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Abstract

Here appear some of the results reached during the connection of
the theory of Automata and Languages to the theory of hypercom-
positional structures. In the beginning, the notion of the linguistic
hyperringoid is being introduced and its action as a set of operators,
or hyperoperators, on a given set is being studied. Next the notion of
the (s, F')-acceptable subset, along with the notion of the hypermodu-
loid and the supermoduloid are being introduced and connected to the
notions of the deterministic and non deterministic automata. One of
the results of this study is the proof of Kleene’s theorem.



-252-

1. Introduction.

Let A be an alphabet and let A be the set of the words over A. As it has
been proved [10], the consideration of bisets of words leads to the creation
of a new hypercomposition structure (4*,+) which is a special kind of join
hypergroup [5],[9] that we named B-hypergroup.

Definition 2.1. A hypergroup (H, +) is called B-hypergroup, if for the
hypercomposition "+” we have: a + b = {a,b}, for every a,b € H.

Motivated from the notion of the empty set from the theory of languages,
we introduced the null word and so we have the definition:

Definition 2.2. A fortified join hypergroup is a join hypergroup that
satisfies the additional axioms:

FJ; There exists a unique neutral element in H, denoted by 0, such that:
z€z+0and0+0=0,forevery z € H.

FJ; For every z € H \ {0} there exists only one element ztH\{g}, called

opposite or symmetric of z, denoted by —z, such that 0 € z + (—z).
AL;O ~0z0

It has been proved [11] that if a B-hypergroup is enriched with an element
0 and if it is defined 0+ 0 = 0 and 2+ 2z = {z,0},if z # 0, then the deriving
hypergroup is a special kind of fortified join hypergroup:

Definition 1.3. A dilated B-hypergroup is a fortified join hypegroup for
which:

(i) z+4+y=A{z,y}, if z#y and z,y#0,
(i) z+4+z={z,0}, if 2#0 and ==,
(ili) 0+ 0= 0.

Therefore the hypercomposition structure A* = A* U {0} is a dilated
B-hypergroup [11]. Also it is known, [7],{17], that the set A* with operation
of concatenation of the words is a non commutative (with the exception of
A being a singleton) monoid, the unit element of which is the empty word.
Similarly, the set A* is a monoid as well. We have proved, [10],[11] that
the concatenation of the words is bilaterally distributive w.r.t. the hyper-
composition defined in the set of the words and thus a new multiplicative-
hyperadditive structure [10] appeared:

Definition 1.4. A non void set Y endowed with a composition ”-” and
a hypercomposition "+” is called a hyperringoid if:
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(i) (Y, +)is a hypergroup;
(ii)  (Y,-)is a semigroup;

(iii) The composition is bilaterally distributive to the hypercomposition.

When the additive hypergroup is a join one then we have the join hy-
perringoid. A special join hyperringoid is the B-hyperringoid, where the
hypergroup is a B-hypergroup. But when the hypergroup is a fortified join
one we have the fortified hyperringoid, or join hyperring [10],[11] (termi-
nology in accordance to [15],[12]). A detailed study of the fortified join
hypergroups and of the hyperringoids appears in [11] and it is the subject
of other papers of mine.

Now, we shall introduce some new hypercomposition structures, and
after studying some of their properties we will show how all these can be
connected to the Theory of Automata.

2. Linguistic hyperringoids.

From the following Proposition, the relation of the hyperringoids to the
set of the words A* over an alphabet A derives:

Proposition 2.1. The set of the words A™ is a B-hyperringoid and the
set A = A™ U {0} is a join B-hyperring.

The hyperringoid mentioned in the above Proposition have the prop-
erty: Every one of their elements (words) has a unique factorization into
irreducible elements which are the elements of the alphabet (letters). So
these hyperringoids have a finite prime subset, that is a finite set of prime
or initial and irreducible elements, such that every one of their elements has
a unique factorization with factors from their prime subset. In this sense
they have a property similar to the one of the Gauss’ rings.

Definition 2.1. A linguistic hyperringoid (resp. dilated linguistic hy-
perringoid is a unitary B-hyperringoid (resp. dilated B-hyperringoid) which
has a finite prime subset P and which is non commutative for |P| > 1.

And so:

Proposition 2.2. From every non commutative free monoid with finite
base, a linguistic hyperringoid derives.
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Example 2.1. Consider all the 2 x 2 matrices deriving from products
of matrices with elements 0,1. We observe that none of the matrices

ool o] o]

can result as a product of the other two. Furthermore it can be verified that
all the considered matrices can be written as products of the above three
ones. So the B-hyperringoid deriving from the 2 x 2 matrices with elements
0 and 1 is a linguistic hyperringoid and its prime subset consists of the above
three matrices. The empty word in this hyperringoid is the unitary matrix.

Example 2.2. As another example we may consider a system with
internal memory and external inputs, a JK flip-flop for instance, a sort of
the physical components that actually go into the brain of a say counter
device. It is known that all the JK flip-floap are "clocked” and that their
majority works on the Master-Slave principle. The set of states of the JK
flip-flop is the biset § = {s;,s2}. From the set of the conditions leading
from one state to another, which in the binary code is ¢ = {00,01,10,11},
we get the alphabet used by the flip-flop. The linguistic hyperringoid P* of
the JK flip-flop, has prime subset P = {01,10,11} and unitary element for
the multplication the element 00.

It must be mentioned though that every B-hyperringoid is not a linguis-
tic hyperringoid.

Also sets that are important in the theory of Languages appear here as
special subsets of a hyperringoid. So at the end of this paragraphe we give
the definition of the notion of the rational subsets of a hyperringoid.

Definition 2.2 Rational subsets of a unitary hyperringoid Y are the:
(i) finite subsets of Y;

(ii) finite sums and finite products of rational subsets;

=<}
(iii) series of the form Z A", where A is a rational subset.

n=0

Since, as we have previously mentioned, the set of the words has the
structure of a special hyperringoid (linguistic hyperringoid), series of the

form Z A™ will be denoted by A*, generalizing thus in an arbitrary hy-
n=0

perringoid the notation that Kleene introduced in [17] in the Theory of
Languages.
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3. Hypermoduloids

The notions of the set of operators and hyperoperators from a hyper-
ringoid Y over an arbitrary set M have been introduced in [11] in order to
describe the action of the state transition function § and the extended state
transition function 6*. So

Definition 3.1. Y is a set of operators over M, if there exists an external
operation from M x Y to M, with (sa)8 = s(aB), where s € M and
a,f € Y. If there exists an external hyperoperation from M X Y to P(M)
which satisfies the above axiom, then Y is a set of hyperoperators.

The set of the operators can endow M with a hypercomposition and thus,
if Y is a unitary hyperringoid, M becomes a hypergroup. Before proceeding
though with this, let’s give the definition:

Definition 3.2. The element s, of M will be named connected to the
element s, if there exists w € Y such that s; = s;w in the case of external
operation or $3 € sjw in the case of external hyperoperation.

It is worth mentioning that the above definition does not imply that s,
is connected to sy, if s; is connected to s;. Let us suppose now that Y is
the unitary hyperringoid of the operators {11],{16]. Then we introduce in M
a hypercomposition "+” defined as follows:

{s€ M| s=swand sy = s, withw,p €Y},
(3.1) s+ if 55 is connected to sy,
. 1+ 82 =

{s1,s2}, if s is not connected to s;.

We remark that the result of the hypercomposition always contains the
two participating elements, since Y is unitary and thus s+ M = M for every
s € M. Moreover, for this hypercomposition the associativy holds. Thus:

Proposition 3.1 If the set of operators Y is a unitary hyperringoid,
then M endowed with the hyperoperation (3.1) is a hypergroup.

We remark that this hypercomposition is not commutative and that the
join axiom is not valid. So if we consider the set M to be the set § of the
states of an automaton (A, S, sg, 6, F'), then

Proposition 3.2 The set of the states of an automaton, endowed with
the hypercomposition (3.1), is a hypergroup.
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It is worth mentioning that a similar to the above proposition can be
deduced for the vertices of the directed graphs, that is:

Proposition 3.3. The set of vertices of a directed graph is endowed with
the structure of the hypergroup, if the hypercomposition of two vetices v; and
v; ts defined to be the set of the verlices which appear in all the possible ways
that connect v; to v; and if there are not such, the biset {v;,v;}.

Consequently, with Proposition 3.2, we have attached a hypergroup in
the set of states of an automaton, namend the attached hypergroup of the
paths.

But the hypercomposition s; + s, defined in 3.1 is directly related to the
hyperringoid Y, since it defines its subset:

I'[si+s;]={weY|sw=s;}.

If Y is not commutative and if it has a prime subset, then all the elements
of I'[s; + s;] have the property:

w € T[s; + s;] = siz € s; + s;, for every z € Prefix(w),

where Prefix(w) = {¢ € Y | ¥x = w, for some x € Y} [17].
Next let’s suppose that the set of operators of M is a linguistic hyper-
ringoid with prime subset A. If P C M, then we shall prove that the set:

Tl(si+s2)UP]={weY |51z € (s1+s2)N P, for every z € Prefix(w)}

is a rational subset of Y, for every finite subset P of M.

Consider the set B(s; + s2) = I'[s1 + s2] N A. This set is a finite subset
of Y and therefore rational. Moreover, (s; + s2) N P is a singleton when
51 = s2 and P = {s;}. In this case we have:

Tl(s1 +s2)n{s1}] = [B(s1 + s2)]"

which is a rational set.
Now if P = {s1,52,s} then

T[(s1 + s2) N P] = B(s1 + s)[B(s + 5)["B(s + s2)

which again is a rational set.
Now let’s suppose that, for |P| < n, the I'[(s; + s2) N P] is rational and
let’s consider a subset P of M with |P| = n. We have the cases:
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i) Let s1,, € P. Also let w be an element from T'[(s; + s2) N P]. Then
w = X]Xg,...,ka, with £ >0

and
X1 X2+ -2 Xk € T[(s14 81) N (P \ {s1})].

So, if s; = s;, then ' = 1 and therefore
T[(s1+s1) NPl = (T[(s1 +s1) N (P\ {s1}])"

which has been considered rational from the hypothesis of the induc-
tion. Now if s; # s, then we consider the word %, with the minimum
length, for which s19 = s; and w’ = 7z. Then

¥ € T(s1 +82) N (P\ {s1,52})],

w=x1x2..-Xk¥z, with z € T[(s, + s2) N (P \ {s1})].
Thus we have
I(s1+s2)NP]=
= (T[(s1+s1)N(P\{s1 D)) T(s1+52)N(P\{s1, 52})]T[(s2+ 52) N (P \ {51 })]
and so T'[(s; + s2) N P] is rational.

ii) Let s1,s0 ¢ P.If w € T'[(s; + s2) N P] then w = 9w’z with ¢,z € B
where s1¢ = s3 with s3 # s1, $42 = s with sq4 # s2 and szw’ = s4.
Thus, w’ € T[(s3+ s4) N P] and therefore

Tl(s1+s2)NP] = Z B(sy + s3)T[(s3 + s4) N P]B(s4 + $2).
s3,54€P

But, because of (i), I'[(s3 + s4) N P] is rational and so T'[(s; + s2) N P]
is rational. Following the same reasoning for the other cases, we have the
Proposition:

Proposition 3.4. The subset T[(s; + s2) N P] of Y is always rational.

Thus, according to Proposition 3.4, if M is the set of states of an au-
tomaton A with start state so and s, one of its final states, then I'[sg + -]
is a rational subset of A*. So if F is the set of the final states of A, then

L= T[so+s]

rekF
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is also a rational subset of A*. But L is the language of the automaton A,
therefore

Proposition 3.5. The language of an automaton is a rational subset

of A”.

Since the rational subsets of A* derive from regular expressions [17] and
since every regular expression defines a rational subset of A*, it is obvious
that from the above Proposition. the direct part of Kleene’s theorem [6]
derives.

Next let M be an arbitrary set with operators or hyperoperators from
a hyperringoid Y and let s be an element of M. Every element a of Y is
being associated to sa. If Y is a set of operators, then this mapping, which
will be denoted by ¢, is a function from Y to M, while if Y is a set of
hyperoperators, then g, is a function from Y to P(M). Hence we introduce
the definition:

Definition 3.3. A subset L of Y will be named (s, F')-acceptable from
M, or simply acceptable, when there is no danger of confusion, if there exists
s € M and F C M, in the case of external operation, or ' C P(M), in the
case of external hyperoperation, such that: ¢;!(F) = L. So, according to

the definition, for different s and F, we shall generally have acceptable from
M subsets of Y. Therefore we have the question: for a given F C M can
all the acceptable fromm M subsets of Y be found? With regard to the above
we prove the Proposition:

Proposition 3.6. Let M be a finite set with |[M| = n and with operators
in a B-hyperringoid Y. Then, for a given F, the acceptable from M subsets
of Y form the solution of an n X n system.

Proof. Let M = {s; | i=1,...,n} and Y be the dilated B-hyperringoid
which derives from Y. With every s; € M we associate the set

Xi={weY |sweF}

which obviously is the (s;, F')-acceptable from M subset of Y. If X; =0
then we define X; C Y to be the singleton {0}, (0, by usual conventions)
while in every other case we put X; equal to X;. Next we define the sets
A;-j as follows:

Aij={we€Y |sw=s; and w irreducible}.
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We consider again the subsets A;; and B; of Y defined as follows:

A = A, if A{J"#@ B = 0, if s;¢ F
7000, if Ai7=0 Tl 1, if s;€F

and next we form the system:

X1 =AuXi+ApXo+ ...+ AnXn + By
Xo=AnXi + AnXo+ ...+ A2, X, + B,

..........................................
..........................................

..........................................

X = Aanl + Ana X2 + oot Ann X + By

Solving this system according to the theory developed in [11], we get
X1,..., X, which are always rational subsets of Y [11].

Remark 3.1. It must be noted that the (s, F')-acceptable subsets of
a hyperringoid Y are not necessarily countable. Indeed let us consider the
set IR of the real numbers, endowed with the usual multiplication and with
the hypercompositional structure of the B-hypergroup. Then IR is a B-
hyperringoid (more precisely, join hyperfield) and becomes a set of ope-
rators over JR? if the external operation is defined in the following way:
(a,b)A = (aX,b)). R? endowed with the structure of the B-hypergroup is a
B-hypermoduloid over R). Let s = (1,1) and F = {(x,x) € R? | x > a}.
Then the (s, F)-acceptable subset of IR is the interval [@, +00), which is a
non countable set. :

At this point we should also note that Proposition 3.5 can derive as a
direct consequence of the above Proposition 3.6, if we consider the set M to
be the set of states S of the automaton. Thus, if s; is the start state of the
automaton, the solution for X, is the language L of the automaton, which,
consequently, is a rational subset.

A number of Propositions follows, which deal with subjects relevant to
the (s, F')-acceptable subsets of the hyperringoid of operators. In order to
avoid the further extention of this paper, we skip the proofs, since they can
be found in [11].

Proposition 3.7. Let M, and M, be sets with operators from a hy-
perringoid Y. If Ly and L, are subsets of Y acceptable from M, and M,
respectively, then there ezists a set M with operators fromY such that L1UL,
1s also acceptable from M.



Corollary 3.1. If My and M, are sets with operators from a B-hyperrin-
goidY, and Ly, L, are subsets of Y acceptable from My and M, respectively,
then there is a set M with operators from Y, such that the Ly + L, is
acceptable from M.

Proposition 3.8. Let M be a set and let Y be a hyperringoid of hyper-
operators with hyperoperation "o”. If L is a subset of Y acceptable from M,
then there ezists a set N over which Y is a set of operators with operation
».” and such that L is acceptable from N.

Corollary 3.2. For every non deterministic automaton there ezists a
deterministic automaton which accepts the same language with the first one.

Proposition 3.9. Let M, and M, be sets with operators from a hy-
perringoid Y. If Ly and L, are subsets of Y acceptable from M, and M,
respectively, then there exists a set M with operators fromY such that L,L,
is acceptable from M.

Proposition 3.10. If L is a subset of Y acceptable from a set M, then
L\ {1} is also acceptable from the set M x {0,1}.

Proposition 3.11. Let Y be a hyperringoid produced from a set B and
every element of which has a unique factorization from elements of B. If L
s an (s, F')-acceptable from a set M subset of Y, not containing the 1, then
the L=\ {1} is also an acceptable subset of Y.

Proposition 3.12. If L is an acceptable from a set M subset of a
B-hyperringoid Y, then L* 1s also an acceptable subset of Y.

From the proofs of the above propositions it follows that, if the subsets
of Y mentioned in the suppositions of these propositions are acceptable from
finite sets, then the same thing happens for the subsets of ¥ mentioned in
their conclusions. Also it is known from the Theory of Automata that every
finite set of words defines a language of an automaton. So:

Proposition 3.13. Fvery rational subset of A™ is acceptable from an
automaton.

From this Proposition the converse of the Theorem of Kleene [6] is ob-
tained and therefore, from Propositions 3.5 and 3.13, we have: '

Theorem of Kleene. A subset of A* is acceptable from an automaton
A, if and only if it is defined by a regular ezpression.

Now let’s consider that the hyperringoid of the operators Y acts on a set
M endowed with the structure of the hypergroup. Then, in correspondence
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with the classical theory and the theory of the hypercompositional structures
[13],[14],[8],[4],[3] we have:

Definition 3.4. If M is a hypergroup and Y a hyperringoid of operators
over M such that for every £,A € Y and s,t € M, the axioms:

(1) (s+t)A=sA+1A (i) s(A+k)C sA+ sk

hold, then M is called hypermoduloid over Y. If Y is a set of hyperoperators,
then M is calied supermoduloid.

Relevant structures have been defined in [11] (also see [16]). We remark
that if the second of the above axioms holds as an equality, then we have
the strongly distributive hypermoduloid.

Example 3.1. Let’s suppose that M is a B-hypergroup and Y is a
B-hyperringoid, then, depending on whether Y is a set of operators or hy-
peroperators, M becomes a hypermoduloid or a supermoduloid.

In a similar way to what we have defined up to this point, M will be
called B-hypermoduloid or B-supermoduloid respectively.

Proposition 3.14. Every B-hyperringoid is B-hypermoduloid on itself.

Proposition 3.15. The B-hypermoduloids and the B-supermoduloids
are strongly distributive.

In the following we will assume that all the hyperringoids we refer to,
are unitary.

Proposition 3.16. If My, M; are two B-hypermoduloids, then
M = M; x M, becomes an Y -hypermoduloid, defining the hypercomposition
(s1,t1)+(s2,t2) = {(s,t) | s € s1+52, t € t;+12} and an ezxternal operation
from M XY to M, (s,t)A = (sA\,tA). M is not strongly distributive, even
when My and M, are strongly distributive.

As we have mentioned in the second paragraph (motivated from A*) if
the hypergroup of a linguistic hyperringoid is a fortified join one, then we get
a fortified hyperringoid of a special form, the dilated linguistic hyperringoid.

The dilated linguistic hyperringoid appears directly in the <owgstru<iion
o} bLha autovwsicon. wWe sturt wilh the Propositiow

Proposition 3.17. The set of the states of an automaton can be en-
dowed with the structure of the dilated B-hypergroup with zero the start state

(and selfopposite elements).

Also the next Proposition holds:
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Proposition 3.18. The set of the states of an automaton endowed
with the structure of the dilated B-hypergroup becomes a hypermoduloid over
the dilated linguistic hyperringoid (A", +, ) which is defined by the alphabet
A of the automaton (B-hypermoduloid) [and where the ezternal operation
S x A® — S is obviously being defined from the function ).

So when the logical circuit, which is the electronical realization of an
automaton, is being constructed, we find it convenient to use a special syn-
bol, < EOS > (End of String), in order to deterinine the end of a word.
< EOS > has the property 6*(s,< EOS >) = s for every state s of the
automaton. Thus we see that < EOS > corresponds to the unitary element
of the hyperringoid, since in the hypermoduloid of the automaton we have:
s-1=s, forevery s € 5, thatis 6*(s,< EOS >) = 6*(s,A) = sA = s.
Another symbol, useful to the electronical realization of the automaton is
the symbol < SOS > (Start of String). This symbol acts as an annihilator,
since it leads from every state to the start state. It is therefore the corre-
sponding symbol to the zero element of the dilated linguistic hyperringoid,
since in the hypermoduloid of the automaton we have: s -0 = sq, for every
s € S, and so 6*(s,< SOS >) = 6*(5,0) = s-0 = sg.

Let’s consider the automaton of figure 1 as an example. When we intro-
duce the elements < EOS > and < SOS >, the automaton of figure 1, is
being transformed to the one of figure 2.

a B a,(E0S),(SOS) B
a a,(SOS)
Figure 1. Figure 2.

In order now to proceed to the electronical design of this automaton, we
must firstly describe with proper number of bits [2] its states and the letters
of its alphabet. So we have t = 0 for the state so and t = 1 for the state s;.
Moreover, since the alphabet consists only of two letters, @ and § and the
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symbols < EQOS >=1= A and < SOS >= 0, we use the following combi-
nations of bits for its description (we note that by convention < FOS > is
represented by the "lower” binary code and < §OS > is represented by the
"highest” binary code).

00 =< EOS >, Ol=¢q, 10=04, 11 =< 505 >.

This reasoning leads to the complete truth table of the next state t’:

& Do
i ay ay |t t[
0 0 0 0 r—j—,__\‘-\ I~~, acospt
0 0 110 D=2, =
0 1 0|1 B N
01 110 H
1 0 0|1
1 0 110
1 1 0|1
1 1 110 .

L——:)_> <EQS>

Among the other electronical parts it is necessary to use a D flip-flop [1],[2]
since the outcome does not depend only on the input of the letter, but it also
depends on the previous state of the circuit. Indeed, the input of the letter 3,
for instance, can either lead from state sg to s; or cause no change of statesin
the automaton of our example. Therefore the circuit should "remember” the
previous state and for this reason we need a "memory cell”. The electronical
circuit which is the realization of the automaton of our example is the one
of figure 3.

In this automaton the hypermoduloid consists of two elements, s¢ and sq,
while the dilated linguistic hyperringoid has the unitary element < EOS >,
the zero element < SOS >, and the prime elements a and §.
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