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ON HYPERGROUPS WITH OPERATORS AND
HYPEROPERATORS
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ABSTRACT. The application of external operations and hyperoperations on hypergroups leads to
structures that are called hypermodules, supermodules, hypermoduloids and supermoduloids. These
structures give interesting applications in the theory of graphs and in geometries.

AMS-Classification number; 20N20

1. INTRODUCTION

A non void set Y endowed with a composition "-" and a hypercomposition
"+" is called a hyperringoid [7] if:

1) (Y, +)is a hypergroup

11) (Y, -)1s a semigroup
iii) the composition is bilaterally distributive to the hypercomposition.
If (Y,+) is a transposition hypergroup [1], then the hyperringoid is called
transposition hyperringoid, while if (Y,+) is a canonical hypergroup [8], then the
structure (Y,+,") was named hyperring by M. Krasner [2].

The notions of the set of operators and hyperoperators from a hyperringoid
Y, over an arbitrary non void set M, were introduced (in [5]), in order to describe
the action of the state transition function in the theory of Automata. Y is a set of
operators over M, if there exists an external operation from MxY to M, such that
(sK)h = s(kh), for all seM and k,,LeY and moreover s1=s for all seM, when Y is a
unitary hyperringoig. If there exists an external hyperoperation from MxY to
P(M) which satisfies the above axiom with the variation that sesl, when Y is a
unitary hyperringoid, then Y is a set of hyperoperators over M.

If M is a hypergroup and Y a hyperringoid of operators over M such that,
for each k,A€Y and s,teM, the axioms:

(i) (s+th=si+tx, (i) s(k+Xi) Sk +sh

hold, then M 1is called right hypermoduloid over Y. If Y is a set of
hyperoperators, then M is called right supermoduloid. If the second of the above



axioms holds as an equality, then the hypermoduloid is called strongly
distributive. There is a similar definition of the left hypermoduloid and the left
supermoduloid over Y in which the elements of Y operate from the left side.
When M is both right and left hypermoduloid (resp. supermoduloid) over Y it is
called Y-hypermoduloid (resp. Y-supermoduloid) [6]. If M is a canonical
hypergroup, the set of operators Y is a hyperring, and s1=s, s0=0 for all se M, then
M is named right hypermodule, while it is named right supermodule if Y is a
set of hyperoperators [4, 9].

2. HYPERMODULOIDS

The set of the operators over a non empty set M, can define in M a
hypercomposition and when the set of the operators is a unitary hyperringoid, M
enriched with this hypercomposition, becomes a hypergroup. Before proceeding
to this construction, it is necessary to give the following definition:

Definition 2.1. An element s, of M is called connected with an element s4 of M, if
there exists an element A of Y such that s,=s4A, when Y is a set of operators over M,
or s;esqtA, when Y is a set of hyperoperators over M.

It must be mentioned that s, being connected to s;, does not necessarily
imply that s; is connected to s,.

With the use of the notion of the connected elements, a hypercomposition
can be defined in M, as follows:
[ {seM | s=s |k and s>=sh, with K, Ae Y}, if s, is connected to s,
2.1)  spts; = 9 |
L {s), s»}, 1f 55 15 not connected to s,

Proposition 2.1. If the set of the operators Y over a non void set M is a unitary
hyperringoid, then M endowed with the hypercomposition (2.1) becomes a
hypergroup. ‘
P ro of. Since Y is a unitary hyperringoid, the result of the hypercomposition
(2.1) always contains the two participating elements, thus s+tM=M+s=M for all
seM and so the reproductive axiom is valid. Moreover, the associativity holds.
Indeed, if s, s, and s; are not connected to each other, then
S| H(s2F83) = (S1182)F83 = {8y, S2, S3}

Suppose next that s; and s; are connected to s;. Also let s; be connected to s..
Then:
(s1t+s0)+s; = {teM | t=s1x and s,=(s5;K)A, with kK, AeY} + 553 =

= {seM | s=(s;K), s2=(51K)A, and s;=(s;xp)v with kK A,p,veY} =

=8§T83
and
S1H(sy+s3) = s, + {teM | t=s-k and s;=(s,kK)A, with K, Ae Y} =

= {seM | s=s;u and (s;1)A=S2K, (S2K)Vv=S3 Or (${1)p=Ss3, with K A,u,veY} =




= 871583
Similar 1s the proof of all the other cases and so the proposition.

Corollary 2.1. The set of vertices of a directed graph, is endowed with the
structure of the hypergroup, if the result of the hypercomposition of two vertices v;
and v; is the set of the vertices which appear in all the possible paths that connect
vi to v;, or the biset {v, v;}, if there do not exist any connecting paths from vertex
v; [0 veriex v,

Proposition 2.2. If M;, M, are two right Y-hypermoduloids, then M=M,;xM,
becomes a right Y-hypermoduloid, if M is endowed with the hypercomposition:

(spt) * (528) ={ (5,0) | s€s;+55, 1€ 1;F0 )
and the external operation from MxY to M:

; (s,)A = (s4,14)

M is not strongly distributive, even when M, and M are strongly distributive.
Proof. M is obviously a hypergroup and moreover M is a transposition
hypergroup when M, and M, are transposition hypergroups. Next for the axioms
of the external operation it holds:
[(SLt)+Gu)A=[ U GBHA= U (sHA = U (AR =

SES|+5; SES|+5; SES|+5;
tet|+1, tet+1, et +1y

= (814, 1) + (S2h, toA) = (81, t)A + (S2, t)A

and 4 !

D)= U (shp= U ptp e U (sptv) = (sKtk) + (shth) =
UHEK+A i +A

1eK+A HVEK

= (s,H)k + (s,H)A

Let H and H' be two hypergroups and let R ¢ H x H' be a binary relation
from H to H".

Definition 2.1. R is called homomorphic relation, if, for all (a4,bq), (az,bz) € R it
holds:

(VX € a¢+ay)(3y € bytby) [(X,y) € R] and (Vy e by+by)(3x e as+ay) [(x,y') € R] (D+4)
or equivalently for all x € aj+a; and for all y € bs+b; it holds:
[{x}x(bytb)]"R # & and [(ajta)x{y}]InR =z & (D17)

Let Y and Y™ be two hyperringoids and let R € Y x Y’ be a binary relation
fromYtoY'.

Definition 2.2. R will be called homomorphic relation, if it satisfies the axioms of
the Definition 2.1. and, moreover, if for every (a;,b4) € R and (az,bz) € R it holds:

(8132, b1b2) e R (D2)
A homomorphic relation which is also an equivalence relation is named congruence
relation.

Proposition 2.3. If M is a strongly distributive hypermoduloid over a
hyperringoid Y, then the relation

T={(kk)eYxY | (VseM) sk=sk’}



IS a congruence relation.

Proof. Itisobvious that T is reflexive and symmetric. Also if sk;=sk, and
sko=skj; then sk;=skj, thus T is transitive as well. So T is an equivalence relation.
Next suppose that (k;,k;)eT and (ks,k4)€T. Then from (k;,k;)€T it derives that
sk,=sk, for each seM and since (ks3.k4)€T it holds that (sk;)k;=(sk,)ks for each
seM. Thus for each seM the equality s(k;k;)=s(k;ky) 1s valid and therefore
(kiks, koks)eT. Moreover from the equalities sk,=sk,, for each seM and sky=sky,
for each seM, it derives that sk;+sks=sk;+sky, for each seM or equivalently
s(kjtks)=s(k,+ky), for each seM. Hence T is a homomorphic relation and
therefore the Proposition.

It is easy to verify that if an equivalence relation R in a hyperringoid Y

satisfies the property: .
xRy and w e E = xwRyw and wxRwy [D>']

then it satisfies the axiom [D,] of the Definition 2.2. An equivalence relation
whish satisfies [D,"], is called compatible to the composition. It is possible
though that an equivalence relation satisfies only one of the conditions of the
second part of [D,"]. Such a relation is called right or, resp. left compatible to
the composition.

Lemma 2.1. Every congruence relation R in a hypergroup H is a normal
equivalence relation and therefore the set H/R becomes a hypergroup under the
hypercomposition
(2.2) CotC={C./zex+y)}
where C, is the class of an arbitrary element x € H.
Proof. Since R is a homomorphic relation, for each x,yeH it holds:
z’e Ci+Cy=
= AX,y)eCxCy)[zex+ty] = (Fzex+y)[zRz] = 27€C, =
= G+Cc v G

Zex+y
Conversely now:
z7e U C,>

zex+y
= (dzex+y[z’Rz] =
= @A, y)eH)[x Rx Ay RyAz ex’+y’] =
= z2'eG+C, = U Cc G+ (G

zex+y

Thus C,+Cy = U C,, and so the quotient set H/R, enriched with the

ZEX+Y .
hypercomposition C, T C, = { C, | zex+ y } 1is a hypergroup.
Lemma 2.2. If the hypergroup H is transposition, then H/R is also a transposition
hypergroup.
Proof. Suppose that for some elements C,, C,, C,, C,, of the quotient set H/R
it holds: C,\\C, n C,/C,, # &. Then there exists elements x', y’, z’, w’ belonging to




p
C,, Cy, C,, C, respectively, such that y"\x'm z'/w’# (J. Since the transposition

axiom 1s valid in H, it derives that x +w’'ny +z'# . Therefore C,+C,n C,+C #J
and so the Lemma.

Proposition 2.4. Let R be a congruence relation in a hyperringoid Y right
compatible to the multiplication. Then the quotient set Y/R becomes a right
hypermoduloid over Y.
Proof. In Y/R an external composition from Y/RxY to Y/R is defined as
follows:

[x]k =[xk], foreach [x] € Y/R and ke Y
According to Lemma 2.1, R is a normal equivalence relation and therefore the
quotient Y/R endowed with the hypercomposition (2.2) becomes a hypergroup.
On the other hand it holds:
[xlk+[ylk=[xk] +[yk]= © [t]= o [t]= U [sk]=( U [sDk=

texk+yk re(x+y)k SEX+Y SEX+Y
=([x]+ [yDk
and ,
[x]k + [xm=[xk] + [xm]= U [t]= U [t]= U [xn]= U [x]n=
rexk+xm tex(k+nm) nek+m nek+m
= [x](k + m)

Hence Y/R is a right hypermoduloid over Y. In an analogous way Y/R can
become a left hypermoduloid over Y, or a bilateral one, when Y is commutative.

From Propositions 2.3.and 2.4 it derives the

Corollary 2.2. If M is a finite strongly distributive hypermoduloid over a
hyperringoid Y, then the hypermoduloid Y/T is also finite.

3. HYPERMODULES

Suppose that M is a module over a unitary ring P and let G be a subgroup
of the multiplicative semigroup P*=P\{0} of P, which satisfies the condition
xG-yG=xyG, for each x,y € P. The above equality is equivalent to the normality
of G in P* only when P* is a group, that is, when P is a division ring [3]. G
defines in P a partition, the equivalence classes of which are the cosets xG, xeP.
The quotient set of this partition is denoted by P/G and it becomes a hyperring if it
is enriched with the following composition and hypercomposition:

xGyG =xyG

xGtyG = {(xp+y)G | p.q € G}
for each xG, yG € P/G. This hyperring, which was constructed by M. Krasner,
was named quotient hyperring [2]. Furthermore, this construction is extended to
the hypermodules through the introduction of a relation g in the module M, in the
following way:

(x,y) € g © x=qy, q&C



It can easily be proved that g is an equivalence relation. Let x, signifies the
equivalence class of an arbitrary element x and let M g be the set of the
equivalence classes modulo g. Mg becomes a canonical hypergroup, if it is
endowed with the hypercomposition:

ngyg:{zgeMg | ZgS Xgt Vgl
Le. if x, + Y, consists of all the classes z, e M, which are contained in the

setwise sum of x,, y,. Now let F;; be the quotient hyperring of P by G. Then:

Proposition 3.1. M, becomes a strongly distributive hypermodule over Fg, if an
external operation from FgxM, to M, is defined as follows:
kg x, = (kx),, Joreach kg eFg, x,€ M,

g s’
It is worth mentioning that the elements of this hypermodule are selfopposite, i.e.
xg + x,={0,x, }, when -1€G.

In accordance to the above, suppose that V is a vector space over an
ordered field F and suppose that F* is the positive cone of F. Since F™ is a
multiplicative subgroup of F*, there exists the quotient hyperfield F/F ={F ,0,F"}
of F by F". Nextlet V' be the hypermodule (vector hyperspace) over F/F", which

derives from V, using the above described construction. Then the set V' is exactly
what s called “ray join space” in [10] and [11]. Next, consider a hypersphere S of

V centered at 0. The map X —x: of V' onto SU {0} is one to one and the elements
of the hypersum x + y, x#y are mapped to the points of the minor arc which has

end points X, y and lies on the great circle of the hypersphere that passes through
X, y. In this case, the two end pomts x and y do not belong to the minor arc xy,

since x,y & X+ y, while x+( x)={-x,0, x}

Proposition 3.2. Let M be a strongly distributive hypermodule over a division
hvperring (D,+,-). A new commutative hvpercomposition is introduced in M,
which is defined as follows:
[x+y Ufx, ) if x, v =0 and x #-y
xfy = M if x=-y
Lx, if y=0
and a similar one is introduced in D, that is..
[ m+n Cfm, n}, if mn =0 and m #-n
mfn =3 D, if x=-y
Lm, if n=0
Then (D, T, is a division hvperring and M endowed with the hvpercomposition
“1” becomes a hypermodule over (D, T, ), which is not strongly distributive.




Proof. The verification of the axioms is a rather extensive work and it will not
be presented here. The only axiom which will be proved is the one which shows
that the hypermodule is not strongly distributive. Indeed:

let n#-m be two elements of the division hyperring and x €M, then

(min)x = [(m+n)u{m, n}]x = (m+n)xU{m, n}x = (mx+nx)u{mx, nx} = mxtnx
But if n=-m, then (m-m)x = Dx < M =mx-mx.

Let M be a module over a non commutative field K and let the equivalence
relation g be defined as follows:
(x,y) € g < x=qy, qeK*
then, according to Proposition 3.1, M . becomes a strongly distributive
hypermodule over the quotient hyperfield K/K*={0,K*}. If the construction
which is presented in Proposition 3.2 is applied to this hypermodule and also, if
the elements of M \{0} are defined as points and the result of the

hypercomposition x,ty,= (x, + y,) U {x,,y,} of any two points x,,,

with x,# y,, are defined as lines, then an analytic projective geometry is formed.

Moreover all analytic projective geometries can derive using this method (see also

[10D).

Furthermore, applying the construction of Proposition 3.2 in the vector
hyperspace V', the two participating elements x,y belong to their hypersum

;T;, giving thus closed arcs on the hypersphere S of V. Also ;T(-;)=?, ie.

any two opposite points generate the whole hypersphere (which derives as the
result of their hypercomposition). This construction is very natural, since two
opposite points define infinitly many great circles that contain all the points of the
sphere. Thus every Euclidian spherical geometry can be described algebraically as
a quotient hypermodule.

Proposition 3.3. Let R be a hyperring, then R" is a hypermodule over R which is
not strongly distributive.
Pr oo f. Verifying all the axioms is not so tricky, but it takes long. Yet, the
interesting part is the proof that R" is not strongly distributive. Indeed, let
(m,,...,m,) be an element of R" and a,beR, then:

(atb)(my,...,mp) = Ugeaepc(my,...,my,) = U carp(cmy,...,cmy)
On the other hand

a(my,...,m,) + b(m,,...,m,) = (am,,...,am,) + (bm,,...,bm,) =

= {(c;my,..., CyMy), Cj,...,CxEQTD}

Thus (a+b)(my,...,m,) < a(m,,...,m,) + b(my,...,m,).
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