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This is an introductory paper for the hyperringoid, a new hypercompositional structure,
derived from the theory of languages which led to the general consideration of such a
structure, and was a generative source of certain types of hyperringoids. We study its
fundamental properties, analyze certain subhyperringoids and give some of their
properties.
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1. INTRODUCTION

The theory of languages, viewed from the standpoint of hypercompo-
sitional algebra, led to new hypercompositional structures. The
hypercompositional algebra was founded in 1934 by F. Marty [5]
with the introduction of the hypercomposition and the hypergroup.
Let us recall some notions and definitions [1, 11]. First of all, a
hypercomposition ““-”’-in a non void set H is a mapping with domain
H x H whose range is the power set of H (i.e., x-yCH, for all
x,y € H). Next a hypergroup (H, -) is a non void set H equipped with a

€< 9

hypercomposition ‘-, which satisfies the following axioms:

1. (x-y)-z=x-(y-z) for every x,y,z € H (the associative axiom)
. x-H=H-x=H for every x € H (the reproductive axiom)
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218 G. G. MASSOUROS

We should state already here that if ““-” is an internal composition in
a set H and X, Y are subsets of H, then X - Y is the set of all x -y such
that (x,y) € X x Y. Moreover, if ““.” is a hypercomposition in H, then
X - Y signifies the union U yye xx yX - y. In both cases X -y and x- Y
will have the same meaning as X-{y} and {x}-Y respectively.
Generally, when there is no danger of confusion, we make no
distinction between an element x and the corresponding singleton {x}.
F. Marty [5] also introduced the notion of the induced hypercompo-
sitions. So, when the hypercomposition is denoted multiplicatively, the
induced hypercompositions are the right division and the left division of
two elements. Thus:
X x
¥ B
It can be proved that in a hypergroup the result of the
hypercomposition as well as the results of the induced hypercomposi-
tions are non void [3, 6]. If the hypergroup is commutative, then the
above two induced hypercompositions coincide. In this case the
induced hypercomposition is denoted by ““/”” or by ““:” (division) in
the multiplicative case and by “I‘” in the additive. For his study of
geometry through a hypercompositional algebra, W. Prenowitz
introduced a hypercompositional structure, which he named join
space [17]. The join space, also join hypergroup [6], is a commutative
hypergroup H which, for all a,b,c,d € H satisfies:

a/bNc/d£B=>a-dnb-c#0

{ze H|x€y-z}and {zeH|x€z y}

Join hypergroups also appear in the theory of languages and automata
[7]. Indeed, the definition of the regular expressions over an alphabet A
requires the consideration of subsets {x, y} of the free monoid A*
generated by 4. This leads to the definition of the hypercomposition
x+y = {x, y} in 4™ that endows 4" with a join hypergroup structure,
which we named B-hypergroup. Moreover, the empty set of words and
its properties in the theory of the regular expressions lead to the
following extension. Let 0¢ 4*. On the set 4™ = A"U{0} define a
hypercomposition as follows:

x+y={x,y} ifx,yeA” andx#y
x+x=1{x,0} forall xe 4"
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This structure is called dilated B-hypergroup and it has led to the
definition of a new class of hypergroups, the fortified join hypergroups.

DeriNiTION 1.1 A fortified join hypergroup (FJH) is a join
hypergroup (H,+) with a unique element 0, called the zero element
of H, such that 0+0 =0, xex + 0 for every x&€ H and for every
x € H\{0} there exists one and only one element —x € H\{0}, called
the opposite of x, such that 0 € x + (—x). We denote x + (—y) by x—y.

Already, it has been proved that every FJH consists of two types of
elements, the canonical (c-elements) and the attractive (a-elements) (8,
12]. An element x is called a c-element if 0 + x is the singleton {x},
while it is called an a-element if 0 + x is the set {0, x}. We denote with
A the set of the a-elements and with C the set of the c-elements. For the
hypercomposition between these elements, hold certain significant
properties which are necessary for the following:

(1) the sum of two a-elements is a subset of AU{0} and it always
contains the two addends.
(i1) the sum of two non opposite c-elements consists of c-elements, while
the sum of two opposite c-elements contains all the a-elements.
(iii) the sum of an a-element with a non zero c-element is the c-element.

The proofs of these properties as well as other elements of the theory
of the FJHs can be found in [12]. '

Moreover, another distinction between the elements of the FJH
stems from the fact that the equality —(x—x) = x—x is not always
valid. The elements that satisfy the above equality are called normal,
while the others are called abnormal [8, 12].

A subset A of a hypergroup H is called semisubhypergroup if
x + y Ch, for every x, y in h while it is called subhypergroup of H if for
every element x of A holds x + h=h + x = h. Moreover a sub-
hypergroup 4 of H is called closed from the right (in H), (resp. from the
left) if for every x € H\h holds (x + h)Nh = @ (resp. (h + x)Nh = o). h
is called closed if it is closed from the right and from the left [1, 11]. It
has been proved [6] that a subhypergroup is closed if and only if it is
stable under the induced hypercomposition. Regarding the subhy-
pergroups of the FJH [14], we remark that since a FJH is a join
hypergroup, it has subhypergroups that are join i.e., subhypergroups



220 G. G. MASSOUROS

that are join hypergroups themselves. It has been proved that the join
subhypergroups of the FJH are the closed ones [14]. The join
subhypergroups belong to the class of the symmetrical subhy-
pergroups. A subhypergroup # of a FJH is symmetrical, if —x€h
for every x € h. Of course, in a FJH there also exist non symmetrical
subhypergroups.

Furthermore the binary operation of the word concatenation in the
free monoid A" is bilaterally distributive over the hyperoperation of
the B-hypergroup and so, generally:

DEFINITION 1.2 A hyperringoid is a non empty set Y equipped with
an operation -’ and a hyperoperation ““+ " such that:
(1) (Y, +) is a hypergroup
(i) (Y,-) is a semigroup
(iii) the operation ““.” distributes on both sides over the hyperopera-
tion “+”.

M. Krasner was the first one who introduced and studied
hypercompositional structures with an operation and a hyperopera-
tion. So, among other structures, he defined the hyperrings [2, 4]. 1.
Mittas, later, introduced the superrings, in which both, the addition
and the multiplication are hypercompositions [16]. The new hyper-
compositional structures arising from the theory of languages and
automata have been named according to the terminology by Krasner
and Mittas. Thus, provided that (Y, +) is a join hypergroup, (Y, +,-)
is called a join hyperringoid. The join hyperringoid that comes from a
B-hypergroup is called B-hyperringoid and the special B-hyperringoid
that appears in the theory of languages is the linguistic hyperringoid. 1t
must be pointed out that not every B-hyperringoid is isomorphic to a
linguistic one. Indeed, every element (word) of the linguistic
hyperringoid has a unique factorization into irreducible elements
which are the elements of the alphabet (letters). So the linguistic
hyperringoid contains a finite set of prime (initial and irreducible)
elements, such that each of its elements has a unique factorization with
factors from its prime subset. In this sense it has a property similar to
the Gaussian rings.

DerFINITION 1.3 A fortified join hyperringoid or join hyperring is a
hyperringoid whose additive part is a fortified join hypergroup and
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whose zero element is bilaterally absorbing with respect to the
multiplication.

2. GENERAL PROPERTIES OF THE HYPERRINGOIDS

The class of the hyperringoids is very extensive and so, apart from the
B-hyperringoids mentioned above, it also contains many other
hyperringoids. Example 2.1. gives a hyperringoid in which (contrarily
to the B-hyperringoid) the two participating elements are not
contained into the result of their hyperaddition: ‘

Example 2.1 Let < be a linear order (also called a total order or
chain) on Y i.e., a binary reflexive and transitive relation such that for
all y, y'€Y, y#y' exactly one of y<y’ and y’<y holds. For jy,
y'eY, y<y’ set [y, y'l:={z€Y:y<z<y’'} and
19,y [:={z€Y:y <z <y'}. The order is dense if no ]y, y'[ is void.
Suppose that (7, -, <) is a totally ordered group, i.e., (Y,-) is a group
such that forall y<y’and xe Y, x-y<x-),y-x<yp’-x. If the order
is dense then the set Y can be equipped with the hypercomposition:

: x if x=y
X+y=
Jmin {x, y}, max {x, y}[ if x#y

and the triplet (Y, +,-) becomes a join hyperringoid. Indeed, since the
equalities x + y = Jmin{x, y}, max{x,y}[=y+x and (x + y)+z=
=]min{x, y,z}, max{x,y,z}[=x + (y+2z) are valid for every
x,y,z € Y, the commutativity and the associativity hold in Y. Also

x if x=y
My=q{teY :x<zt} if y<x
{teY t<x} if x<y

Thus in any case that the intersection (x‘| y)ﬂ(zﬁ w) is non void, the
intersection (x + w)N(z + y) is also non void. Moreover
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x-(y+z)=

x-y=x-y+x-z ify=z

x\yzl=x- U {t}= U {x-t}={xt:y<t<z}=xy+xzif y#z
y(t{z y(tiz

It 1s worth mentioning that the hypercomposition x + y = [min{x,y},

max{x, y}], for every x,y € Y, endows (Y, ) with a join hyperringoid

structure as well.

The class of the join hyperrings is also very extensive. The following
proposition indicates how a join hyperring can be derived from
Krasner’s hypering [4], i.e., a hyperringoid (Y, +,-) such that (¥, +) is
a canonical hypergroup [15] whose zero element is multiplicatively
bilaterally absorbing.

ProrosiTioN 2.1 Let (P,+,:) be a hyperring. In P define a
hypercomposition “+”° by setting for all a, be P

a+b= (a+b)U{a} U{b},
Then (P, +,-) is a join hyperring whose zero is the zero of (P, +,-).

Proof Obviously a+ b = b+ a. Also the associativity holds. Indeed

(a+b)+c=[(a+b)U{a,b}]+c
= |J (x+o)ula+b)u{ctu(a+c)u{a,cyu(b+c)ufb,c}=
x€a+b
=la+(b+c)U(a+b)U(a+c)U(b+c)U{a,b,c} =
=a+(b+c)

Next suppose that @b c|d# . Then [(a—b) U {a}]N[(c—d) U {c}] #».
This implies that one of the following might happen:
(a—b)N(c—d)# e, (a—b)N{c} #wo, {a}N(c—d)#wo or a = ¢, but all

of them lead to the relation: (a + d)N{(c + b) #o.

Finally a+0=(a+ 0)U{a, 0} ={a, 0} and a+(—a)=
=(a—a)U {a} U{—a} >0, for all ac P. So (P, +) is a FJH. Also the
distributivity holds, for example:

rla+b)=r(a+ byur{alUr{b} = (ra+ rb)U{ra}U{rb} =ra+rb
and so the Proposition. |
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CoroOLLARY 2.1 Let (R, +,-) be a ring. If in R we define the
hypercomposition:

a+b={a, b,a+ b}, foralla,beR

then (R, +,-) is a join hyperring.

According to the definition, the multiplication in a hyperringoid
distributes over hyperaddition. This is not the same though with the
induced hypercomposition, which satisfies a weak form of distribu-
tivity. In the following xa‘,xb stands for (xa)‘](xb).

ProrosiTION 2.2 If x, a, b are elements of a hyperringoid Y, then:

() x(a\b)C xaxb,
(i) (a)b)x C ax|bx.

Proof Let wex(a||b). Then there exists y€a||b such that w = xy.
Also, since y6a||b, the element belongs to y + b, thus xa € xy + xb
from which xyExallxb, SO wExa'|xb and therefore (i). (ii) can be
proved in a similar way. ||

CoRrROLLARY 2.2 [If A, B are subsets of Y and x€ Y, then:

(i) x(4\B)C xA\xB
(i) (4)B)x C Ax|Bx

In a hyperringoid the multiplication has the following properties
with regard to the hypercompositions:

ProPERTIES 2.1 Let (Y, +,:) be a hyperringoid. Then for all
ab,c,dxeY;

e (at b)(ct+d)Cac+ bc+ ad + bd,

o x[(a+ b)i(c + d)] C (xa + xb)(xc + xd),
o [(a+b)|(c+d)xC(ax + bx)| (cx + dx),
o (a)b)(c1d) C (ac) be)| (ad) bd),

e (a+ b)cid)C(ac + be)| (ad + bd),

(a\ b)(c + d) C (ac| bc)+(ad| bd),

x[(a) b)) c] C xa; (xb + xc),

x[(a + b) ', c] C(xa + xb) '| xc,

x[a + (b'1 )] C (xa + xb)|| xc.
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The proof of these properties is reached with the use of the above
Propositions and the relations between the hyperoperation and the
induced hyperoperation. For instance we give the proof of the fourth
and seventh one. Indeed let’s consider an element ¢ which belongs to
(a '| b) (c" d). Then there exists s¢ a', b such that res(c '| d). But
s(c|d)Csc\sd (Prop. 2.21.). Thus ¢ belongs to [(a|b)c] [(a]b)d],
which is a subset of (ac 1| bc) '| (ad I\ bd) [Prop. 2.2.ii]. Next we shall prove
the seventh of the above properties. In the hypergroups holds the
mixed associativity, i.e., the equality (a,5)|c = a|(c + b) [6]. Thus
x[(a| b)) c] = xla’| (b + )] C xa| x(b + ¢) = xa| (xb + xc).

It is worth mentioning that all the above properties hold in the case
of the B-hyperringoids with equality instead of inclusion.

3. JOIN HYPERRINGS

The join hyperring has properties that do not appear in other relevant
structures. Indeed, the distinction of the elements of its additive
hypergroup into ¢ and a-elements gives certain special properties to the
multiplication. We remark that a join hyperring having only c-
elements is a Krasner’s hyperring. A proper join hyperring, is a join
hyperring which is not Krasner’s hyperring.

PROPOSITION 3.1 Let (Y, +,-) be a join hyperring. Then C*C C and
CA = AC = {0}.

Proof Letx, ybe two c-elements. Then, xy + 0 = xy + 0y = (x + 0)y
= {xy}, so xy is a c-element. Next let x be a c-element and w an a-
element. Then, xw + 0 = xw + Ow = (x + 0). Moreover, xw + 0 =
=xw+ x0 = x(w + 0) = x{w, 0} = {xw, x0} = {xw, 0}. Thus {xw}
must be equal to {xw, 0}, and so xw = 0. |

As in the case of the commutative rings and hyperrings, two
elements x, y of a commutative join hyperring Y are zero divisors in Y
if x#0, y#0 and xy = 0. An integral join hyperring is a non-trivial
commutative join hyperring with no zero divisors.

CoroLLARY 3.1 If a proper commutative join hyperring has no
divisors of zero, then 0 is the single c-element.
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ProrosiTiON 3.2 [n a join hyperring which contains a non zero c-
element, the product of two a-elements equals to zero.

Proof Let x be a c-element and z, w be a-elements. Then (Prop. 3.1.)
xz=0. Thus, wz€0 + wz = xz + wz = (x + w)z. But, the sum of a
canonical with an attractive element gives as a result the canonical
element [12]. So x + w = x and therefore (x + w)z = xz = 0, (Prop.
3.1.) which implies that wz = 0. |

It is known [4] that in the hyperrings, as in the rings, holds:

i) x(-y)=(-x)y=—xy
i) (=x)(=y) = xy (1)

m)wx—y)=wx—wy,(x—p)w=xw-—yw

These properties can be proved with the help of the addition. In the
hyperringoids though these properties are not generally valid, as it can
be seen in the following example:

Example 3.1 Let S be a multiplicative semigroup having a bllaterally
absorbing element 0. Consider the set:

= ({0} x S)u (S x {0})
With the use of the hypercomposition ““+:
(x, 0)+ (», 0) = {(x, 0), (», 0)}
(0, x) + (0, ») ={(0, x), (0,7)}
(x, 0)+ (0, ») = (0, ) + (x, 0) = {(, 0), (0, )} forx+#y
(x, 0) + (0, x) = (0, x) + (x, 0) = {(x, 0), (0, x), (0, 0)}

P becomes a fortified join hypergroup with neutral element (0, 0).
Moreover, the opposite of every element (x,0), is the element (0, x).
Obviously this hypergroup has no c-elements. Now let’s introduce in P
a multiplication defined as follows:

(xl, J’1) (x2, Y2) = (xl X2, V1 J’2)

This multiplication makes (P, +,:) a join hyperring, in which
(x,0)(3,0) = (x,0), (0,x) 0, y) = (0 xy) while (x, 0)(0, y) = (0, 0)
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and (0, x) (¥, 0)=(0, 0). That is, if X' =(x, 0), y' =(y, 0), and 0' = (0, 0).
it is xX'y'#£0', and so —(x'y')#£0 while x'(-y)=(-x")y'=0".
Furthermore (0, x) (0, y)=(0, xy), which is the opposite of (xy, 0),
that is (—x")(—y")=—(x"y").

Thus, this example is a case where (i) and (ii) [and consequently (iii)]
of the equalities (1) are not valid. But those relations hold in the join
hyperrings under certain conditions:

PrOPOSITION 3.3 In a join hyperring the equalities (1) hold if —x, —y,
X, y, w are not divisors of zero.

Proof

(1) 0ex(y—y) = xy + x(—y) and since xy and x(—y) are different
than 0, it derives that the one is the opposite of the other.
Similarly (—x)y = —xy.

(i1) It is 0ex(y—y) =xy + x(-y) and 0&€(x—x)(-y) =
=x(—y) + (=x)(—y) and since xy, x(—y), (—x)(—y) are different
than 0, from the uniqueness of the opposite it derives that xy =

= (=x)(-).
(ii1) It is w(x—y) = wx + w(—y) and since (because of i) w(—y)=—wy
we have w(x—y) = wx—wy. [

CoROLLARY 3.2 The equalities (1) hold in every join hyperring with
no divisors of zero.

Before proceeding with the next Proposition we remark that in a
join hyperring, if x is an g-element, then —x is also an a-element and if
y 1s a c-element, then —y is also a c-element. Indeed let x be an a-
element, then 0 €0 + x, whence x € 0,0. But x belongs also to 0‘;(—x),
thus (0'10) N [0'|(~x)] %o, from where (0+0) N (—x+0)#a, thus
0 €0+ (—x), and so —x € 4. And since the opposite of every a-element
is an ag-clement itself, if y is a c-element, then —y belongs to C as well.

ProrosITION 3.4 In an arbitrary join hyperring the equalities (1)
hold, provided that at least one of the participating elements is a c-
element.

Proof If xe€C, yeAd, then, —x€C, —y€A4 and because of
Proposition 3.1 the equalities (i) and (i) are valid, since all the
products are equal to 0. Also, if both x and y are c-elements then, —x,
—y are c-elements as well and so, with the use of Proposition 3.1, the
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equalities (i) and (ii) can be proved in an analogous way to Proposition
3.3. For (iii) now we have:

a) if weC and x, y€ A, then x—yC AU{0} and so (Prop. 3.1)
w(x—y)=0=wx—wy.

b) if we C and one of the x, y is also a c-element while the other is an
a-element (e.g., x€ C, y € A), then, since the sum of an a-element
with a non zero c-element is the c-element [12], we have that
x—y = x. Also since the product of a c-element with an a-element is
0 (Prop. 3.1) we have: w(—y) =—-wy =0. So, w(x—y) =wx =
=wx + 0 = wx—wy.

c) if we A and x, ye C, then wx=wy=0. Moreover, if x#y, then
x—y C C and so w(x—y) C wC=0, while if x =y, then the difference
x—Xx, besides any c-elements it contains, it also contains the whole
set of the attractive elements. Now, since there exists even one c-
element, then w4 =0 (Prop. 3.2) and so w(x—x) = 0. Thus (iii)
holds again.

d) The rest cases (x, y, we C and x€ C, y, we A) can be proved
analogously and thus (iii) has been proved from the left. Similarly it
can be proved from the right and so the Proposition. ]

It also follows from Example 3.1. that in the join hyperrings the
cancellation law is not generally valid. Relatively we have the
Proposition:

ProPOSITION 3.5 In every join hyperring with no zero divisors, the

cancellation law (with non zero element) holds for the multiplication and
conversely.

A join hyperring in which the additive hypergroup consists only of
normal elements, is called rormal. Relatively we have the following
Proposition:

PROPOSITION 3.6  Every join hyperring which has no divisors of zero is
normal.

Proof Let a, x be two elements of the join hyperring. Then:

al-(x—x)] ={a(-y)lyex—x} ={(-a)ylyex—x} =
=(—a)(x = x) = (—a)x + (-a) (—x) =
=a(—x)+ax=a(x—x)
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Thus, for every z € —(x—x) there exists w € x—x, such that az = aw,
and so, because of Proposition 3.5, z=w and therefore
—(x—x) C x—x. Similarly x—x C —(x—x) and so x—x = —(x—x). W

Remark 3.1 The opposite of the above Proposition is not valid. For
instance the join hyperring of Example 3.1., though normal, it also has
zero divisors.

PRrROPOSITION 3.7 A finite commutative join hyperring with no divisors
of zero is a join hyperfield.

4. SUBHYPERRINGOIDS

A non empty subset Y’ of a hyperringoid (Y, +, ) is a subhyperringoid
of Y if (Y',+) is a subhypergroup of (Y, +) and (Y’,)) is a
subsemigroup of (Y,:). When Y is a join hyperringoid, then Y’ is
called a join subhyperringoid of Y if (Y’', +) is a join subhypergroup of
(Y, +) and (Y, -) is a subsemigroup of (Y, -). Also in the case of the
join hyperrings, (¥Y’, +) can be a specific subhypergroup, i.e., a
symmetrical or a join one (and consequently closed). Thus, besides the
subhyperringoids, there also exist the symmetrical subhyperrings and
the join subhyperrings.

PrROPOSITION 4.1 A4 non empty subset Y' of any hyperringoid Y is a
subhyperringoid of Y, if and only if

x+Y' =Y andxyeY' foreveryx,ycY’
while Y' is a join subhyperringoid of a join hyperringoid Y, if and only if
x+yCY,xlyCY andxyeY' foreveryx,ycY'.

Next let’s denote by S the set of the subhyperringoids of Y, S, the
set of its join subhyperringoids, S; the set of its join hyperidealoids, P
the set of the multiplicatively constant parts of Y and [ the subset of P
which consists of the multiplicatively absorbing subsets of Y.
Moreover let’s denote by Hy,, H, H, the sets of the semisubhy-
pergroups, the subhypergroups and the join subhypergroups respec-
tively of the additive subhypergroup of Y. Then S = PNH,
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S;=PNH; S;=INH; while Sy, = PN H,s will be the set of the
semisubhyperringoids in the sense that the hypercompositional part of
their structure is generally a semisubhypergroup. And since
H;C HC Hy; and IC P it derives directly that S;C.S;C.SC Sy
Besides it is known that if the intersection of two semigroups is non
void, then it is a semigroup, and that the non void intersection of two
closed subhypergroups is a closed subhypergroup [1, 3, 11]. Thus the
intersection of two join subhyperringoids, if it is non void, it is a join
subhyperringoid. Moreover, since the (non void) intersection of two
hypergroups is generally a semihypergroup [l, 11], the non void
intersection of two subhyperringoids is a semisubhyperringoid. So:

ProprosITION 4.2 The sets Sy, S;and Sy of the join subhyperringoids,
the join hyperidealoids and the semisubhyperringoids that contain a non
empty subset X of the join hyperringoid form a complete lattice.

Furthermore, since the intersection of two symmetrical subhy-
pergroups of a FJH is a symmetrical subhypergroup [12, 14], the
intersection of two symmetrical subhyperrings or two symmetrical
hyperideals of a join hyperring is a symmetrical subhyperring or a
symmetrical subhyperideal respectively.

ProrosIiTION 4.3 In a join hyperring, the set of its symmetrical
subhyperrings and the set of its symmetrical hyperideals form a complete
lattice.

It derives from Proposition 4.2. that to a given subset X of an
arbitrary join hyperringoid Y, corresponds (through the closure
mapping) the minimum, in the sense of inclusion, join subhyperringoid
X" of Y, which contains X. X" is the join subhyperringoid of Y which
is generated from X and contains it. In a similar way, X~ is the
semisubhyperringoid of Y which is generated from X and contains it.
Analogously we consider the symmetrical subhyperring of a join
hyperring which is generated from X. Thus: '

ProrosiTiON 4.4 The semisubhyperringoid X~ of a hyperringoid Y
generated by a set X consists of the union of finite sums of products of the

type:
k
Hs,- where ;€ X, i=1,...,k

i=1
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If the above sums produce a subhypergroup of (Y, +), then X~ is a
subhyperringoid. Relatively we have:

ProrosiTiON 4.5 If for the hypercomposition of a hyperringoid Y
holds:

a,beca+b, foralla,beY

then every semisubhyperringoid of Y is a subhyperringoid.

Proof Let Y' be a semisubhyperringoid of Y and a€ Y’. Then
a+ Y' CY'. Moreover a+ Y' = Upey (a+b) 2 Upey {a, b} =Y.
Thus Y' Ca + Y’, and so the Proposition. [ |

ProrosiTION 4.6 The join subhyperringoid of a join hyperringoid Y
generated by a set X, consists of the union of finite sums of products of
the type:

k
Hs,- where ;€ X, i=1,...,k
=1

and also of the results of the induced hypercompositions between such
sums.

Especially, regarding the subhyperring which is generated from the
a-elements of a join hyperring, it holds: |

ProrosiTioN 4.7 In a join hyperring Y, the union A™ = AU{0} of
the a-elements with the zero element is the minimal bilateral join
hyperideal of Y and furthermore it is the minimal join subhyperring of Y.

Proof Firstly, it will be proved that 4" is a subhypergroup of Y.
Indeed, it is known [12], that the sum of two attractive elements
consists only of attractive elements (and also the zero element, if the
two participating elements are opposite). Consequently, for every x
from 4" holds x + A” C A”. Regarding the proof of the opposite,
ie, A" Cx+ A" forevery x€ A", let’s consider an arbitrary element
y of A”. Then, for every x from A" holds 0 + y C (x—x) + », from
where {0, y} Cx + (—x + y) and therefore y € x + (—x + y). But, as
we have seen above, if an element is attractive, then its opposite is
attractive as well. Thus —x + y is a subset of 4" and therefore there
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exists z from —x + y such that yex + zCx+ 4". So 4" Cx + 4"
and consequently x + 4" =A4". Hence A" is a subhypergroup of Y,
which is symmetrical as well. Next we shall prove that 4" is a closed
subhypergroup in Y. Indeed, let z be an element of H\A". Then z is a
non zero canonical element. But the sum of a non zero canonical
element with an attractive one is the canonical element [12], thus
z+ A" =zandso (z+ A")NA" ={z}NA" =9, ie, A" is closed
in Y.

Since every closed subhypergroup of any hypergroup contains all its
neutral elements [1, 3] and since it is also stable under the induced
hypercomposition [6], the zero element belongs to all closed
subhypergroups of Y and 0]|0 is contained in all of them. But
00 = A". Indeed, 0€0 + ¢ for every 1€ A", so t€0,0 and therefore
A" C0,0. Also s¢ 00, for every s€ C{0}, since 0¢0 + s =s. Thus
0‘,0 = A" and so 4" does not contain a closed (and consequently join)
subhypergroup of Y. Moreover a join subhypergroup 4 of Y, different
from A" must contain a c-element. But the difference of a c-element
from itself contains all the a-elements [12]. Thus A" is contained in A.
Therefore A" is the minimal join subhypergroup of Y. Also in
Propositions 3.1 and 3.2 it has been proved that the product of two a-
elements, if it is not zero, it is an a-element, while the product of a ¢-
element with an a-element is always zero. Thus 4" is both, absorbing
and multiplicatively closed and so the Proposition. [ |

CorOLLARY 4.1 Every join hyperring which consists only of a-
elements has no proper join subhyperrings.

ProOPOSITION 4.8 Every join subhyperring Y' of a join hyperring is a
symmetrical subhyperring.

Proof Since Y’ is a join subhyperring, its additive part is a
subhypergroup closed in Y. As it is known, every closed subhy-
pergroup of any hypergroup contains all its neutral elements [1, 3], and
it is stable under the induced hypercompositions [6]. Thus 0 € Y’ and
O‘|x§ Y’ for every x€ Y'. But —x€0|x, because 0 € x—x. Therefore
—x € Y’ and so the Proposition. [

ProOPOSITION 4.9 If a symmetrical subhyperring Y' of a join
hyperring Y contains a non zero c-element, then it is join.
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Proof Let z be a c-element belonging to Y’. Then 4" Cz—z and
therefore all the elements of Y'\Y” are c-elements. Now suppose that x
1s a non zero c-element. Then the set x + Y’ consists only of c¢-
elements, because the sum of a non zero c-element with a-elements is
the c-element. Therefore if there exists a c-element y in Y’ such that
y€x + w,weY’, then x belongs to y—w which is a subset of Y’. Thus
(x+Y)YNY' =g for every xeY\Y’. So (Y’, +) is a closed
subhypergroup in (Y, +) and therefore Y is a join subhyperrring of Y.

|

CoRrOLLARY 4.2 Every symmetrical subhyperring which is not a join
one, is a subset of the minimal join subhyperring.

Furthermore, an important symmetrical subhypergroup of the FJHs
1s 2(X') which consists of the unions of sums of the type:

(xy—x1)+ -+ + (0 — x)

where x;, i = 1,...,n belong to a set of normal elements X. Assuming
that x, y € Q(X), then (with regard to the multiplication) we have:

xy€[(x1—x1)+ -+ —x)] (1 =y1)+ - +(Ym—ym)] C

C i(xi —x)(y—y) C Z [xiy;+ (—x) ¥+ xi (—p5) + (=x:) (=5)]
ij=1 i,j=1

Now if the elements of —X U X are not divisors of zero, the above
hypersum becomes (Prop. 3.3):

n
D iy = %) + (ayy = %))
i1j=1

This hypersum is a subset of Q(X) only when X is multiplicatively
closed. Thus:

ProrosiTiON 4.10 Let X be a non empty subset of a join hyperring Y,
which

(1) is multiplicatively closed
(ii) consists of normal elements
(iii) the elements of —X U X are not divisors of zero.
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Then QUX) is a symmetrical subhyperring of Y. If X is also
~multiplicatively absorbing, then U(X) is a symmetrical hyperideal.

CorOLLARY 4.3 If E is an integral join hyperring, then QUE) is a
symmetrical hyperideal.

Also, since a proper integral join hyperring consists only of a-
elements (Cor. 3.1) and since the join hyperrings which consist only of
a-elements have no proper join subhyperrings (Cor. 4.1), the Proposi-
tion holds:

PrROPOSITION 4.11  The proper integral join hyperrings have no proper
Jjoin subhyperrings.

In addition to the above fundamental properties and the basic
analysis of the hyperringoids, a study has been carried out on more
specific topics such as the congruence relations, the equation and
system solving [13] efc. Other hypercompositional structures such as
the hypermoduloid and the supermoduloid have also been developed,
based on them. All the above, when applied to the linguistic
hyperringoid, give interesting results in the theory of Languages and
Automata such as the theorems which have as corollaries the theorems
of Myhill-Nerode and Kleene [8, 9, 10]. The hyperringoid, being a new
mathematical structure, also reveals a whole new area for developing
research of pure mathematical interest. '
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