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Abstract

In this paper a hypergroup is being presented which describes an
automaton during its operation. Using it and through a certain pro-
cedure which is being developed here, among others, all the states at
which the automaton can possibly be found, at any given time ¢, are
being determined.



1. Introduction.

The attached hypergroup of an automaton, a notion which derives from
the attempt of expressing and solving problems of the Theory of Automata
and Languages with use of the Theory of the Hypercompositional Struc-
tures, has been introduced in [2]. There two kinds of attached hypergroups
appear, the attached order hypergroups which generally are several types of
canonical hypergroups and the attached grade hypergroup, which is either
join polysymmetrical hypergroup or fortified join hypergroup, when the au-
tomaton is minimized. Apart from other applications [3],[4], these attached
hypergroups have been used for the minimization of the automaton. More-
over, in [3], another kind of attached hypergroup has been introduced, the
attached hypergroups of the paths. But all these attached hypergroups deal
with the set of states of an automaton and describe its structure. However
the operation of an automaton involves the factor of time. Therefore in the
following we shall search for a hypergroup which will somehow describe the
automaton during its operation.

2. The attached hypergroup of the operational paths of an
automaton.

An automaton is a mnathematical model for a machine that accepts a par-
ticular set of words over some alphabet A [5]. Let’s consider an automaton
(A, S, 50,6, F), the one of figure 1 for instance:

Figure 1.
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Definition 2.1. We say that the state s; is successive to s; if there
exists x € A such that é(s;, x) = s;.

Obviously the fact that s; is successive to s; does not imply that s; is
successive to s; as well (without excluding it though). Thus the following
diagram presents the successive states of the above automaton.

SO [ | SQ

S1 S

S2 Sq

53 53
Figure 2.

Definition 2.2. We say that the state s; is connected with s; if there
exists a word x € A™ such that §*(s;, x) = s;.

The automaton always starts its operation from the start state sg and
while reading one letter at every moment (clock pulse) it moves to the next
successive state. It is possible though, during its operation, to pass from
the same state at different moments. Thus for instance the automaton of
figure 1 can be found on state s; with the word a, with the word Sa, with
the word afa, etc. This means that it can be found on state s; during the
first moment of its operation, during the second moment, the third etc.

Therefore if we wish to describe the operation of an automaton, we
can consider the cartesian product § x N where 5 the set of states of the
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automaton and N the set of the non negative integers. We will use the
notation s¥ to represent the ordered pair (s;, k) which shows the state s; at
the momnent k. The graph of these ordered pairs can be drawn in the same
manner as the following one, which refers to the automaton of figure 1. In
this graph, where the horizontal axis, which is the set N, represents the clock
pulses, and the vertical axix represents the states, we have connected all the
successive states up to the tenth clock pulse of the automaton’s operation.

o 1 2 3 4. 5 6 T 8 9 10
So e o o o o o o o o o

B

S;@

Figure 3.

From the graph we see that in fact we are interested in the states on which
the automaton can possibly be found. Hence we introduce the definition:

Definition 2.3. An element s! of the cartesian product S x N is called
activated, if, after ¢t clock pulses, the automaton can be found on the state
Si.

When we want to especially emphasize the moment of the activation,
then we speak for the t-activated element.

Next let’s denote with A the set of the activated elements. In this set
we generalize the notions of the functions § and é* in the following way:
+1

b}

Sa(st, z) =5 where s; = 6(s;,z) and

53(shw) = 55, where s; = 6%(s;,w) and

(Jwlis the length of the word w(that is the number of w’s letters [2]).
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(Using simp]er notations the above can be written as: §4(sé,z) = é(s;,z)"!
and 6% (st, z) = 6(s;, z)tFlel )

Definition 2.4. The elements sg and st will be called successive if the
state s; is successive to the state 5; and r = t + 1. Also the element s; i
called connected with the st if the state s; is connected with the state s; and
t<r.

Thus it is obvious that in the case of a deterministic automaton two
t-activated elements cannot be connected.

In the set of the activated elements we observe that two elements can
be:

(a) not connected (e.g. the s2 and s} of fig. 3).

(b) connected one with the other by one word
(e.g. the s3 and s of fig. 3).

(c) connected one with the other by more than one word
(e.g. the s3 and s of fig. 3).

These remarks lead to the introduction of a hypercomposition "+” on
the set A of the activated elements of the cartesian product § x N:

{63(s,z) |z € Prefix(r), &;(sT",r) = 7}, if s7
s+ 8] = 1s connected with s7*,
{sT, s} if s7 is not connected with sT

This hypercomposition is associative. Indeed let the element s be con-
nected with the s7, s} and let the s7 be connected with s3. Alsolet m<n<p.
Then '

(s + )+ sk = {64(sT",z) [z € Prefix(r), §3(s,7) = 5T} +5} =
= {53(83(s72),9) | 2 € Prefix(r), 63(s77) = s,
y € Prefix(q), 63(65(s7,2),q) = 8§} =
= {6%(s",v) | v € Prefix(w), 63(s7,w) = st}

Moreover,

ST+ (st +sh) = s+ {64(sh,2) | z € Prefix(r), 63(s7,7) =s}} =
= {63(sT,z) | z € Prefix(u), 6%(s! ,u)_sz or
3 (sT,u) = 63(s%,2),2 € Prefix(r), 65(st,7) = s} } =
= {6 (s v)|ve Preﬁx(w), &u(s,w) = b}
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Next let the elements s, s and s, s} be connected one with the other,
while 5%, s} are not connected. Then

(s™ + s;‘) + sz = {6%(s™,z)| z € Prefix(r), 63(s",r) = .s;‘} + sz =
(87 +87) + (s + sh).

Moreover (s7* + s7)+ s = sT* + {s7,s,} = (sT* + 1) + (7 + s}).
Now if the elements s, 87 are connected, while the sk is not connected
with none of the other two, then

(s? 4 s7) + sp = {84(s,z) |z € Prefix(r), 63(sT",7) = s7)} + sF.

But the element s% is not connected with none of the §%(s™, z) since if
it were, then s™ would have been connected with s}, which is absurd. Thus
we have:

(sT" 4 %) + s = {84(s7,2) | z € Prefix(r), 64(s1",7) = sP} U {s}}.

Moreover

T+ (8T +s)) ’"+{83‘,S£}—(’"+S")+(8§"+SZ)=

= {63(s",z) | = € Prefix(r), 84(s7,7) = sP} U {s}}.
Finally if the elements s ,s;-‘,sz are not connected, then

(& m+8")+5k _ES, ) J}+}3k—(8?‘+SZ)U(s?+5D=
= {s™ S .
1’]’ k

Similarly, s7* + (s + st) = {s}",s}‘,si}. For every element s™ from A, we
have s7" + A = A+ s = A and so we have the proposition:

Proposition 2.1. The set A of the activated elements of the cartesian
product § x N, where S is the set of the states of an automaton, becomes a
hypergroup if we introduce in it the above defined hypercomposition.

This hypercomposition is not commutative and therefore we have the
following definitions of the two induced hypercompositions ”:” and ”--”, [1]

{Sz | z € A* such that 62(,3?,1;) - s:_n},
stisy = if m<n and sT,s} are connected,

{s7'}, if s,s? are not connected;
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{si |z €A suchthat §,(s7,z) = s}},
s s;‘ = if m<n and s{-",s}‘ are connected,

m M m n
{s"}, if s, sT are not connected.

Hence the hypergroup (A, +) does not satisfy the join axiom.

3. A method for calculating the results of the hypercomposition
and giving information for the operation of the automaton.

In the last part of this work we present a method with which we can
find the results of the hypercomposition defined above, that is we can see if
st is a t-activated element and at the same time we can determine all the
intermediate states that the automaton passes from until it reaches the si.
The procedure is the following:

Initially the ”"matrix of the possible states” IIé is defined as an n X n-
matrix with rows and columns the n states of the automaton. Every element

Isi; of this matrix is calculated according to the rule:

the state s;, if it is possible for the automaton to reach this state
s during the next clock pulse, starting from state s;,
17=

0 in any other case.

Next the "matrix of the first clock pulse” II[1] is defined as an n X n-matrix
with its columns the elements s}, ¢ = 1,2,...,n and rows the elements
s%, i =1,2,...,n, that is the elements of the previous clock pulse. Every

entry Iii; is being defined from the rule:

s9s}, if the automaton can reach state s; at the first clock pulse,
Mi;= k
0 in any other case.

In matrix II[1] the row corresponding to the element sJ is expected to have
entries different from zero, since at this phase the automaton is obviously
starting from the start state sq.

Finally the matrix of every subsequent clock pulse derives from the ma-
trix of the previous clock pulse with the use of II§. Thus for the ¢ row of
the "matrix of the t clock pulse” II[t], [which has n columns (the elements

t i=1,2,...,n) and n rows (the elements s{™', i = 1,1,...,n)] we have

S

¢ It comes from the 7 column of the matrix II[t — 1] and the ¢ row of I1é.
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e It has zero everywhere if the entire « row of I1é or the entire 7 column
of II[t — 1] is zero, otherwise:

o It has zero at all the places where the 7 row of II¢ has zero and

e In every one of the rest places we write the set of the paths that derives
if at the end of each path which appears in the entire column of the
matrix II[t — 1], (regardless of the row) we add the element that comes
from the state which is written at the respective place of the matrix
I14, at the clock pulse t.

As it seems, from the procedure of its construction, at every position
of II[t] there may be more than one entries (paths). Also the position at
which every set of the paths that derives as described above will be written
is determined from the respective position of the state of IIé, which will
consist the last element of the path.

Additionally we remark that:

1. The corresponding element s! to the column of matrix II[t] with zero
entries everywhere is a non activated element.

2. The corresponding element s} to the row of matrix II[t] with zero
entries everywhere is a non activated element.

3. The corresponding to the zero entry elements of matrix II[t] are not
connected elements.

Applying the above to the automaton we have described in fig. 1 we
have:

So | 51 | sy | s3

Sp 0 S S9 0

Mé=|s; | 0|0 |sg|s3

S92 0 51 0 S3

S3 0 0 S3

Also the first 4 matrices are:

sy | s] | sho|s)
s9] 0 [sds! |sdsy| O
Miij={sY {0 0 0 |0
Is5/0] 0 0 |0
sS5 | 0 0 0 0




Interpreting the results of matrix II[4] for instance, we see that, at the
fourth moment of its operation, the automaton of the example can be found:
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2 ) 2 2
S§ S s3 s3
sy | 0 0 0 0
npe2)=|sl |0 0 s9s1s2 | s9sds2
1 0.1.2 0.1.2
s | 0 | sps3s9 0 505285
1
s3 | 0 0 0 0
=3 3 3
Sg 51 52 53
s21 0 0 0 0
2 0 1o2a3 | <04la2a3
REER ; 02 805557183 30323%32
=2 T.2.3 0.1
s3 | 0 | sgs7838y 0 50815353
2 50515353
530 0 0 0,1.2.3
4 3 7 4
. S0 S3 S5 s3
sp | O 0 0 0
=3 0T 2.3.4 | 0glo2e34d
s:13 0 ; 102 — 5057555755 s%s}.s%séss3
4
s5 | 0 | sgspsysysy 0 50523%5553
0.1 4
RN
S3lo 0 0 S051528353
3 Osls25364
RERRE
5052535353

e on state s; having followed the path sgs2s;5284,

e on state s, having followed the path sgs;8257 82,

e on state s3 having followed one of the paths: sps1525183, Or Sp8287 8283,

OT 80828183383, OT 3081528383, OT 8081835383, OT 80525358353,

So the 4-activated elements form the set {si,s3,s3}, and the result of the
hypercomposition, say sJ+s%, is: s3+sf = {s, 3, $%, 53, s1}, while s? + 54

= {sfvsg's‘li}-
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