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Abstract

The set of the states of an automation, enriched with properly defined hyper-
compositions gets the structure of a hypergroup. The hypergroups that derive in this way
are called attached hypergroups to the automation. Here appears a study of the attached
hypergroups of the order and through them the notion of the valuation is being introduced
into the set of the states of the automation.

1. Introduction

In [1] it has been shown that the set of the states of an automation,
equipped with different hypercompositions, can be endowed with the
structure of the hypergroup. The hypergroups that have derived in this
way, were named attached hypergroups to the automation. Up to this point
we have introduced several kinds of attached hypergroups in order to
describe the structure and the operation of the Automation with the use of
tools from the Hypercompositional Algebra. Among them there are :

o the attached hypergroups of the order , and
o the attached hypergroups of the grade .

These two kinds of hypergroups have also been used for the minimization
of the automata.

Moreover, in [2] another hypergroup, having derived through a
different consideration of the hypercomposition, has been attached to the
set of the states of an automation. Due to its definition, this hypergroup
was named attached hypergroup of the paths and it has led to a new proof of
Kleene’s theorem.
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208 G. G. MASSOUROS

Finally, in [3], one more hypergroup has been attached to the
automation, the attached hypergroup of the operation. Apart from the
other results, this hypergroup can indicated all the states in which an
automation can be found after the t-clock pulse.

This paper deals with the attached hypergroups of the order of
an automation. The fundamental notion for the definition of these
hypergroups is the notion of the order of a state in an automation.

Let A = (A,S,sg,6,F) be an automation, deterministic or not.

Definition 1.1. We call order of a state s € S, denoted by ord s, the natural
number !, which is equal to the minimum of the lengths of all the words
that lead from the start state sg to s.

Obviously ordsyp = 0. It must be mentioned though that in an
automation it is possible to have states which can not be reached from
the start state. Since such states have no influence to the operation of
the automation, it can be assumed that the order is not defined for
them. Therefore, only automata for which the order is defined for all of
their states, are considered in the rest of this paper.

With the use of the notion of the order in the set S of the states of an
automation, there can be defined the order equivalence, as follows [1} :

s1Osy, if ords; = ordsy, where sy,s0° € §.
This equivalence relation has the following properties

(i) The set of the classes is isomorphic to a subset of the set of the
natural number N.

(i1) The set of the classes mod O is totally ordered.
(iii) There exists a minimal class.

(iv) Every class “covers” another, except the one of sy which does not
cover other class. '

So, if we consider a set S and an equivalence relation R in it, which
satisfies the above properties, then, with the use of R and of the property
(i), we can define the order of the elements x € S, to be the order of
the corresponding class of R, which is the corresponding natural number
due to the considered isomorphism.- Moreover, we assume that the
minimal class of S, with regard to the equivalence relation, is a singleton.
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Therefore, the set S can be represented by the following diagram where
Cy denotes the class of the element x of S.

So, through this notion of the order and with the use of properly
defined hyperoperations, it is possible to introduce hypercompositional
structures into the set S, in different ways. In [4] there appear
several hypergroups that can possibly be defined, through the proper
hyperoperations into the set S. There follows an analysis of the attached
canonical hypergroups [6] of the order of an automation :

2. The attached canonical hypergroups of the order

Let S be the set of the states of an automation. If for every x,y € S
we define

1t
y if ordx < ordy

Y= lJ C: if ordx=ordy

ord z<ord x

then the deriving structure (S,+) is a canonical polysymmetrical
hypergroup [9] with neutral element the minimal element of S, which is
the start state of the automation. In this hypergroup, the symmetrical set
S(x) of every element x € S, is the equivalence class Cy of x and so x is
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selfopposite. Next, if in the above definition the strict order “ < is used
instead of the ” <”, i.e,, if

x+x'= |J G forevery x' € Gy
ord z<ord x :
then the structure (S, +) is a hypergroup only when S is totally ordered.
Indeed, in order to have the validity of the associativity in the case :
(x+x)+x = x4+ (x+x)
‘where x' € Cy, the equality :
U GCe+x=x+ J &
ordw<ordx ord z<ord x

must hold. Thus x must be equal to x’ and so Cy = {x}. Therefore we
have the superiorly canonical hypergroup [7], [8] with

max{x,y} if x#y
x+y=
[so, x[ if x=y.

This happens when the states of the automation are totally ordered.

We remind [7], [8] that a canonical hypergroup (H,+) is called
superiorly canonical if it is strongly canonical and it also satisfies the
additional conditions :

Sy. Forevery x,y,z,w € H suchthat 0 ¢ x+y and z,w € x + y, it
holds: z—z=w—w.

Sy. fx€z—zand y¢z—z,thenx—xCy—y.
And it is called strongly canonical when :

F;. For every x,y,z,w € H such that (x + y)N(z+w) # 0, it holds
thateither x+yCz+worz+wCx+y '

F. Iffor x,y€ Hholds x e x+y,then x+y=x

2nd,
y if ordx < ordy

x+y:J U C; if ordx=ordy and so#x# y#3g

sg#ord z<ordx

U C, ify‘c:y

\ ord z<ord x
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then we have a canonical hypergroup with selfopposite elements.

3rd,
(Cy if sp #ordx < ordy
X4y = U C, if ordx=ordy and sp # x # y # sg
spFordz<ordx
U Cz if 50 75 xX=Y
\ordz<ord x

and sy + x = x + 59 = x for every x € S, then the hypergroup is again a
canonical one with selfopposite elements.

The hypergroup of the 1% case has a hypervaluation, since it is
superiorly canonical [5], [8]. The values of the hypervaluation are from
S itself, or, because of the isomorphism with a subset of N, they are from
R, and thus, this is a hypergroup with valuation. More precisely, if ||x|| is
the valuation of x € S, then ||x|| = ord x.

For the cases 2 and 3 (as well as for 1), the mapping
d:SxS—R"
such that

max{ord x,ordy} for x #y
d(x,y) = |
0 for x=y

is an ultrametric distance in S, that is for d and for every x,y,z € S the
following are valid [8] :

d(x,y) =0 <= xX=y

d(xy) = dyx)
d(x,y) < max{d(x,z),d(z,y)}.

Now, in order to see if these hypergroups have a strong valuation, the
following conditions must be verified :

hy. For every x,y € S, the hypersum x + y is a circle of the space
(S,d) with radius analogous to the max{d(0, x),4(0, y)}.
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hy. Forevery x,y,a € S such that (x +a) N (y+a) =0 itholds:
dix+a,y+a)=d(x,y)
where, if A and B are two subsets of S, then

d(A,B) = {d(a,b) | (a,b) € A x B}.

Also, in order to examine whether these hypergroups have a simple
valuation or a hypervaluation, the following conditions must be verified :

hy: Forevery x,y € H thesum x +y isacircle (H,d).
/1,2 = h2
hg = Fz

Therefore :
I.  Forthe 2™ case :

(a) For hy or hy:
In the beginning we are checking whether, for every x,y € S the sum
x + y is a circle of the ultrametric space (S,d).

Let ordx < ordy. Thenitis x+y = y = C(y,0), ie. acircle with
center y and with proper radius 0. Since 0 ¢ x + y for every semireal
radius r of C(y,0) itwill be:

r <d(0,y) = ord y = pmax{d(0,x),d(0,y)}

and it will have its maximum value either for p = 1 or for p = 1
In the case that p = 1, the elements z € S, with d(y,z) = ordy, ie.
the elements for which ordz < ordy (and so the 0 as well), belong
to the circle C(y,ordy) and therefore x + y is not this circle. In the
case that*p = 17, the elements z # y with ordz > ordy, and so
d(y,z) = ordz, (if there exists any), do not belong to this circle. Neither
those elements, for which ordz < ord y belong to the above circle, since
d(y,z) = ordy > (ordy)~ = r. Thus, for the case under consideration, if
holds :

x+y = C(y, pmax{d(0, x),d(0,y)})

with p=17.
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Next, if ordx = ordy, then, since x € x +y, for every z €
C(x,ordx),itis d(x,z) < ordx,so ordz < ord x and consequently

C(x,ordx) ={z€ S:ordz <ordx} =x+y.
Therefore, in this case
x+y = C(z,pmax{d(0,x),d(0,y)})

with p = 1 and any z € x + y. Therefore the condition h’1 is satisfied, i.e.,
x + y is a circle of (S,d). But the condition h; is not satisfied, because,
even through the hypersum x + y is a circle C(z, pmax{d(0, x),d(0,y)})
with z arbitrary from x + y, it does not have one and the same coefficient
p. Here p is either 1 or 17, depending on the considered case.

(b) For hj:
This condition is also satisfied, since from the relation (x +a) N (y+a) = @

it derives that it can neither be x = y nor max{ordx,ordy} < orda.
Thus, the only possible cases are the apparent ones :

orda < ordx =ordy(x # y) and orda < ordx < ordy,
(which derive from the definition of the hypercomposition), as well as
ordx < orda < ordy

and the deriving ones with alteration of x and y, for all of which the
condition h; is valid (because of the definition of the hyperdistance and
the properties of the triangles of the ultermetric space).

So it derives that the canonical hypergroup (S, +) has a valuation.
The correlated hypervaluation to the ultrametric distance d is :

|x| = d(0,x) = ordx, forevery x€ S
and it holds that

0¢x+y = dlxy)=|x+y
(where, obviously, if A C S, |A| = {|]z| € R:z € A}).
II.  Forthe 3" case:

We firstly remark that when ord x < ordy, the sum x+y = C; is not
a circle except for the case that C, = {y}. Since if it were a circle, its
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semireal radius would either be ord y, which is impossible for the same
reason as above, or (ord y)~, which implies that there does not exist any
z # y in the circle C(y, (ord y)~). Thereforeitis C(y, (ordy)™) = {y}.

It derives thus that from the three cases in which the structure (S, +)
is a canonical hypergroup, in the 1 and in the 274 we can define a
‘valuation and therefore we are led to the following propositions for the
theory of the automata :

Proposition 2.1. If the set S of the states of an automation is totally ordered,
then, this set, equipped with the hypercomposition :

max{sy,s2} if s1 # Sz
S1+Sy =

[0,s] if si=s3=s5

is a canonical hypergroup with strong valuation.

Proposition 2.2. The set S of the states of every automation becomes a canonical
hypergroup with valuation if it is equipped with the hypercomposition :

4

2 if ordsy < ordsp
UJ Cs if ords; = ords; and sg#s1# 52 #5g
51+ 85y = 4 ‘
sp#ords<ords;
U CS Zf S1 = 82.
\ ords<ord s

Proposition 2.3. In both of the above cases the ultrametric distance in S is the
mapping
d:SxS—R*
with
max{ord s, ords;} if 57 # s2
d(S], 52) =
0 1f S1 =89
and the correlated to it hypervaluation

| |:S—>R*

with |s| = d(0,s) = ords, forevery s € S.
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Alsq it holds that

d(s1,52) = [s1 — s2| = |51 + s2]-

In both cases of the above canonical hypergroups, the neutral

element is the start state (probably the conventional one) and every state

is selfopposite.
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