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Abstract

In this paper appears an approach to the theory of
Languages and Automata with the use of tools and
methods from the Theory of the Hypercompositional
Structures. The set of the words V* over an alphabet
V, with the compositional laws from the Theory of
Languages and the hypercompositional laws that are
being introduced, becomes a new hypercomposional
structure, the hyperringoid. Its action as a set of op-
erators or hyperoperators on a given set is being pre-
sented along with the notions of the hypermoduloid
and the supermoduloid. The study of this structure
gives interesting resuits for both theories.

It is known that a language whose strings are writ-
ten using letters from an alphabet V' is defined as a
subset of the free monoid V*, which is genrated by
V. It is also known that the languages that are ac-
cepted from finite automata are the regular sets over
V. The regular sets are represented by regular expres-
sions. The definition of the regular expresions over V,
requires the introduction of the bisets {z,y} from V*.
This leads to the definition of the following hypercom-
position in V*: z +y = {z,y} V*, endowed with this
hyperoperation becomes a join hypergroup [3]. The
operation of V*, i.e. the concatention of the words,
is bilaterally distributive with regard to this hyperop-
eration. So a new hypercompositional structure, the
Join Hyperringoid came into begin (3].

Definition 1. A hyperringoid is a non void set Y
with an operation “.” and a hyperoperation “+”, that
satisfy the axioms:

i. (Y,+)is a hypergroup
ii. (Y,.)is a semigroup

ili.  The operation is bilaterally distributive to the

hyperoperation.

I (Y, +) is a join hypergroup, then the hyperringoid
" is called Join hyperringoid. The specal join hyper-
group which dervies in this way from the theory of
‘languages was named B-hypergroup and the respec-

tive hyperringoid, B-hyperringoid.
Another important notion in the theory of lan-
guages, is the notion of the empty set of words. Actu-
ally the use of the “null word” as well as other reasons,
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e.g. the necessity of the use of the symbol < SOS >

" (Start Of String) in the electronical realization of the

automaton, which acts as a an annihilator (since it
leads from any state to the start state), has led to the
introduction of a non scalar neutral element in the join
hypergroup. Thus appeared the fortified join hy-
pergroup [3]. This new hypercompositonal structure
(H,+) satisfies the axioms:

FJ1 There exists a unique neutral element, denoted
by 0, such that £ € 40, for every £ € H and 040 = 0.

F£J2 For every = € H\{0}, there exists one and
only one elementz’ € H\{0} (denoted by —z}, such
that 0 e z + ',

Especially for the case of the languages, the forti-
fied join hypergroup, which corresponds to them and
which motivated the development of these new struc-
tures is the dilated B-hypergroup. In this hyper-
group every element is selfopposite. More precisely
the hypercompositon of this structure is being defined
in the following way: z+y = {z,y}, if £ # y, and
4z ={0,z}.

The corresponding hyperringoid of all the words,
the null word included, is called dilated B-
hyperringoid. Generally, if the hypercompositional
part of a hyperringoid is a fortified join hypergroup,
then it is called fortified join hyperringoid or join
hyperring [3)].

The hyperringoids which derive from the set of the
words V* |have the property that every one of their
elements has a unique factorization into irreducible el-
ements (which are the letters of the alphabet).

Definition 2. A linguistic hyperringoid (resp.
dilated linguistic hyperringoid} is a unitary B-
hyperringoid (resp. dilated B-hyperringoid) which has
a finite prime subset P and which is non commutative
for card P > 1.

Notice that every B-hyperringoid is not a linguistic
one. For example the set of the complex numbers,
with the usual multiplication and hypercomposition
a +b = {a;b}. An interesting linquistic hyperringoid
appears in the Proposition:

Proposition 1. The set N of the natural numbers
is a linguistic and hyperoperation with prime subset
the singleton {1} and with operation the zy = z + y
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and hyperoperation the £+ y = {z, y}, for every z,y €
N.
This linguistic hyperringoid is used in the counters [6].
Hypercompositional structures have not been intro-
duced only in the set of the words. Hypergroup have
also been used in the automata in order to describe
their structure and operation. Mare precisely the set
of the states of an automaton, endowed with prop-
erly defined hypercomposition becomes a hypergroup.
Such hypergroups, that are called attached hyper-
group to the automaton, are (a) the attached order
hypergroup, (b) the attached grade hypergroup, (c)
the attached hypergroup of the paths and (d) the at-
tached hypergroup of the operation. Especially the

attached order hypergroup and the attached grade hy--

pergroup lead to the creation of the minimum automa-
ton that accepts the same language with the initial one
(2], (5)-

Beyond the hypercompositonal structures that are
being “attached” to the set of the words over an alpha-
bet, or to the set of the states of an automaton, there
have also been developed hypercompositional struc-
tures that derive from the operation of the words on
the states of the automaton [4]. Let’s see some defin-
tions and next let’s present a series of Theorem which,
when applied to the special case of the B-hyperringoids
they give the Theorem of Nerod-Myhill.

Definition 3. Let M be an arbitrary set and
(Y, +,.) a hyperringoid. Y is a set of operators over
M, if there exists an external operation from M x Y
to M, that satisfies the axiom:

(s)8 = s(ap)

If there exists an external hyperoperation from M x Y
to P(M) satisfying the above axiom, then Y is a set
of hyperoperators. In the first case we say that Y acts
through an operation, while in the second one, through
a hyperoperation.

Definition. 4. If M is a hypergroup and Y is a
hyperringoid of operators over M such that
i (s+t)h=sr+1tA,

i, s(A4 k) C sA + sk,

5. s(Ak) = (sA)k

forevery k, A € Y and s, t € M, then M is called
(right) hypermoduloid over Y. If Y is a set of hyper-
operators, then M is called supermoduloid. If (Y, +,.)
is a fortified hyperringoid and (M, +) a fortified join
" hypergroup, then M is called join hypermodule, resp.
join supermodule, if in addition to the above, the fol-
lowing axiom holds:

tv. s0 =0, resp jiv; 0 € s0.

Next let M be an arbitrary set with operators or
hyperoperators from a hyperringoid Y and let s be an
element of M. To every element a of Y we map the
sa.-lf Y is a set of operators, then this mapping (that
from now on will be denoted by ¢s) is a function from

S$€EM and a,f€Y
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Y to M, while if Y is a set of hyperoperators, then ¢s
is a function from Y to P(M), that is:

ps:Y — M such that ps(a) = sa

or
9s:Y — P(M) such that ys(a)=sa
So the definition:

Definition 5. A subset L of Y is called (s, F)-
acceptable from M, or simply acceptable when there
is no fear of a mix up, if thereexists s € M and FC M
in the case of external operation, or F C P(M) in the
case of external hyperoperation, such that: ps™!(F) =
L

In the following also appears an important, relation,
the homomorphic one [1] Let H, H' be two hyper-
groupoids and let R C H x H’. R will be called homo-
morphic if () For every (al,b1) € R and (a2,b2) € R
holds:

Vz € al + a2)(Qy € b1 + b2)[(z,y) € R]
and
Vy' € b1 4+ 52)(3z’ € al + ab2)[(z, y) € R]

Furthermore' if Y and Y’ are two hyperringoids, then
R(C Y xY') will be called homomorphic if appart from
(1) the following is also valid:

(II) For every (al,b1) € R and (a2,b2) € R holds:
(ala2, b1b2) € R.

Next we observe that if an equivalence relation R over
a hyperringoid Y satisfies the property:

(II'Y (z,y) € Rand w € Y — (zw,yw) € R and
(wz,wy) € R then R satisfies (II) and conversely.

It is possible though that an equivalence relation
satisfies only one of the two conditions of (I/'). In
this case it is called right (or resp. left) congruence
relation as to the operation.

Proposition 2. If R is a homomorphic equivalence
relation in a hyperringoid y as to the hyperoperation
and a right congruence as to the multiplication, then
the quotient set y/R becomes a (right) hypermoduloid
over y.

Thus, according to whether rk(R) is finite or not,
the deriving hypermoduloid will respectively be finite
or not. So if Y is a linguistic hyperringoid and if
rk(R) < 400 then Y/R is a finite hypermoduloid. The
elements of such a hypermoduloid can be considered
as the states of an automaton, which is completely de-
fined only when one of the classes of Y/R is defined as
the start state and if a set of these classes is consid-
ered to be the set of the final states. Therefore it is
possible, for the hypermoduloid deriving from certain
equivalence relations, to lead to an automaton.

Theorem 1. Let L be a subset of a hyperringoid
y. Then the relation RL defined from:

zRLy & (Va,bey)za€l
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4 ya€L(i)and bz €L
& by € L(ii)]

is an equivalence relation in y, satisfying the property:

if (a1,b1) € RL and (a2,42) € RL, then
(ala2,b1b2) € RL.

If it satisfies only the (i) (symb. RL') or only the (i1)
(symb. 'RL) then it is a right, resp. a left congru-
ence. Finally, if y is a B-hyperringoid, then RL is a
homomorphic relation.

Proposition 3. If y is a B-hyperringoid, then the
quotient y/RL is a B-hyperringoid.

Since the linguistic hyperringoid is a B-hyperringoid
we have:

Corollary. 1. If L is a language of the linguistic
hyperringoid, then the relation RL defined above is a
homomorphic equivalence relation in it, while RL’' and
'RL are a right and a left congruence relation as to the
concatenation.

Moreover:

Theorem 2. If there exists 2 homomorphic equiv-
alence relation R in y for which L is a union of classes,
then rk(RL) < rk(R) and therefore is rk(R) < oo
then rk(RL) < oco. Similar inequalities hold, for RL’
and ‘RL if R is a right or a left congruence as to the
maultiplication.

Corollary 2. If the language L consists of a union
of classes of a right congruence equivalence relation R,
for which rk(R) < oo holds, then we have rh(RL') <
co. Respective results hold for the left congruence of
the homomorphic equivalence relation.

We also have the Theorem:

Theorem 3. Let R be a homomorphic equivalence
relation in y as to the hyperoperation and a right con-
gruence as to the multiplication and let L be a subset
of y which is a union of classes modulo R. Then there
exists hypermoduloid M as to which L is acceptable,
and rh(RL') < rk(R).

Proposition 4. If L is a subset of a B-
hyperringoid, then there exists a hypermoduloid M
as to which L is acceptable.

Proposition 5. If rk(RL') < oo, then L is accept-
able from a finite hypermoduloid M.

Corollary 3. If for the langnage L we have
rk(RL') < oo, then there exists an automaton A which
accepts [ as its language.

Theorem 4. If [ is an acceptable from M subset
of g, then there exists an equivalence relation R in y
as to which L is a union of classes. If M is finite, then
rk(R) < oo.

Corollary 4. If the language L is recognized by an
automaton, then there exisis an equivalence relation
R as to which L is a union of classes and rk(R)} < oo.

From the above Theorems 1-4, Propositions 1-5 and
Corollaries 1-4 derives the known in the theory of lan-
guages Theorem of Nerode [8]. Also Myhill [7] had
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come into similar conclusions with Nerode, sortly be-
fore him and so this Theorem is often refered to as the
Theorem of Myhill-Nerode.

The Theorem of Myhill-Nerode. If L is a lan-
guage over an alphabet V', then the following are equiv-
alent:

(i) L is-alanguage of an automaton.

(#1) there exists a right congruence equivalence rela-
tion Rin V* for which L is a union of certain equiva-
lence classes and rk(R) < oo

(1i¢) rk(RL') < oo.

BIBLIOGRAPHY

1. G.G.Massouros: Quasicanonical Hypergroups.
Proceedings of the 4** Internat. Cong. in Al
gebraic Hyperstructures and Applications. pp.
129-136, Xanthi 1990. World Scientific.

2. G.G.Massouros - J.Mittas: Languages - Au-
tomata and hypercompositional structures. Pro-
ceedings of the 4'* Internat. Cong. in Algebraic
Hyperstructures and Applications. pp. 137-147,
Xanthi 1990. World Scientific.

3. G.G.Massouros: Automata - Languages and hy-
percompositional structures. Doctoral Thesis,
Depart. of Electrical Engineering and Computer
Engineering of the National Technical University
of Athens, 1993.

4. G.G.Massouros: Automata and Hypermoduloids.

Proceedings of the 5** Internat. Cong. in Al-

. gebraic Hyperstructures and Applications. pp.
251-266, lasi 1993. Hadronic Press 1994.

5. G.G.Massouros: An Automaton during its oper-
ation. Proceedings of the 5** Internat. Cong. in
Algebraic Hyperstructures and Applications. pp.
267-276, lasi 1993. Hadronic Press 1994.

6. G.G.Massouros: Hypercompositional Structures
in the Theory of the Languages and Automata.
(to appear)

7. J.Nyhill: Finite automata and the representa-

tion of events. WADD TR-57-624, pp. 112-137,
Wright Patterson AFB, Ohio, 1957.

8. A.Nerode: Linear automaton transformations.
Proc. AMS 9, pp. 541-544, 1958.



N



