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54 Klious st., 155 61 Cholargos, Athens, Greece

Abstract This paper is a study of the Join Hyperringoid, which is a
hypercompositional structure that has appeared recently. Here appear the
homomorphic relations and a special type of such relations, the congruence ones.
Moreover, the homomorphisms of the join hyperringoids are being studied, along
with the homomorphisms of the Fortified Join Hyperringoids.

1. INTRODUCTION

The hyperringoid is a hypercompositional structure that has been introduced by G.
Massouros and J. Mittas for the study of the theory of Automata and Languages [4].
The hyperringoid is a triplet (Y,+, .), for which the following axioms are valid:
[. (Y,+) is a hypergroup

ii. (Y,.) is a semigroup

ii. the composition "." is bilaterally distributive with regard to the
hypercomposition "+"
If the hypergroup (Y,+) is a join one, then the hyperringoid is called join. The join
hypergroup is a commutative hypergroup in which the Prenowitz’s join axiom is also
valid, i.e., it holds that:

) (@b)yn(cd) =< = (atd) n (b+c) = J, for every a,b,c,d e H

whereab={x e H | ae x+b} is the induced from "+" hypercomposition [1].

An important join hyperringoid for the theory of Languages, is the B-hyperringoid
[6], in which the hypercomposition is defined as follows:

a+b={a,b}
We shall begin the study of the congruence relations starting with certain
Propositions which hold in more general hypercompositional structures, the
hypergroupoids.  So let (H,+) and (H',+) be two hypergroupoids with
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hyperoperations defined in the entire sets and always giving non void result, i.e.,
atb = &, for every two of their elements a, b. Then:

Definitiuﬁ Ll. A binary relation R c H x H" is called homomorphic if for every
(a1,b1) € R and (a2,by) € R holds:

(Vx € ar+ay)(Iye bi+by) [(x,y)eR] and (Vy'e by+by)(3x"e as+ay) [(x'y) € R]
(Dv)

or equivalentiy for every x € a;+a, and for every y e by+b, holds:
[{x}x(b+b2)]nR = @ and [(aita;)x{y}]nR # <3 (Dy)

From the definition it derives that the inverse binary relation R™ is also a
homomorphic one. Moreover, when R defines a mapping ¢ : H — H', then, ifa,b
H for every x € atb, we have ¢(x) € ¢(a)t@(b), and therefore ¢@(atbh) <
@(a)+o(b). Also, for every vy € @(a)+@(b) there exists x € a+b suchthat @(x) =
y, thus @(a)+¢(b) < @(atb). Consequently the condition @(a,+a;) = @(a;)+¢(a,) is
being verified and so the Proposition: ‘

Proposition 1. If @ homomorphic relation berween two hypergroupoids defines a
mapping, then ir is a normal homomorphism.

We remind that, according to the terminology which has been introduced by M.
Krasner, a mapping ¢ from the hypergroupoid H to the power-set @ (H") of the
hypergroupoid ¢’ is called homomorphism if o(x+y) < @(x)+¢(y) for every x,y <
H. A homomorphism is called strong if the above relation holds as an equality.
Moreover, if @ is a mapping from H to H” for which o(x+y) < @(X)+¢(y), then ¢ is
a strict homomorphism. Lastly, if for a strict homomorphism holds @(x+y) =
©(x)+¢p(y), then we have a normal or good homomorphism.

For the homomorphic relations and the normal homomorphisms we give the
Propositions:

Propasition 1.2. If R, S are homomorphic relations between the hypergroupoids H', H
and H, H" respectively, then their composition SR is a homomorphic relation
between H” and H".

Next let R be a homomorphic relation between the hypergroupoids (H,+) and (H',+).
If h’'c H’ is a subhypergroupoid of H” and h the image of h” under R, then:

Proposition 1.3. If h* is stable under the hypercomposition, then h is stable as well.
Proof Letxy e h It will be proved that x + y < h. Indeed, since x,y € h then
there exist t, t, from h’, such that (x,t;), (y,t;) belong to R. But since R is a
homomorphic relation, it derives that for every w € x +y holds:
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[{w}x(t;+)]NR=D.

But h” is stable with regard to the hypercomposition and therefore t, + t, is a subset
of h’. Thus, for every w from x +y, there exists t from h’ such that (w,t) € R. So
w € h and therefore, for every y from h, x +y isasubset of h. Consequently h
is stable.

Corgllary 11 The inverse image of a semi-subhypergroup through a homomorphism
between two hypergroups is a semi-subhypergroup.

2. HOMOMORPHIC RELATIONS IN THE JOIN HYPERGROUPS

As it is known, from the general theory of the hypergroups, a subhypergroup h of a
hypergroup H is closed in H if a:b < h for every a,b € h [2]. Thus, in a closed
subhypergroup h of a join hypergroup H, the axiom (J) is being verified in h.
Moreover if a subhypergroup h of H is a join hypergroup itself, then it is called join
subhypergroup of H. Therefore the closed subhypergroups of H are its join
subhypergroups. For the following, let H be a join hypergroup, h a join
subhypergroup of H and E a hypergroupoid with hyperoperation defined for every
two elements of E and always giving non void result. If R is a homomorphic relation
from H to E with the property: y =y’, when (x,y), (x,y’) belongto R, then:

Propasition 2.. The image h” of h through R is a subhypergroup of E. Also if all the
elements of h”: h™ are images through R of elements of H, then the elements of h~
satisfy the join axiom inside E, but not necessarily inside h°.
Proof. Let (x,y) € R with x e h and y € h” and let’s consider the hypersum y
+t, te h’. For t eh’ there exists v € h such that (v,t) € R. Consequently for
every b € y+t there exists a € x + v such that (a,b) € R, and therefore y +t
ch’. Thus y+h' ch’. Nextlett e h’. Then (v,t) € R for some v € h. Now, for
v, there exists a € h suchthat v e x+a. Let b be an element of h’ such that
(a,b) € R. Then:
[{v}x(y+b)INnR=T

so tey+b andtherefore h"cy+h’. Thus h’=y+h’. Also it can be proved
that for every three elements a’, b’ and ¢” from h” the associativity holds and so h” is
a hypergroup. Next let’s assume that all the elements of h":h" are images, through R,
of elements of H. Suppose that for the elements a’,b’,c’,d" of h” holds:

@b)yn{cd)y=9
We remark that the a”:b” and ¢":d" are not necessarily subsets of h". If t € a":b" and
tec:d, then a" e b"+t and ¢’ € d” +t. Next we choose the elements v € H, and
b, d € h in such a way that the pairs (b,b"), (d,d") and (v,t) belong to R. Then for
every xeb+v and y e d+v holds: ‘
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[(x}x®O +)]nR#D and [{y}x{@ +t)]nR=D.
Therefore, for the a’, ¢” which belongto b+t and d’ +t respectively, there exist
a, ¢, such that the pairs (a,a”) and (c,c”) belongtoRandalso asb+v and ce
d+v. Thenv € (a:b) n (c:d) and thus (a:b) m (c:d) # &. From the last relation,
and since H is a join hypergroup, it derives that (@a+d)n(c+b)#J. Now let
w be an element of the intersection (a+d)n(c+Db). Then:
[(Wwix@+d)]nR=D and [{w} x(c"+b)]nR=T
So there exists w* which belongs to the hypersums (a'+ d") and (c’+ b") such that
(w,w") € R. Thus :
(a@@+d)n(c +b) =T
Therefore it has been proved that the join axiom is being verified for the elements of
h’, not necessarily inside it, but inside E.

Corollary 2.\. Let @ be a normal epimorphism from the join hypergroup H on the
hypergroupoid E. Then E is a join hypergroup and the image through ¢ of every
Join subhypergroup of H is a subhypergroup of E.

A homomorphic relation which is also an equivalence relation will be named
congruence relation. ‘

Proposition 2.2. Every congruence relation R on a hypergroup H is a normal
equivalence relation and therefore the set H/R is a hypergroup if we define the

hypercomposition:
CeC={C/zex+y)
where Ca is the class of an arbitrary element a  H.

Proposition 2.3. If the hypergroup H is join, then H/R is also a join hypergroup.

3. HOMOMORPHIC RELATIONS AND HOMOMORPHISMS IN THE
JOIN HYPERRINGOIDS

Let Y and Y’ be two hyperringoids and let R € Y x Y’ be a binary relation from Y
toY'.

Definition 3.I. R will be called homomeorphic relation, if it satisfies the axioms
of the Definition 1.1. and moreover if for every (a;,by) € R and (a,by) € R
holds:

(a1az, byb2) € R (D2)
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The notion of the homomorphism, as well as the different special types of
homomorphisms that exist in the hypergroups are also being defined in the
hyperringoids, with the use of the additional axiom:

o(x.y) = ¢(X) . @(y)
for every x,y from the domain of ¢. For the following, let K and K’ be two join
hyperringoids and E a hyperringoid. Then:

Proposition 3.1. If ¢ is a strict homomorphism between K and K°, then the inverse
image through ¢, of a join subhyperringoid of K °, is a join subhyperringoid of K.

Proposition 3.2. If R is a homomorphic relation between K and E, then the image of
every join subhyperringoid of K is a subhyperringoid of E.

Corollary 3.1. Let ¢ be a strong epimorphism from K to E, then E is a join
hyperringoid and the image, through ¢ of every join subhyperringoid of K is a
subhyperringoid of E.

Proposition 3.3. Every congruence relation R over E is a normal equivalence relation
and therefore the set E/R is a hyperringoid with the following hypercomposition and
composition:
CioeCo={C:cER [7ex+y)
Cx . Cy = Czy

Proposition 3.4. If E is a join hyperringoid, then E/R is also a join hyperringoid.

Proposition 3.9. Let A be a bilateral hyperidealoid of K. If we define in K a relation
R as follows:

(c,A) eR if (k: ) NA= and (k:4) NA =&
Then R is a homomorphic relation.
Proof. Let(x,, A € Rand (k3 A;) € R. Then from the definition of R we have:
Ki:A)NAz2D, AM:x)NAz2Zand(i: ) NAz2T, (AMrk)NnA=D
So there exist x, x” belonging to A and such that x € x; 1 A; and x" € A;: k.
From here it derives that x, € X + A; and A, € x'+ k;, from where KieAt
A (1) and A, e, +A (2). Similarly, x; e A;+A (3) and A, e K, + A (4).
From (1) and (3) we have x; +k, <€ (A +X;) + A ie. forevery a € x, + x, there
exists b € A; + A, suchthat a € b+ A, or equivalently (a:b) " A # &, from
where, due to the definition of R, (a,b) e R. So {{a}xA+X) ] nR=# S for
every a € K; + k,. Similarly, from (2) and (4) it derives that for every b € A + A,
there exists a € x; + k, such that (a,b) e R. Thus [ (K, +xp) x{b}]NnR=U.
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Moreover, from the relations x; € x + A, and x, € y + A, it derives that «x,.k; €
(x +Ap) . (y+A;) and due to the Properties [II.1.1 of [5]

X+A) . Yt exy+xA+ALy+ALA,
Therefore Kk;.k; € Xy + XAy + ALy + A1 A, But, because of the multiplicative
property of A, we have XAy, ALy, X.y € A, s0 K1.K; € ApA,+ A or (x1.x2:
M) N A =D thus (k). , A.A2) € R and so R is a homomorphic relation.

Proposition 3.6. Let R be a congruence relation over K. Then the mapping ¢ from K
to K/R which is defined as follows:

p(x) = C: forevery x €K
is a normal homomorphism from K on K/R.

Proposition 3.7. Ler ¢ be a normal epimorphism of K on K°. We define in K a
relation R as follows:
(x,y) € R if and only if o(x) = ¢(y)
Then R is a congruence relation in K and K/R is isomorphic to K.
P r o o f. Obviously the relation R is an equivalence relation and with not much
difficulty it can be proved that it is also homomorphic. Next let C, be the
equivalence class of R which is defined from a. If ¢ is the mapping from K/R to K-
which is defined by o(C,) = ¢(a), then < is well defined, 1-1 and it maps K/R to
K’. Also
6(Ca .Cp ) = 6(Cap) = 9(ab) = ¢(a).¢(b) = (C, ).o(Cy)
and c(Ca+Cb)=c{Cx|xea+b}={(p(x)|xea+b}
=¢(a+b)= 9@+ o(b) =o(C,) +(Cp)
Therefore o is indeed an isomorphism.

Cordllary 3.2. Ler @ be a normal homomorphism from K to K°. Then there exists a
congruence relation R in K, a natural epimorphism n : K — K/R and a
monomorphism w : K/R — K~ such that ¢ = yer.

Next we observe that if an equivalence relation R in a hyperringoid E satisfies the
property:

xRy and w e E = xwRyw and wxRwy  [D,]
then it satisfies the axiom [D,] of the Definition 3.1. If a relation satisfies [D,"], then
it is called compatible to the composition. It is possible though that an equivalence
relation satisfies only one of the conditions of the second part of [D,]. We will call
such a relation right or left compatible to the composition respectively.

Thearem 3.. Let L be a subset of E. We define in E a relation R as follows:
xRy < (VabeE)x.acl <yael (i) and bx e L &b.y e L (ii)]
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Then R. is an equivalence relation in E compatible to the composition. If R.
satisfies only (i), [symb. R.°] or only (ii) [symb. °Ri] then it is right or left
compatible respectively. If E is a B-hyperringoid, then Rr is a congruence relation.
P r o o f. Obviously this relation is reflexive and symmetric, and it is not very
difficult to prove that it is transitive as well. Next let x;Rpy, and x,RLy,. Suppose
that for some b € E holds b(x;x,) € L or equivalently (bx; )x, € L Then, since
xRy, we have (bx,)y, € L or equivalently b(x;y,) € L and so x,x,R;x;y,.
Similarly x,y,R1yy,, and thus x;x,Rpyy,, that is the axiom [D,]. Next let E be a
B-hyperringoid. If w € x;+ x5, then w € { X1, X,}. Thus [{w} x(y; +y)] "Ry =
[{w} x {y;, y2}] n Ry and therefore this intersection is non void. Similarly, for z €
y1 + y, we have [(x; + X)) x {z}] "Ry # J. Thus the axiom [D,] of
Definition 1.1. is being satisfied and so the Theorem.

Corollary 3.3. If E is a B-hyperringoid, then the quotient E/R. is a B-hyperringoid
as well.

Now, let’s suppose that the subset L of E is a union of classes with regard to an
equivalence relation R. Then, if R is right compatible with regard to the
multiplication, from xRy, it derives that xaRya for every a € E. Therefore the
classes (xa)z and (ya)r are equal for every a € E and since L is a union of classes,
it derives that:
xaeL < yael forevery acE

So, according to Theorem 3.1, the above relation defines an equivalence relation Ry’
in E, for which xRy = x Rp"y, and consequently every class of R is contained in a
class of Ry ". Therefore every class of R." is a union of one or more classes of R and
so rk(Ry) < rk(R). Respective results we get when R is a right compatible or a
compatible relation. Thus:

Theorem 3.2. If there exists an equivalence relation R in E compatible to the
multiplication, with regard to which L is a union of classes, then rk(R.) < rk(R)
and therefore, if rk(R) < co then rk(R.) < co. Respective properties hold for RL’
and "R, if R is right or left compatible with regard to the multiplication.

A special case of join hyperringoid is the Join Hyperring [7], in which the additive
hypergroup is a Fortified Join Hypergroup [7], i.e. a join hypergroup (H,+) that
also satisfies the axioms:
FJ; There exists a unique neutral element, denoted by 0, the zero element
of H, such

that for every xeH holds: x e x+0 and 0+0 =0
and
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FJ, For every xeH\{0}, there exists one and only one element x e H\{0},
the opposite
or symmetrical of x, denoted by -x, such that: 0 e x+x” Also -0 =0.

In the following we will present a few Propositions which refer to the
homomorphisms of the join hyperrings. If Y, Y" are two join hyperrings and ¢ is a
normal homomorphism from Y to Y, then, as usual [8], we define the kernel of 6,
denoted by kero, to be the subset ¢'(¢(0)) of Y and we denote the homomorphic
image @(Y) of Y, with Imo. In accordance now to what holds in the case of the
normal homomorphisms of the fortified join hypergroups [3], in the join hyperrings
holds:

Proposition 3.8.
I. kery is a subhyperringoid of Y
ii. Imyp is a subhyperringoid of Y', which generally does not contain the
element 0°eY’, but ¢(0) is neutral element in Img ‘
ii. If T is ajoin subhyperring of Y which contains the kernel of ¢, and
if @ is an epimorphism, then @(T) is a join subhyperring of Y".

Proposition 3.9. If Y is an integral join hyperring, then kerp is a symmetrical
hyperideal of Y.
Pr oo f It has been proved (see Proposition 2.5 of [3]) that the set
[kers] = -¢”'(9(0)) U ¢”'(¢(0)) is a symmetrical subhypergroup. And since Y is an
integral join hyperring, if ©(x) = ¢(0), then for ¢(-x) we have:

o(-x) = e(x)¢(-1) = 9(0)p(-1) = ¢(0)
Thus ¢(-x) € ker¢ and therefore [kere] = kerep. Now if x € ker¢ and w is an
arbitrary element of Y, then ¢@(xw) = ¢(0). Consequently xw € ker¢ and so ker¢e
is a symmetrical hyperideal.

The study of the homomorphisms in the case of the fortified join hypergroups [3] has
shown that if ¢ is a normal homomorphism (and much more a homomorphism), then
its kernel does not necessarily contain the opposite of every element it consists of.
Thus a new type of homomorphism, the complete homomorphism was introduced,
for which -x € kergp for every x e kerg. As it has been proved in the previous
Proposition, this relation holds when Y is an integral join hyperring and so:

Proposition 3.00. Every normal homomorphism with domain an integral join
hyperring, is complete.

Also we have the Proposition:

Proposition 3. If ¢ is a complete and normal homomorphism from Y to Y~ with the
property @(0) = 0, then:
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i. kerg is a symmetrical hyperideal of Y

ii. Ime is a symmetrical subhyperring of Y~

iii. if T is a symmetrical subhyperring of Y, then o(T) is a symmetrical
subhyperring of Y°
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