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TRANSPOSITION HYPERGROUPS WITH IDEMPOTENT

IDENTITY

CHRISTOS G. MASSOUROS AND GERASIMOS G. MASSOUROS

Abstract. This paper studies transposition hypergroups T with idempotent
identity e. Some of their fundamental properties are presented. Hypergroups

are strictly e-regular, if for each x in T the set of the left inverses is equal to
the set of the right inverses. The elements of these hypergroups are separated

into two classes: the set A = {x ∈ T |e ∈ ex = xe}, including e, of attractive 
elements and the set of non-attractive elements. A study of these elements is
also conducted.

1. Introduction

In 1934 F. Marty, in order to study problems in non-commutative algebra, such as 
cosets determined by non-invariant subgroups, generalized the notion of the group, 
thus defining the hypergroup [25, 26, 27]. An operation or composition in a non void 
set H is a function from H × H to H, while a hyperoperation or hypercomposition 
is a function from H × H to the powerset P (H) of H. An algebraic structure that 
satisfies the axioms

i. a · (b · c) = (a · b) · c for every a, b, c ∈ H (associativity) and
ii. a ·H = H · a = H for every a ∈ H (reproductivity).

is called group if “·” is a composition [42] and hypergroup if “·” is a hypercomposition
[25]. When there is no likelihood of confusion “·” can be omitted. If A and B are
subsets of H, then AB signifies the union

⋃
(a,b)∈A×B

ab, in particular A = ∅ ∨ B =

∅ ⇔AB=∅. Ab and aB have the same meaning as A {b} and {a}B. In general,
the singleton {a} is identified with its member a. In [25] F. Marty also defined
the two induced hypercompositions (right and left division) that follow from the
hypercomposition of the hypergroup, i.e.

a

|b
= {x ∈ H|a ∈ xb} and

a

b|
= {x ∈ H|a ∈ bx}

It is obvious that, if the hypergroup is commutative, then the two induced hyper-
compositions coincide. For the sake of notational simplicity, a/b or a : b is used to
denote the right division (as well as the division in commutative hypergroups) and
b\a or a..b is used to denote the left division [17, 31].
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F. Marty’s life was short, as he died in a military mission during World War II.
[25, 26, 27] are the only works on hypergroups he left behind. However, several
relevant papers by other authors began appearing shortly thereafter (e.g. Krasner
[20, 21], Kuntzmann [23] etc). It is worth mentioning here that the hypergroup,
which is a very general structure, was progressively enriched with additional ax-
ioms, either more or less powerful, thus creating a significant number of specific
hypergroups e.g. [2, 3, 12, 17, 18, 30, 34, 36, 37, 48, 49, 54, 55, 56, 57, 68, 69].
Moreover some of these hypergroups constituted a constructive origin for the de-
velopment of other new hypercompositional structures (e.g. see [22, 28, 39, 51, 53,
58]). Thus, W. Prenowitz enriched hypergroups with an axiom, in order to use
them in the study of geometry [61, 62, 63, 64, 65]. More precisely, he introduced
into the commutative hypergroup, the transposition axiom

a/b ∩ c/d 6= ∅ implies ad ∩ bc 6= ∅ for all a, b, c, d ∈ H

and named this new hypergroup join space [64, 65]. Prenowitz was followed by
others, such as J. Jantosciak [16], D. Freni [12, 13], Ch. Massouros [29, 31, 32,
33] etc. For the sake of terminology unification, join spaces are also called join
hypergroups and numerous authors wrote dozens of papers on the study of this
structure (e.g. R. Ameri [1], J. Chvalina [9, 10], P. Corsini [4, 5, 6], I. Cristea
[6, 11], Š. Hošková [10, 14], A. Iranmanesh [15], A. Kehagias [19], V. Leoreanu
[5, 24], Ch. Massouros [34, 38, 67], G. Massouros [44, 45, 49, 50], I. Mittas [49],
J. Nieminen [59, 60], I. Rosenberg [66], Ch. Tsitouras [67], M. M. Zahedi [1] etc.
For an extensive bibliography on this issue see [7] and [8]). It has been proven
that these hypergroups also comprise a useful tool in the study of languages and
automata [44, 45, 47, 52]. Later on, J. Jantosciak generalized the above axiom in
an arbitrary hypergroup as follows:

b\a ∩ c/d 6= ∅ implies ad ∩ bc 6= ∅ for all a, b, c, d ∈ H.

He named this particular hypergroup transposition hypergroup [17]. Subsequently,
in [40], this axiom was also introduced into HV -groups and, therefore, transpo-
sition HV -groups were defined. Clearly, if A,B,C and D are subsets of H, then
B\A∩C/D 6= ∅ implies that AD∩BC 6= ∅. In what follows, the relational notation
A ≈ B(read A meets B) is used to assert that sets A and B have a non-void inter-
section. The study of transposition hypergroups is not as extensive as that of join
hypergroups. This paper contributes in this direction by analyzing transposition
hypergroups with idempotent identity.

2. Algebraic Calculus

Consequences of the hypergroup’s definition axioms are [29, 31, 41, 42]:

i. ab 6= ∅, for all a, b in H
ii. a/b 6= ∅ and a\b 6= ∅, for all a, b in H
iii. H = H/a = a/H and H = a\H = H\a, for all a in H
iv. the nonempty result of the induced hypercompositions is equivalent to the

reproductive axiom.
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It has been proven in [17, 31] that in any hypergroup the following properties are
valid:

Proposition 2.1. In any hypergroup

i. (a/b) /c = a/ (cb) and c\ (b\a) = (bc) \a (mixed associativity)
ii. (b\a) /c = b\ (a/c)

iii. b ∈ (a/b) \a and b ∈ a/ (b\a)

Corollary 2.2. In any hypergroupH, if A,B,C are non-empty subsets of H, then:

i. (A/B) /C = A/ (CB) and C\ (B\A) = (BC) \A
ii. (B\A) /C = B\ (A/C)

iii. B ⊆ (A/B) \A and B ⊆ A/ (B\A)

An element e is called right identity, if x ∈ x · e for all x in H. If x ∈ e · x for all
x in H, then x is called left identity, while x is called identity if it is both right and
left identity. If equality e = ee is valid for an identity e, then e is called idempotent
identity. A hypergroup H is called semi-regular, if every x ∈ H has at least one
right and one left identity.

Proposition 2.3. If e is a right identity in H, then x ∈ x/e for all x ∈ H and if
e is a left identity in H, then x ∈ e\x for all x ∈ H. If e is an identity in H, then
x ∈ x/e and x ∈ e\x for all x ∈ H.

Corollary 2.4. If X is a non-empty subset of H, then X ⊆ X/e, if e is a right
identity in H and X ⊆ e\X if e is a left identity in H. X ⊆ X/e and X ⊆ e\X are
valid when e is an identity in H

If x = x · e = e · x for all x in H, then e is a scalar identity. When a scalar
identity exists in H, then it is unique. An identity e is a strong identity, if e ∈
x · e = e · x ⊆ {e, x} for all x in H. The strong identity need not be unique [18].
Both scalar and strong identities are idempotent identities.

Proposition 2.5. If e is a strong identity in H and x 6= e, then x/e = e\x = x.

Proof. Let t ∈ x/e. Then x ∈ te ⊆ {t, e}. Since x 6= e, it follows that t = x. Thus
x/e = x. Similarly, it can be proven that e\x = x. �

Corollary 2.6. If e is a strong identity in H and X is a non-empty subset of Hnot
containing e, then X/e = e\X = X.

Proposition 2.7. If e is a scalar identity in H, then x/e = e\x = x.

Corollary 2.8. If X is a non-empty subset of H and if e is a scalar identity in
H, then X/e = e\X = X.

A subset h of H is called a subhypergroup of H, if xh = hx = h for all x ∈ h. A
subhypergroup h of H is central if xy = yx for all x ∈ h and y ∈ H.

Proposition 2.9. If H is a hypergroup with strong identities, then the set E of
these identities is a central subhypergroup of H.
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An element x′ is called right e-inverse or right e-symmetric of x, if a right
identity e 6= x′ exists such that e ∈ x ·x′. The definition of the left e-inverse or left
e-symmetric is analogous to the above, while x′ is called e-inverse or e-symmetric
of x, if it is both right and left inverse with regard to the same identity e. If e is
an identity in a hypergroup H, then the set of left inverses of x ∈ H, with regard
to e, will be denoted by Sel (x), while Ser (x) will denote the set of right inverses of
x ∈ H with regard to e. The intersection Sel (x)∩Ser (x) will be denoted by Se (x).
A semi-regular hypergroup H is called regular, if it has at least one identity e and
if each element has at least one right and one left e-inverse. H is called strictly
e-regular, if for the identity e the equality Sel (x) = Ser (x) is valid for all x ∈ H.
In a strictly e-regular hypergroup, the inverses of x are denoted by Se (x) and when
there is no likelihood of confusion, e can be omitted. H has semistrict e-regular
structure, if Sel (x)∩Ser (x) 6= ∅ for any x ∈ H is true for the identity e. Obviously
in commutative hypergroups only strict e-regular structures exist.

Proposition 2.10. If e is an identity in a hypergroup H, then Sel (x) = e/x−{e}
and Ser (x) = x\e− {e} .

Corollary 2.11. If Sel (x) ∩ Ser (x) 6= ∅, x ∈ H, then x\e ∩ e/x 6= ∅.

Proposition 2.12. [17] The following are true in any transposition hypergroup:

i. a (b/c) ⊆ ab/c and (c\b) a ⊆ c\ba
ii. a/ (c/b) ⊆ ab/c and (b\c) \a ⊆ c\ba

Proposition 2.13. The following are true in any transposition hypergroup:

i. (b\a) (c/d) ⊆ (b\ac) /d = b\ (ac/d)
ii. (b\a) / (c/d) ⊆ (b\ad) /c = b\ (ad/c)
iii. (b\a) \ (c/d) ⊆ (a\bc) /d = a\ (bc/d)

Proof.

(i) Let x ∈ (b\a) (c/d). There exists y ∈ b\a such that x ∈ y (c/d) ⊆ (yc) /d.
Thus there exists r ∈ yc such that x ∈ r/d or r ∈ xd. Therefore xd ≈ yc.
Consequently xd ≈ (b\a) c ⊆ b\ (ac) which implies that x ∈ (b\ac) /d.
Hence (b\a) (c/d) ⊆ (b\ac) /d.

(ii) Let x ∈ (b\a) / (c/d). There exists, y ∈ b\a such that x ∈ y/ (c/d) ⊆
(yd) /c. Thus there exists r ∈ yd such that x ∈ r/c or r ∈ xc Therefore
xc ≈ yd. Consequently xc ≈ (b\a) d ⊆ b\ (ad) which implies that x ∈
(b\ad) /c. Hence (b\a) / (c/d) ⊆ (b\ad) /c.

(iii) Let x ∈ (b\a) \ (c/d). There exists y ∈ c/d such that x ∈ (b\a) \y ⊆ a\by.
Thus there exists r ∈ by such that x ∈ a\r or r ∈ ax. Therefore ax ≈ by.
Consequently ax ≈ b (c/d) ⊆ (bc) /d which implies that x ∈ a\ (bc/d).
Hence (b\a) \ (c/d) ⊆ a\ (bc/d).

Corollary 2.14. The following is true in any transposition hypergroup

(b\a) (c/d) ∪ (b\a) / (d/c) ∪ (a\b) \ (c/d) ⊆ (b\ac) /d = b\ (ac/d)

Proposition 2.15. [29, 34] The following are true in any join hypergroup
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(1) a (b/c) ∪ b (a/c) ∪ a/ (c/b) ∪ b/ (c/a) ⊆ ab/c,
(2) (a/b) (c/d)∪(a/d) (c/b)∪(a/b)/(d/c)∪(a/d)/(b/c)∪(c/d)/(b/a)∪(c/b)/(d/a)⊆

ac/bd.

In [17] and then in [18] a principle of duality is established in the theory of
hypergroups and in the theory of transposition hypergroups as follows:

Given a theorem, the dual statement which results from the interchanging of the
order of the hypercomposition “·” (and necessarily interchanging of the left and the
right division), is also a theorem.
Since we are working in transposition hypergroups, this principle is used through-
out this paper. In what follows, it is assumed that the identities are bilateral and
idempotent. Examples of such transposition hypergroups, some of which are con-
nected to the theory of languages and automata, can be found in [18, 35, 36, 44,
45, 50, 52, 54].

3. Some Fundamental Properties

Proposition 3.1. If H is a transposition hypergroup with an identity e and z ∈ xy,
then:

i. ey ≈ x′z, for all x′ ∈ Sel (x) ,
ii. xe ≈ zy′, for all y′ ∈ Ser (y) .

Proof. z ∈ xy implies that x ∈ z/y and that y ∈ x\z. Let x′ ∈ Sel (x) and
y′ ∈ Ser (y). Then e ∈ x′x and e ∈ yy′. Thus x ∈ x′\e and y ∈ e\y′. Therefore
x′\e ≈ z/y and x\z ≈ e/y′. Hence, because of transposition, ey ≈ x′z and xe ≈
zy′ �

Proposition 3.2. Let H be a transposition hypergroup with a strong identity e and
x, y, z elements in H, such that x, y, z 6= e and z ∈ xy. Then:

i. if Sel (x) ∩ Sel (z) = ∅, then y ∈ x′z, for all x′ ∈ Sel (x) ,
ii. if Ser (y) ∩ Ser (z) = ∅, then x ∈ zy′, for all y′ ∈ Ser (y) .

Proof. According to Proposition 3.1, z ∈ xy implies that ey ≈ x′z for all x′ ∈ Sl (x).
Since e is strong ey = {e, y}. Hence {e, y} ≈ x′z. But Sel (x) and Sel (z) are disjoint.
Thus e /∈ x′z, therefore y ∈ x′z. The rest follows by duality. �

Proposition 3.3. If H is a transposition hypergroup with a scalar identity e, then,
for any x 6= e in H, the quotients e/x and x\e are singletons and equal to each
other.

Proof. Let x be in H. Because of reproduction, there exist x′ and x′′, such that
e ∈ x′x and e ∈ xx′′. Thus x ∈ x′\e and x ∈ e/x′′. Hence, x′\e ≈ e/x′′. Therefore,
because of transposition, ex′′ ≈ x′e is valid. Since e is a scalar identity, the following
is true: x′′ = ex′′and x′e = x′. Thus x′ = x′′. However, x′ ∈ e/x and x′′ ∈ x\e.
Therefore, e/x and x\e are equal and since this argument applies to any y′, y′′ ∈ H,
such that e ∈ y′x and e ∈ xy′′, it follows that e/x and x\e are singletons. �
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Hence, if H is a transposition hypergroup with a scalar identity e, then the
inverse of x is equal to e/x = x\e for all x 6= e in H.

Corollary 3.4. [17] A hypergroup is a quasicanonical hypergroup (or polygroup)
[30] if and only if it is a transposition hypergroup with a scalar identity.

Corollary 3.5. [29] A hypergroup is a canonical hypergroup [54] if and only if it
is a join hypergroup with a scalar identity.

Propositions 3.4 and 3.5 are consequences of Proposition 2.6:

Proposition 3.6. If a hypergroup H has semistrict e-regular structure, then x\e ≈
e/x for all x ∈ H

Corollary 3.7. If H is a transposition hypergroup with semistrict e-regular struc-
ture, then ex ≈ xe for all x ∈ H.

Proposition 3.8. A hypergroup is strictly e-regular if and only if x\e = e/x

Proposition 3.9. If H is a strictly e-regular hypergroup, then ex = xe for all
x ∈ H.

Proof. Suppose that for some x ∈ H there exists s ∈ H such that s ∈ ex and
s /∈ xe. Since s ∈ ex it follows that x ∈ e\s. Since s /∈ xe it derives that x /∈ s/e.
Thus s\e 6= e/s, which is absurd per Proposition 3.5 �

4. The Attractive Elements

Let e be an identity element in a hypergroup H and x an element in H. Then,
x will be called right e-attractive, if e ∈ ex, while it will be called left e-attractive
if e ∈ xe. If x is both left and right e-attractive, then it will be called e-attractive.
When there is no likelihood of confusion, then e can be omitted. When the identity
is strong, then ex = xe = {e, x} is valid, if x is attractive; if x is non-attractive,
then ex = xe = x is valid. In the case of strong identity, non-attractive elements
are called canonical. See [50] for the origin of the terminology.

Proposition 4.1. In a hypergroup H, e\e is the set of right e-attractive elements
of H and e/e is the set of left e-attractive elements of H

Proof. Suppose that x is a right attractive element in H. Then e ∈ ex. Thus
x ∈ e\e. Also if x ∈ e\e, then e ∈ ex. Hence e\e consists of the right attractive
elements of H. The rest follows per duality. �

Proposition 4.2. If x is not a right (resp. left) e-attractive element in a hypergroup
with idempotent identity e, then ex consists of non-right (resp. left) e-attractive
elements.

Proof. Suppose that y ∈ ex and assume that y is attractive. Then ey ⊆ e (ex) =
(ee)x = ex. Since e ∈ ey, it follows that e ∈ ex, which is absurd. �
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Proposition 4.3. If x is a right (resp. left) e-attractive element in a transposition
hypergroup with idempotent identity e, then all the elements of xe are right (resp.
left) e-attractive.

Proof. Let y ∈ xe, then x ∈ y/e. Also, per Proposition 4.1, x ∈ e\e is valid. Thus
e\e ≈ y/e, which implies that ee ≈ ey. Therefore, e ∈ ey. �

Proposition 4.4. If x is a right (resp. left) attractive element in a transposition
hypergroup with idempotent identity e, then its right (resp. left) inverses are also
right (resp. left) attractive elements.

Proof. Since e ∈ ex, it follows that x ∈ e\e. Moreover, if x′ is a right inverse of x,
then e ∈ xx′. Therefore, x ∈ e/x′. Consequently, e\e ≈ e/x′. Transposition gives
ee ≈ ex′ and since e is idempotent, e ∈ ex′. Thus, x′ is right attractive. �

Corollary 4.5. If x is not a right (resp. left) attractive element in a transposition
hypergroup with idempotent identity e, then its right (resp. left) inverses are also
not right (resp. left) attractive elements.

Proposition 4.6. In a hypergroup H for any x 6= e it is true that: e/x ⊆ {e} ∪
Sel (x) and x\e ⊆ {e} ∪ Ser (x)

Proof. y ∈ e/x, if and only if e ∈ yx. This means that either y ∈ Sel (x) or y = e,
if x is right attractive. Hence, e/x ⊆ {e}∪Sel (x). The rest follows per duality. �

The following is a straightforward consequence of Proposition 4.5:

Proposition 4.7. Let H be a strictly e-regular hypergroup, where e is a strong
identity. Then:

i. x\e = eS (x) = {e}∪S (x) = S (x) e = e/x for any attractive element x 6= e
ii. x\e = e/x = S (x) for any non attractive element x

Corollary 4.8. . If X is a non-empty subset of Hand if e /∈ X and if X contains
an attractive element, then X\e = eS (X) = {e} ∪ S (X) = S (X) e = e/X, while
S (X) = X \e = e/X, if X consists of non–attractive elements.

Proposition 4.9. If x is not a right (resp. left) e-attractive element in a hypergroup
H with strong identity e, then xSer (x) (resp. Sel (x)x) contains all the right (resp.
left) attractive elements.

Proof. Let z be an arbitrary right attractive element. Then, from reproductivity
xH = Hx = H, it follows that there exists y ∈ H, such that z ∈ xy. Next the
following is valid: z ∈ xy ⇒ ez ⊆ e (xy) = (ex) y = xy. Since e ∈ ez, it follows that
e ∈ xy. Hence, y ∈ Ser (x). �

The following is a direct consequence of Proposition 3.6:

Proposition 4.10. If a hypergroup has strict e-regular structure, then right and
left attractive elements coincide

In what follows T will denote a strictly e-regular transposition hypergroup where
e is an idempotent identity. In T let A denote the set of attractive elements and C
the set of non-attractive ones. Then H = A ∪ C and A ∩ C = ∅ .
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Proposition 4.11. If x and y are an attractive and non–attractive element respec-
tively in T , then xy and yx consist of non–attractive elements.

Proof. According to Proposition 4.2, ye consists of non-attractive elements. Next,
because of Corollary 4.1, the inverses of x are all attractive elements, thus no
inverse of x belongs to ye. Also e /∈ ye. This implies that e cannot be in the result
of hypercomposition x (ye). Since x (ye) = (xy) e, we have that e /∈ (xy) e. Hence,
no attractive elements exist in set xy. �

Corollary 4.12. If x, y are attractive elements in T , then x/y ⊆ A and y\x ⊆ A.

Proposition 4.13. If x is a non-attractive element in T , then A ⊆ xC ∩ Cx.

Proof. Per the reproductive axiom, if y is an attractive element, then there exist
elements z, w ∈ T , such that y ∈ xz and y ∈ wx. Elements z and w cannot be
attractive. If they were, sets xz and wx would contain only non-attractive elements,
per Proposition 4.9. Thus, they could not contain y, which is an attractive element.
Thus z and w are non-attractive elements, QED. �

Corollary 4.14. Set C of non-attractive elements of T is not stable under the
hypercomposition.

Proposition 4.15. The result of the hypercomposition of two attractive elements
in T contains only attractive elements.

Proof. Let x, y be two attractive elements and suppose that z is a non-attractive
element which belongs to xy. Then, z ∈ xy implies that x ∈ z/y. Moreover, if x′ is
an inverse of x, then x ∈ x′\e. Thus, z/y ≈ x′\e which, because of transposition,
implies that ey ≈ x′z(1). However, x is an attractive element, and, according to
Proposition 4.4, x′ is also attractive; therefore, x′z does not contain the identity
and it consists only of non-attractive elements (Prop. 4.9). Moreover, since y is an
attractive element, ey consists only of attractive elements per Proposition 4.3. This
leads to intersection (ey) ∩ (x′z) being an empty set, which contradicts (1). �

From Proposition 4.11 above and Proposition 4.9 it follows that:

Corollary 4.16. If either x or y are non-attractive elements, then x/y ⊆ C and
y\x ⊆ C.

Proposition 4.17. If the identity of T is strong, then:

i. the result of the hypercomposition of two attractive elements contains these
two elements (see also [18, 45, 49]),

ii. the result of the hypercomposition of an attractive element with a canonical
element is the canonical element (see also [45, 49]).

Proof. (i) Let x, y be two attractive elements. Then, xe = {x, e} and ye = {y, e}.
Thus, x ∈ xe ⊆ x {y, e} = x (ye) = (xy) e = xy ∪ {e}. Hence, x ∈ xy, whether x
equals e or not. Duality yields y ∈ xy.

(ii) Let x be an attractive element and y a canonical element. Then, e ∈ y\y
and e ∈ e/x. Therefore, the implications y\y ≈ e/x⇒ yx ≈ ye⇒ y ∈ yx are valid.
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y is the only canonical element in yx. Indeed, suppose that y′ ∈ C and y′ ∈ yx.
Then, x ∈ y\y′. Moreover, x ∈ e/e. Therefore, y\y′ ≈ e/e ⇒ ye ≈ ey′ ⇒ y = y′.
Next, it will be proven that none of the attractive elements belong to yx. Indeed,
suppose that x′ ∈ A and x′ ∈ yx. Then, ex′ ⊆ e (yx) = (ey)x = yx. Thus,
{e, x′} ⊆ yx. Therefore e ∈ yx. Hence, y ∈ S (x), which, because of Proposition
4.4, is absurd. �

Corollary 4.18. If the identity of T is strong, then:

i. x ∈ x/y and x ∈ y\x, for all x, y ∈ A,
ii. A = x/x = x\x, for all x ∈ A.

Proposition 4.19. If the identity of T is strong and

i. x, y are two attractive elements in T , such that e /∈ xS (y), then xS (y) =
x/y ∪ S (y) and S (y)x = y\x ∪ S (y) ,

ii. x, y are two elements in T and any of these is non-attractive, then xS (y) =
x/y and S (y)x = y\x.

Proof.
Since e ∈ yS (y), it follows that y ∈ e/S (y). Therefore, x/y ⊆ x/ (e/S (y)).

(i) If x, y are two attractive elements in T , using Proposition 2.7, Corollary
2.3, Proposition 4.4 and Proposition 4.12 sequentially, we get:

x/y ∪ S (y) ⊆ x/ (e/S (y)) ∪ S (y) ⊆ xS (y) /e ∪ S (y) = xS (y) ∪ S (y) = xS (y) .

On the other hand, according to Proposition 4.6, e/y = {e}∪S (y). Hence,
using Proposition 2.7, we have: xS (y) ⊆ x (e/y) ⊆ xe/y = {x, e} /y =
x/y ∪ e/y = x/y ∪ {e} ∪ S (y). Since e is not in xS (y), it follows that
xS (y) ⊆ x/y ∪ S (y). Thus, xS (y) = x/y ∪ S (y). Dually, S (y)x =
y\x ∪ S (y) .

(ii) Suppose that x is non-attractive. Then, using Proposition 2.7 and Corollary
2.3, we get: x/y ⊆ x/ (e/S (y)) ⊆ xS (y) /e = xS (y). Also, xS (y) ⊆
x (e/y) ⊆ xe/y = x/y. Hence, xS (y) = x/y. Next, suppose that y is non-
attractive. According to Proposition 4.7, all the attractive elements belong
to S (y) y and, since x/y = {z ∈ T : x ∈ zy}, it follows that S (y) ⊆ x/y.
Also, because of Proposition 4.6, S (y) equals e/y. Using Proposition 2.7,
we get:

xS (y) = x (e/y) ⊆ xe/y ⊆ {x, e} /y = x/y ∪ e/y = x/y ∪ S (y) = x/y

Moreover, as was proven above, inclusion x/y ⊆ xS (y) is valid. Therefore,
xS (y) = x/y. Dually, S (y)x = y\x, QED.

Corollary 4.20. If the identity of T is strong and:

(i) X,Y are non-empty subsets of A ⊆ T and e /∈ XS (Y ), then XS (Y ) =
X/Y ∪ S (Y ) and S (Y )X = Y \X ∪ S (Y ) ,

(ii) if X or Y are non-empty subsets of C ⊆ T , then XS (Y ) = X/Y and
S (Y )X = Y \X.

When identity is strong, properties of attractive elements, are developed in [18,
44, 48, 49].
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Proposition 4.21. Let x, y be two attractive elements in T , such that e /∈ xy.
Then, eS (xy) = eS (y)S (x).

Proof. Since x, y are attractive elements, xy consists of attractive elements per
Proposition 4.11. Therefore, Corollary 4.2 yields e/xy = S (xy) ∪ {e} = eS (xy).
Also, using mixed associativity, we get that e/xy = (e/y) /x. Thus, we have:

S (xy)∪{e}=e/xy=(e/y) /x=[S (y) ∪ {e}] /x=S (y) /x∪ e/x=S (y) /x∪S (x)∪{e} .

Next, per Proposition 4.13, S (y) /x∪S (x) = S (y)S (x). Hence, S (y) /x∪S (x)∪
{e} = S (y)S (x) ∪ {e} is valid. Therefore, S (xy) ∪ {e} = S (y)S (x) ∪ {e}, which,
per Corollary 4.2, yields eS (xy) = eS (y)S (x). �

Corollary 4.22. If e /∈ xy and e /∈ S (y)S (x), then S (xy) = S (y)S (x) .

Proof. Since e /∈ xy implies that e /∈ S (xy) and since e /∈ S (y)S (x), from equality
eS (xy) = eS (y)S (x) it follows that S (xy) = S (y)S (x). �

Corollary 4.23. If X,Y are non empty subsets of A ⊆ T , then:

i. eS (XY ) = eS (Y )S (X) , if e /∈ XY,
ii. S (XY ) = S (Y )S (X) , if e /∈ XY and e /∈ S (Y )S (X) .

Remark 4.24. As was proven in [49], when y = x−1 equality (xy)
−1

= y−1x−1 may
not be valid in the case of fortified join hypergroups. Since fortified join hypergroups
belong to the class of transposition hypergroups with idempotent identity, it follows
that S (xy) = S (y)S (x) may not be valid, if e ∈ xy. Also, from examples 2.5 and
2.6 in [35], it becomes evident that this equality fails to hold when e ∈ S (y)S (x).

Naturally, next issues on the transposition hypergroups with idempotent iden-
tity that should be dealt with, are the study of their subhypergroups, the study of
the cosets modulo them and the study of their homomorphisms. Afterwards the
topic that can be focus on is the existence of isomorphism theorems not only analo-
gous to the ones on the quasicanonical hypergroups (or polygroups) [30], and their
generalizations in transposition hypergroups with quotients modulo closed subhy-
pergroups [17] but also modulo symmetric subhypergroups when only attractive
elements exist.
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