every two of its elements contains
them, or if {I, @} is a subhyperringoid of Y such that its multiplicative
part is a subgroup of the multiplicative semigroup of Y, then (Prop. 2.3)
the subhyperringoid {1, a}~ is also a solution of the system’s first equation
andso Y={L,a} and X ={l, a}'B. Thus:

Proposition 31. The existence of the sets X= [Za" ]B and

n=0

W=72 a" provides the system of the equations (SI) with & solution, which

n=0

is also the minimum solution when the coefficients belong to the family

A, Moreover, if Y has the property that the hypersum of every one of
its elements with itself gives as a result only this element and also the
hypersum of every two of its elements contains the two addends, or if
{1 a} is a subhyperringoid of Y such that its mu[tlpljcatit?e part is a
subgroup of the multiplicative semigroup of Y, then

& ©=({1a}B {La})

is also a solution of (S1).

Corollary 3.1. In a B-hyperringoid the system
V=AV+1

X=vB
has minimum solution the

X9 = (gA"B, §A")

Proposition 3.1. In a B-hyperringoid Y there exists a solution for the
system of the equations:

X, =AX, +ApX, ... +AX, + B,

Xy=ApX, + ApX; +... + A X, + B,

wsesssesvsssrastansssssvescssstoscnnasstscase
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X, =A X, +A X, +... +A_ X, +B,
where the unknowns X, the coefficients A, and the B, for i j=1...n
are sujsets of Y.

P r oo f. The proof of this proposition is achieved through the
Corollary 21. Indeed, from the n equations, the last one can be considered
as one equation with X, the unknown set, its coefficient A the set A_, and
" B= AMXI‘ + ALX, + ... + A X, + B, The solution of this equation
can be substituted to the rest n-1 equations and thus there will derive a
new system with n-1 equations and n-1 unknown sets. Repeating the same
procedure for each one of the rest unknown sets we can reach the

solution of the initial system.
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