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ABSTRACT

In thic paper, an association ic begun tetween the thecry of Lanquages and Automata theery on the cne
hand and the Hypercompositional Structures on the other. For this purpese, not only Hvpsrcospositional
Structures are used but certain other new cnes are introduced, such as the hyperringeid, the fortified
join and the fortified join polysymeetrical hypergroup. Moreover the notion of the order of an
automaton’s state is introduced along with several ecuivalence relations in the set S of the states

fad

of an automaton, Finally certain hypercomoositional structures that are defined in S allew ug f2

i

introduce in it the notions of valuatien and nypervaluation.

1. INTRODUCTION

This is an introductory paper in which an agsociation is begun hbetween
the theory of automata and languages cn one hand and on the octher,
hypercampositional structures, that are defined through them.
Moreover relevant applicationz are presented.

I Ais an alohabet, A* the st of words that are defined
from A - clozure of A~ and ML the emot v word, then
the set A* under the operation of concatenation of words
i.e. Kay = Ny (1), 1is a menoid, with neutral element X, since for
every % £ A*, by definition, Xa = a}l = a (2)

Length 1 () of a word x £ A* ie the number of letters in % [ thus
1GA) =0 1 and so liuy) = 1(x) + 1{y) for every x,y £ A*.

The definition of regul ar exoressions (which are
fundamental in the theory of languages) over an alphabet A, presumes
the introduction of the <=ets Oi,y) from A=, This su
definition of a hypercempesition in 8%: ¢ + y) = (i, y> (3

[R o]

gasts the
3
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an Automaton, as is well known, is a collection of five objects thinags
(S, A, So, F, t), where S 1s a +inite.cet of states, 4 is an alphabet
of input lettsrs, So and F are the cets of starting and final states,
respectively, and t is a tramsition function with domain SxA and range
5. if the automaton is deterministic, otherwise range

F{S), 1if it is nondeterministic. C11, C4], C[13].

2. LANGUAGES AND HYPERCOMPOSITIONAL STRUCTURES

From the above we can see that if we give A* the camposition (1) and
the hypercomposition (3), then we get the hypercompositional
structures (A*,+) and (A*,+,.). It is almost ocbvious that the first
structure is a commutative hypergroup. Moreover we observe that the
induced hypercomposition x : vy [&]1, (71 is
[ H, if % # vy

Ty = 4{ w £ A* [ ¥ e W+ y 3= L

A*, if x =y
Also, considering all the possible cases, it can be proved that feor
a,b,c,d = 8% we have:

(a:b) N (c:d)#4d ==xfa+d 0 (b+c)#d

S0 we have the Proposition:

Propositiorn 2.1. The structure (A* +) is
a Join hypergroup [31, C71]

The hypergroup (A*,+), as well as every hypergroup (H,+) of this type,
has the following properties
PROPERTIES (2.1)
1. It lacks scalar elements (i.,e. elements s £ H such that feor
every x € H the sum s + % 1s a singleton)

ii. Each one of its elements ¥ is neutral and absorbing (with broad
meaning!, that is for every v € H, v &€ w+y and u < n+y
i1i. Each one of its subsets is a sub-hypergroup of it.
Indeed, let B c H and % € B, Then, % + B = Upgm(nt+a) =
= Uaepix,al = B
iv. Nene eof its sub-hypergroups is closed [Sl. Because if B is a
sub-hypergroup of H and % an element which does not belong to
B, then (v +B)YyaAB=(&:UB)YNB=8B#4d
filso it can be oroved that
V. It doeen’t have inversible (3] subhypergroups.
REMARK 2.1.
The Jjoin hypergroup (H,+) with % + y = {&:, y¥ has, by definition, the
above property ii. Yet there exicst join hypergroups (H,+) with
elements ® £ H such that v % % + v for every v € H, with v # vy, v # 0
{ in the case that there exists 0 in H ), as it 1is shown 1in the
example:
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EXAMPLE 2.1,

If H is a totally order=ed and dense set, then H with hypercomposition:
[x, for w o=y

nty =

|-]rnin{:!,.\,'}_, max <,y L, for £y

is 2 join hypergroup, which obviouzly zatisfiecs the above property.

Mow, for the hypercompositional structure (A*,+,.), we observe that
the multiplication (concateration) is distributive with regard to the
addition. This property, together with the properties of the
structures (A*,+), (A*,.) l=ads to a definition of a new
hypercompositional <structure, which 1c more general than that of a
hyperring. '

Defimitiomn 2. 1. A non void set H under a composition
"." and a hypercompcsition “+" zuch that the following conditions are

satisfied:
i) (H,+) is a join hypergroup
ii) (H,.) is a semigroup
iii) the composition is distributive with regard to the
hypercomposition
is a hyperringoid.

So we have

Propositiomn 2.2. The hypercompositional
structure (A%*,+,.) is a unitary hyper-ringeid [because of
231.

The hyperringoid (A*,+,.), as well as the hypergroup (A*,+) are called
attached hyperstructures to the alphabet A. The form of the attached
hyperringoid of A leads to the following more general consideration:

Propositiormn 2.3 . Let (D,.) be an arbitrary
semigroup. Then D under the hypercomposition (3
becames a hypercompositional structure (B,+,.) which is a
hyperringoid.

REMARK 2.2
It is obvioug that 1if the additive hypergroup of a hyperringoid
(H,+,.) has a scalar neutral slement 9 (consequently unique £[71) and
if 0 aleo is bilaterally absorbing element for.the multiplication
(i.e. Ox =x0 =0 for every x = H) then the hyperringoid is a
hyperring.

Mow given a hyperringoid (A*,+,.), the notion of the length of a word
leads to the consideration of the binary relation L in A* such that:
# Ly, when 1(x) = 1{y)
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which is ghviously an equivalence relation, zalled length equivalence.
If we dencte by C, the class which ceontains the word i, we have that
CutComlnreen, yrec, (7+y72=C L UC =Uren->+y,-Cr i.2. a union of classes C,
with =z ¢ 27+y”7 for arbitrary w7 = C. and y* £ C,. So the equivalence
relation L is normal, therefore the quotient cet A*/L under the
hvoercomposition

Ce + L, = {C,, C,7 (4)
is & hypergroup. Alsc the set A* under the hvpercomposition
+y=0C.UucC, (3}

i a hypergroup as well. O0On the other hand as +for the multiplication,
taking into consideratien that

Liydy = 100+10y), Liny) = 1(27v7) for every «7
we have that

/T
@]
X
~
AN
T
o]
X

Cu.C, = {7y’ w7 8 Gy v2 2 C, 3 = Chy (&)
which means that the eguivalence relation is normal with regard to the
multiplication. PFroceeding to the verification of the cther axioms we
get the propesitions:

Propositiomn 2 .4%. The set A=*/L o©of the
clagsses mod L under the hypercomposition (4) is a join
hypergroup which satisfies the properties 2.1.

Propositiomn 2.5. The hypercompositional
structure (A*/L,+,.) under the hypercomposition (4) and
compasition (8) becomes a unitary hyperringoid with
multiplicatively neutral element the class C. = ( 2 2.

Propositiomn 2.6. The set A* under the
hypercomposition (5) is a join hypergroup. '

FPropositiomn 2.7. The hypercompositional
structure (A*™,+,.) under the hypercomposition (5) and
composition the concatination, becomes a unitary
hyperringoid with multiplicatively neutral element x.

With regard to the Remark (2.2) we observe that it is possible for the
hyperringoid @ tec contain 2 nonscalar additively neutral element which
is alsg absorbing with regard to the multiplication. Such an example
resultes from propositien (2.3), if the semigroup (D,.) has a
bilaterally absorbing element, dencted by 0, which obviously is a
nonscalar neutral element for the addition as well  (f{because
O+ = {0, u¥, for every x £ D). But in this case, the existence of
a4 nonzero opposite element %/ is possible for every nonzero % in B,
provided that the hypercompcsition % + vy in D ig altered in the
following way: '
oty = o, yyoif ow# oy and ®wo+on o= {0, uk (7)

But in thic case, obviously, every element % £ D is self-cpposite and
so for %/ = x it fgollows that:
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IR

7 L

% ou+v ==: ogither yw 8 oI or x % T4y, for avery #,y.z £ D
[
In

an =sgulvalence relation in D for which

3
a]
3
m
ul
m
2
m
3
n

1=

y—
V-
4
-
n

Co = {0Y, and i¥ we defina the hypercomposition in D as follows:

W+ oy =C,UC,1f C, #C, and 2+ v =Co U Ck if Co =0C) (&)
then every element x % D has many symmetricals. &lso 1t can ke
verified that with the abcve altered hyoercompositicns, each of the
1 =ztructures (D,+), (D,+) remains a join hypergroug,

hvoercompositiona

and moreover is partially r 2 ver s 1 b1l e [21, which leads to the
introduction of the fclleowing neotiones:

Definmition 2.2 If a jcin hypergroun (H,+) satisfies

the axioms:

1) There axists a unidue neutral =lement in H denoted by O - the zero
of H - for which every nonzero element @ in H has one and conly one
nonzero inversible - oppposite or symmetrical in H - denoted by -u,
The hypergroun (H,+) is partially reversibie, i.e.

w % oty ==& either v £ w-x Or 2% € w-y, faor every x,y,w % H
then it is called ‘fortified join hypergroup.

(]

Defimition 2.5- If a Join hypergroup (H,+) csaticsfies
the axiome:
1) There sxists a unigue neutral 2lement in H denoted by 2 - the zero
af H -~ for which everv nonzero element = in H has at least one
nenzere inversible - opposite or symmetrical - im H denoted by

S0
2) The hypergroup (H,+) is partially reversible, i.e it holds:
G oE ey ==3 0 (dx/ § S()) Ly f wkxs] or

(4v7 2 Sty)) [ 2 2 wty”1
then it is called fortified polysymmetrical join hypergroup.

REMARK 2.2
This neutral 2 < H iz generally nenscalar. If it is scalar, then
cbviously the join hypergrouc (H.+) becomes a canonical one, or &
zanonical polysymmetrical one respectively 71, (111,

REMARK 2.3

w

If in a fortified polysymmatrical jein hypargrous H the sets S
% = H form a martiticn of H, them the set H/R = { SGO L
under the hypercamoaositiaon:

SG) + Siyy = { Slw) bow = S5(x) U S{y) 3
becomes a fortified join hypergrouo.
Defirmitiorn =2.49. A hyperringgid (H, +, .) 1ic called

fortified if i
glament ig a bilatera

ly absorbing element for the multplicati

+
(0]
[
a
a
-
[ e

ive join hypergroun ic fortified and its zero
on.

t
(U]

It resul that if we adjoin to the set A* an element 0O, considering
+

s in a way, as a zero word, with the properties:
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O = v = 0 N+ o= L0 P g+ wo= («_:y, v ()

“ X oy = i Y NS

for every @ = A = 46* U {0), we have that:

Propositiomn 2 .8. The hypercompositional
structure (A,+,.) is a fFortified unitary hyperringoid.

In the <=t A the order ( ord x ) of 2 word x, % # 2 is defined tc be
its length plus 1, that 1=

ard « = 1{x) + 1, for = # 0, and ord 0 =0
Then the birary relation 0 such that: @ = v (0), if ord x = ord y is
obviously an equivalence relation 1 A that is called order

n

equivalence and the restriction of it to A* coipcides; as 1t is
obvious, with the length equivalencs in it. It can be =asily shown
that relation 0 is normal for both the hypercomposition and the

compositicn in A and thus we have the Fro

Al

ceition:

pal

Propositiaormn 2 .3. The hypercompositional
structure (A/0,+,.) with bhypercomposition and composition
analogous toc (4D and (6) is a Ffortified unitary
hyperringoid.

REMARK 2.4.
The sete of classes mod O in A and mod L in &*, ocbviously, are =ach
icsomorphic to M and so - sach is tgotally ardered. Therefore it iz

poscsible tor more hypercompositicn structures, to be defined as the

al
next example shows (also see corresponding cases in paragraph Ib.

With regard to the fortified join hypergrouns and hyperringocids we
have the folowing example, {apart from the thecry of languages and
with non self-opposite el=mente).

EXAMPLE 2.2
Every total

y ocrdered set (H,7) svmmetr

{‘f
-
't
u
y—
i+
8]
fu
n
]
a
o
n
3
O
Al
€
g
b
M
th

Ho=H- U {0} UH-

(H7=00eH |1203, AT={esHs03) such that o < 0 <y for every 3 = HT,
y &£ HY, w4y ==> -y { -x for every x, ¥y £ H, where -z i t

| i ; = ha
symmetrical of % with regard teoc ©. Particularly every symmetrical
subset of an.abelian totally ordered croup, becocmes a fortified join
hypergroup, under the hypercomposition:

o+ y = {u, vy if !"} F iy%

T T T T St 5 P P I
where #lo= o, 1f w8 HT, o, iF xS HT and 9, 14w = 0
In the special case that the set H ic an ordered field e.g. the zet Q,
then, undsr the above hypercoempositicn  + vy and composition the
multiplication in H the structure (H,+,.) 1= fortified hyperringeid

and more precicely a fortified hyperfieldoid with the cbvious meaning
af the term.
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Detailed study of these structur=s, both independently as well as in
relation to the theorv of languages is already belng carried cut Zv
5. Masscuros and it 1s the sutject of other forthcoming articles of

Fls.

3. AUTOMATA AND HYPERCOMPOSITIONAL STRUCTURES

Let (3,4,5,,F,t) be an autemateon, fdeterministic or not). Irn order
to define the order of a2 statez we suppose that there exists a
conventional start state go”

~

) 2
go © 5 (even if there exicstsz only ons such state) with the smpty werd
1 .

", which is connected tao every start stat

Definmritiorm .1 We define the order of a cstate g < S,
denoted with ord Q, to be the natural number 1+1, where 1 is the
minimum length of the word which leads from the conventional start
state go” to g.

By definition ord go” = 0.

Using this noticn we define in the set of the states 5 the follewing
order equivalence. For every g, G= ¥ S, g.0gz if ord g, = ord gz

Yet we observe'that, ag in the coarrespcnding case of the sets A*® and
£, the set of the classes 1is isomorphic to & subset of N (with
passible axtention of the definition of the automaton for infinite
number of states, to N itself). Therefore it is pgssible to make 5 a
hypercompositional structure, having in mind analogous cases of such
structures starting from tctally ordered sets, e.g. using the, by
definition, commutative hypercomposition:

r 9=, if ord g, < ord g=
Gy *+ G2 <

L Uorda a<ora q1las if ord g, = ord g=
witlich makes it a polysymmetrical canonical hypergroup [11] with
neutral zlesment go” and with oppaosites of an g £ S the states of ths
class €, (and so g itsel+$).

Q=
T .
: — U
------ H:.-.......--....."....-.-....'......-..f..\.:.. a s & n aa
N/ o/ _J
“sesesssneranas ateesacses 4acsnens waeonaesn Cesesssa neasases aaeoeelOaes
I M — O\
-/ / —/ O
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From the several cases of hypercompesitional structures of 5 we
mention the focllowing three ones, where the structure (5,+) with
hypercompaosition, by definition, commutative, is canonical hypergroup
{with self opposite elements) [8].
1== [ Qz, if ord g % ord gz
Qa1 +‘az = L
Uara q<ara qi1Cqr if ord g, = ord g= (# D
and go’ + Co” = Qo’-

(This results from the above 1f 1in the definition of the
hypercomposition and for the case ord g, = ord gz we replace the ¢
with < ). It can be provéd that the set S itself 1s, in this case,
totally ordered and the hypergroup (5,+) is superiorly

canonical (€103,

2nd { Oz, if ord g, ¢ ord g=
gy + Q=2 = Usra gq<ora qilay when ord g, = ord g=
and go” # g1 # Gz ¥ Qo
Uara QLerd a:Cas when Qi = Q=
With this hypercomposition . (5,+) becomes a strongly

canonical hypergroup [10].

gre Cazs if 0 #ord g, < ord g=
Qi + Q= = Uo..of-g a<ard qxcq, when ord g, = ord Q=

and q°/ # g1 # g= # q°,

Usra a<eord a1lq when G’ # g1 = Oz
and go” + g =q for every g = S.

The structure {S,+) is now a canonical hypergroup [8].

It results that the canonical hypergroup is in the first case valuated
and in the second case feebly valuated with valuation Iql equal to thke
order of the state g in both cases:
'ql =ord gq, for every q £ §

The hyperdistance d : S § -———- > PRe is d(gi,G=2) = max {‘qll,lqzl},
if g1 # g2 and dfg , g =0 and the sums q. + gz are circles of the
hypermetrical space (S,d), i.e. q. + g= = Cta, pmax{qul, [qzl}) with
an arbitrary q € qi + gz and the "proportionality coeficient” p is a
semireal number p = 1-, for every gi., = £ S for the first case, and
p = 1=, for [qa] # | 9= | and p = 1 for |q,| = 'qzl in -the third case
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L1071,

Finally we introduce the +following new notion, the grade
fgrad q, g £ 3) of a deterministic automaton®=z (S, A,5,, F, t) state
q:

Definmnitiomn =.2. We call grade of a state g % S5 and
we denote it with grad g the set

grad g = { % = A* | %g £ F 3 (1)
where xq 1is the value t*{q,%) of the extended state #transition

function t* : A*: S -——> S which is defined recursively as follows:
(fgqge s (Faxs A t*(a,q) = tla,q

(¥q < 35 X t*l.q) = g

(Mqe 9 (Fx<an (taswm t*(ax,q) = t*(tla,q),x)

( xg < A* in (10) obviously derotes a path in the corresponding

pictorial representation which leads from state q to the final state,
or to the conventional final one).

Now in the set of states S of an automaton we define the relation R as
follows:
giRg=z when grad q, = grad qa
Obviously this relation is an equivalence relation in S, called grade
equivalence. Using the classes of R, S becomes a join hypergroup, if
we consider in it the hypercomposition:
Qi *+ gz = Cqu™ U Cq2™
Thus the structure (S,+), according to what has been mentioned 1in
paragraph 2, 1is a Jjoin hypergroup. Now let us suppose that the
automaton ( S,AR,S0,F,t } we are talking about, has only one final
state, the state g+ {(otherwice we endow it with a conventional onel.
Next we define in S the hypercomposition "+" in the following way:
' Car™ U Cqz", if  Cgqi™ # Cax®
7 ( and gi, gz # gr
G: * G2 =
- L Caoi™ U {g+¥, if = Coa™ = Ca2"
Then the hypergroup {(S,+) becomes a polysymmetrical fortified join
ane. We will pame this hypergroup attached grade hypergroup of the
automaton.

The notion of the grade is directly relevant to the creation of +the
minimum automaton which accepts the same language with the initial
one. Therefaore if in an automaton exist two states of the same grads,
it makes no difference to the process of reaching the final state,
whether we are on one or on the aother. So 1f the attached grade
hypergroup is polysymmetrical, then, based on it, and according to
what we have mentioned in Remark 2.3, we can construct a fortified
join one and the automaton which has this new hypergroup as attached
hypergroup has less states from the original one, but it accepts
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exactly the same language with it.

ExamEle

REMARK 3.1
In a deterministic automaton, A* 1is obviously a range o f
operators for the cet of scstates S, and the function
t*:A*:S ——-> S defines an external composition (from the left) in it.
In the case of a non deterministic automaton, t*, properly defined,
defines an external hypercompasition in S, and A* becomes a
range of hyperoper ators 121. Using proper
type of hypergroup of the S and proper alphabet we can construct
hypergroup with operators or hyperaperatars respectivly. Especially
when S is a proper canonical hypergroup and A* a hyperringoid {(or when
A is a fortified hyperringoid), then the hypergroup with the ‘opefator
has a form analogus to the hypermadule {(hypemoduloid). This remains a
hitherto open question.
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