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THE SUBHYPERGROUPS
OF THE FORTIFIED JOIN HYPERGROUP

Gerasimos G. Massouros
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155 61 Cholargos, Athens,
Greece

Abstract. The Fortified Join Hypergroup, which is a hypercompositional struc-
ture directly connected with computer theory, has certain special properties that
give birth to several types of subhypergroups. In this paper those subhypergroups
are being introduced along with a study of their properties and an analysis of the
relations that are being developed between them.

AMS 1991 Classification number: 20N20

1. Introduction.

The Fortified Join Hypergroup (FJH) is a hypergroup that derived from the
study of the theory of Languages and Automata with the use of methods of
the hypercompositional algebra [5],[8]. As it is being indicated by its name,
the FJH is a join hypergroup (H,-+) [i.e. a commutative hypergroup in which
every quadruple of its elements satisfies the axiom:

(J) (@:b)N(c:d) #0=>(a+d)N(c+b)#D

where ”:” is the induced from ”+” hypercomposition and a:b={z €H|a € b+z}]
that also satisfies the axioms:

FJ, There exists a unique neutral element, denoted by 0, the zero element of
H, such that forevervz € H:z2€z+0and 0+0 =0 and

FJ; For every z € H\{0} there exists only one element z’ € H\{0}, the
opposite or symmetrical of z, denoted by —z, such that: 0 € z+z'. Also
—0=0.

So the FJH, satisfying those axioms, places itself between the join and the
canonical hypergroup, since, as it is known, if a join hypergroup has a scalar
neutral element, it is a canonic one [1],[2].

Example 1.1. Let (H,+) be a canonic hypergroup [10]. If a new hyperope-
ration t is defined in H as follows:

zty = (z +y)U{z,y}, foreveryz,y € H

then the (H,t) is a FJH.
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Example 1.2. Let (K,+) be a canonic hypergroup [10] and let a be an
element which does not belong to K. The set H = K U {a} with hypercom-
position:

sty = (z+y)U{z,y}, ifz,y € K and z # —y,0

yi(—y) = H, for every y € K
z10 = 0fz = z, for every z € K
ata = {0,a}
at0 = {0,a}

becomes a FJH.

Example 1.3. Let H be a set totally ordered and symmetrical around a
center denoted by 0 € H. With regard to this center a partition

h=H U{0}UH,=H U{0}uH"*

can be defined, such that, for every z € H™ and y € H* itis z < 0 < y, and,
z<y== —y < —z for every z,y € H (where —z is the symmetrical of z as
for 0). Then H, with hypercomposition:

z+y = {r,y}, if y # — and
z+(~z) = [0, =[] U {~|z[}

becomes a FJH. Besides, if the hypercomposition is:

z+y = {z,y}, if y # —z and
z+(—z) = [~[z|, ][]

then (M, +) is again a FJH.

The relevant study of the properties of the FJH has revealed that when 0
is being added to another element, it gives as a result, either that element, or
the biset which consists of both the 0 and the participating element. The ele-

<ments of the FJH that belong to the first category have been named canonical

or c-elements, since they act exactly as the elements of the canonical hyper-
group, while the others have been named attractive or a—elements, because they
“attract” 0 into the result of the hyperoperation. Furthermore 0 is considered
as a canonical element, since the result of 0 + 0 is the singleton {0}. The set
of the canonical and the set of the attractive elements are being denoted by C
and A respectively.

Proposition 1.1. Let (C,+) be a canonical hypergroup and let (A, +) be a
FJH, every non zero element of which is attractive. Also let’s assume that both
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hypergroups have the same neutral element. Then the set H = C' U A becomes
a FJH, if the hypercomposition is defined as follows:

T+y=2z+y ifr,ye A
r+y=z+y ifz,y€e C and z # —y
z+(~z) = (z+(-z))UA ifz € C\{0}
z+y=y if z € A, y € C\{0}.

Example 1.4. Let H be a totally ordered set and symmetrical around a
center 0 € H and let’s use the symbolisms of Example 1.3. It is known that
the set H* U {0}, with hyperoperation:

i max{z,y} ifz#y
T+y = .
[0, z] fz=y

becomes a canonical hypergroup [11]

4

Moreover, defining in the set H~ U {0} the following hyperoperation ”+":

{z,y} ifz#y

r+y =
H [[x,O] ifz=y

we get a FJH which has only a-elements.
Now if we define in H the hyperoperation ”+7:

[ max{z,y} ifz#yandeitherz€ H oryec H*
{z,y} ifz#yand z,y € H~
{z.0} ify=0and ze€ H-
Tt+y= :
T ify=0and ze€ H*
[z,0] fz=ye H U{0}
| [0,z]UH™ ifz=ye H*

then (H,+) is again a FJH, which has selfopposite elements. The elements of
H which belong to HT¥ U {0} are c-elements, while all the elements that belong
to H~ are a-elements.

For the ¢ and a-elements we have the following fundamental properties:
Properties 1.1. In a FJH the following are valid:
(1) If z is a c—element, then —z is also a c-element.
(11) If z is a a—element, then —z is also an a-element.

(111) The sum of two a—elements consists only of a-elements (and the 0, if
they are opposite) and also it always contains the two addents.
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(iv) The sum of two non opposite c—elements consists of c—elements, while
the sum of two opposite c—elements contains all the a-elements.

(v) The sum of an a—element with a non zero c—element is the c-element.

For the relevant proofs of the above see [6].

Also the elements of the FJH are being separated into normal and abnor-
mal. This distinction of the elements derives from the fact that even though
in a FJH the equality —(z + y) = —z — y holds when z # y, the equal-
ity —(z — z) = z — z is generally not valid. So those elements that satisfy
this equality are called normal while the others, that don’t, are called abnor-
mal. It has been proved that all the c—elements are normal as well as that
the equality —(z : y) = (—z) : (—y) holds if y is normal, or if z ¢ y — y.
Moreover, it has been proved that in the FJHs the reversibility holds under
conditions. More precisely, z € z+y=>y € z — z, except if z = z # y where
r €rx+y=>1z €z —y, while generally y ¢ z — z. This gives as a result that
for every z # y holds 2 —y = (2 +y)U(—y)U(—y) : (—z), whilez —zC(z : z).
If one of the z,y is a c-element then z —y =z : y = (—y) : (—z) [6].

For the study of its subhypergroups and since the FJH is a join hyper-
group, the relevant theory of the subhypergroups of the join hypergroup must
be taken under consideration. Very significant in the join hypergroup are the
intersections  : y N z : w which appear in the first part of the join axiom.
Thus if & is a subhypergroup of a join hypergroup H and if z,y,z,w € h, then
the following can happen:

() [(z:y)N(z:w)]N(H\R) # 0
(i1} [(z:y)N(z: w)]Ch.

So let’s start with the B-hypergroup, which is a hypergroup that appears in
the theory of the Languages. The hypercomposition in a B-hypergroup (Y, +)
is being defined as follows:

r+y={z,y}, for every z,y € Y.

It can be proved that the B-hypergroup is a join one, and because of the
definition of the hypercomposition, every one of its subsets is a subhypergroup.
In the subhypergroups of the B-hypergroup and according to the choice of the
z,y,z,w, (ii) from the above is not always valid, since z : z = Y, for every
z €Y.

Next let’s see another hypergroup, which is constructed on the set Z of
the integers. Indeed, if we consider the partition Z; U Z; of Z, where Z; the
set of the odd numbers and Z, the set of the even (the zero included), then Z
becomes a join hypergroup with hypercomposition:

Z, if z = y(mod?2)

W= 2 itz £ y(mod2).
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Z, is a subhypergroup of Z, in which the (ii) from the above is always valid.
In this case we say that the join axiom is valid inside the subhypergroup. Such
a subhypergroup, inside of which the join axiom is being verified (i.e. it is
a join hypergroup itself) will be called join subhypergroup. But a subhyper-
group h, in order to verify the join axiom inside it, must be stable (closed)
with regard to the induced hypercomposition, i.e. for every z,y € h it must be
z : yCh. Now, if a subhypergroup of a hypergroup H is stable with regard to
the induced hypercompositions, then it is a closed subhypergroup of H [2],[3].
Therefore, the join subhypergroups of a join hypergroup are its closed subhy-
pergroups. Analogously, in the case of the FJHs we have subhypergroups that
are join and others that are not join. And since every closed subhypergroup
of any hypergroup contains all its neutral elements, every join subhypergroups
h of a FJH H will contain 0. Furthermore, since the closed subhypergroups
are stable with regard to the induced hyprcomposition, it will be 0 : zCh. But
—z € 0: z and therefore —z € h for every z € h. So we have the Proposition:

Proposition 1.2. Fvery join subhypergroup of a FJH is a FJH itself, with
the same zero.

Moreover it is known [10] that if a subhypergroup of a canonic hyper-
group contains its zero element, then it is a canonical subhypergroup. The
same thing does not hold in the FJHs. Let’s see it with an example, again in
the set Z of the integers. This set becomes a FJH with the hypercomposition:
zty = {z,y,z + y}. Here Z, is again a subhypergroup of (Z,t), which is not
join, since the induced hypercomposition is not stable in Z,. (It is enough to
observe that for every z € Z; holds « : z = Z). We observe though that in Z,
hold:

(a) 0 € Zg
(b) if z € Z, then —z € Z,

and obviously (b) alone give (a). Thus there derives a wider from the join sub-
hypergroups category of subhypergroups of the FJH, the symmetrical ones.
We call symmetrical subhypergroup of a FJH H a subhypergroup h of H for
which —z € h for every z € h. Direct result from the definition is that 0 € k,
as well as:

Proposition 1.3. Every join subhypergroup of a FJH is also symmetrical.

Thus, according to the above we have the following tree types of subhy-
pergroups of a-FJH:

(i) join subhypergroups
(i1) symmetrical subhypergroups that are not join

(111) subhypergroups that are not symmetrical and therefore not join.
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2. Join subhypergroups

Proposition 2.1. Necessary and sufficient condition for a non empty subset
h of H to be a join subhypergroup of H is that z : yCh and 2 —yCh for every
z,y € h.

Proof. Obviously the condition is necessary. Conversely, if z € h then
z—z C h,so0 € h and consequently 0 — z C h, from where —z € h. Thus
z+h=2z—(—h)=2—h C h. Moreover, for every y € A we have y — z C &,
soy—z+z=y+(x—2z) C z+h from wherey € z+h, i.e., h C z+ h. Thus
z+h = h and h is a hypergroup, which, is also closed, since it is stable under
the induced hypercomposition, and therefore join. '

Corollary 2.1. A subset h of H is a join subhypergroup of H if and only «f it
is stable with regard to the hypercomposition and the induced hypercomposition
of H and also it contains the opposite of every z € h.

Using Property 1.1 (iv), we derive to:
4
Proposition 2.2. No (proper) join subhypergroup of a FJH
(1) has only c~elements

(il) is a canonical subhypergroup (# {0}).

Also for the join subhypergroups of the FJH we have:

Proposition 2.3. [fh # {0} is a join subhypergroup of H and hOC\{0} = 0
then h = AU {0}.

Proof. Obviously h C AU {0}. Moreover, for an arbitrary z € AU {0}, it will
be:
(z+h)OA2(z+0)NA={z,0}NA>0.

So (z+ h) Nk #  and since h, as a join subhypergroup is closed, it derives
that z € h and therefore A U {0}Ch.

Corollary 2.2. The FJHs which consist only of a—elements have no proper
join subhypergroups.

Corollary 2.3. The FJHs which consist only of a—elements have no invertivle
subhypergroups. (Since every invertible subhypergroup is also closed.)

Proposition 2.4. The A" = AU {0} is a join subhypergroup of H.
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Proof. The sum of two a-elements consists only of a-elements and 0 if they are
opposite [Property 1.1 (iii)]. Thus if z is an a-element then z + A"CA". Now,
for the proof of the converse we make use of the fact that H has a partition in
the two disjoint sets A" and C\{0} and that the sum of an a-element with a
non zero c-element is the c-element [Property 1.1 (v)]. So:

A'CH=2+H=2+[AU(C\{0})] = (2+4)U[z+(C\{0})] = (z+A4)U(C\{0})

Consequently A"Cz + A”. Thus A" is a subhypergroup of H. Next let z be an
element of the set H\ A", i.e., a non zero c-element. Then z + A" = z [Property
1.1 (v)]. Thus (z+ A")N A" = for every z € H\A" and so A" is closed and
therefore join subhypergroup of H.

From the above Proposition and Corollary 2.2 derives the Proposition:

Proposition 2.5. The subhypergroup A" is the minimum, in the sense of
inclusion, join subhypergroup of H.

Next, for every z,y from A" holds z € z + y [Property 1.1 (iii)] and so
y € z : z. Thus A°Cz : z. Moreover if z is a non zero c-element, z ¢ = : z
because z + z = z [Property 1.1 (v)]. Consequently z : z = A" and so:

Proposition 2.6. The minimum join subhypergroup A" equals to z : z, for
every z € A"

Proposition 2.7. Every join subhypergroup of (H,+) is invertible and con-
versely.

Proof. We shall prove that if the relation (z + k) N (y + k) # @ is valid, then
z+h = y+h.Initially let z € hand w € (z+h)N(y+k) = AN(y+h). Then there
exists z € h such that w € y+z, from wherey € w : z. But h is a join subhyper-
group and so w : zCh, thus y € h and therefore z+h = y+h. Next let z,y ¢ R
and assume that there exist z.w € h such that ¢t € (z 4+ z) N (y + w). t does
not belong to h, because if it did, then it would be (for instance) y € t : wCh,
which is absurd, and therefore ¢ # z,w. Thus in the relation ¢t € z + 2 the
reversibility of z is valid and consequently z € t —zor z € y+ w — z or
z € y+ h. Therefore z + hCy + h. Similarly y + hCz + h. Thus 2+ h =y + h.
And since every invertible subhypergroup is closed, it derives that it is also
join, and so the Proposition.

If his a join subhypergroup of H, then it defines an equivalence relation
=;, as follows [2]:
r=jys<=h:z=h:y

But, according to the above Proposition, & is also invertible and so it defines
another equivalence relation =;, as follows:

r=yes=z+h=y+h
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the classes C; of which are equal to z + & for every z € H. This equivalence
relation is normal. It is worth mentioning that according to Proposition 2.3,
h contains all the a-elements of H. Thus if C, € H/h, then z is a c-element
and so for Cy we have:

Co+Co=0+h)+(z+h)=0+2z)+(h+h)=z+h=C;

Let’s consider now the class A : z with z ¢ k. Since —z € 0 : z it derives that
—z € h: z. Then, with the use of Corollary 2.1 from [2] we have:

—zch:z= —z+hC(h:2)C(h+h):z=h:z
Thus
(1) —z+hCh:z

Next let’s consider an element w from the class & : z. Then (w + z) N A # 0.
Consequently there exists y € h such that y € w + z and the reverisibility of z
holds, because y # z, since ¢ h. Therefore it is w € ~z+y or w € —z + A.
Thus

(i) h:zC—z+h

From (i) and (ii) derives that  : 2 = —z + h and so:
h:z=h:yc<= —-z+h=—-y+h<sz+h=y+h

Thus the Proposition holds:

Proposition 2.8. The equivalence relations =; and =; coincide.

Also the following Proposition is valid:
Proposition 2.9. The set H/h with hypercomposition:
C:tCy={Cw € HIh |w €z +y}
is a canonical hypergroup with neutral element Co(= h).

The join subhypergroups of a FJH are closed and according to Proposi-
tion 2.7, they are invertible. Also from Proposition 1.2 it derives that their
intersection is always non valid. So:

Proposition 2.10. The set of the join subhypergroups of H is a complete lat-
tice which coincides with the complete lattices of its closed and of its invertible
subhypergroups.

It is known that the join subhypergroup generated by a non void subset
X of a join hypergroup consists of the union of finite sum of elements of X and
of the results of the induced hypercomposition between such sums [6]. Thus
for the generated join subhypergroup from a non empty subset X of a FJH H
we shall have:
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a) it will contain all the a-elements of H, since it has been proved that A"
is the minimum join subhypergroup of H

b) if X also contains c-elements, e.g. z;, 1 € I, then z; : y = z; — y, and,
according to Proposition 8.1 of [10], it will also contain all the unions of
finite sums of the elements of —(X\A4) U (X\A).

So

Proposition 2.11. The join subhypergroup X which is generated from a non
empty set X consists of all the a-elements as well as of the unions of all the
finite sums of the c-elements that are contained in the union —X U X.

3. Symmetrical subhypergroups

In the Introduction of this paper we have also refered to the B-hypergroup,
which is a join hypergroup. In this hypergroup (Y, +), for reasons dictated by
the theory of Languages and Automata (see [7]), we have introduced a neutral
element 0 and its hypercomposition has been redefined in the set Y U {0} as
follows:

ct+y={z,y} f z#y and z+z={z,0}

This new hypergroup, called dilated B-hypergroup, is a FJH in which holds:

Proposition 3.1. The subhypergroups of the dilated B-hypergroup are sym-
metrical.

The symmetrical subhypergroup of a FJH, being defined with weaker con-
ditions than the ones of the join subhypergroup, presents corresponding pro-
perties to the ones of the join subhypergroup, with fewer conditions though.
Here also appear relations that combine those two types of subhypergroups.

Now let z,y, with z # y be two elements of a symmetical subhypergroup A
ofaFJHH. Thenz:y={2€ H |z € 2+y} and since z # y the implication
z € z4+y => z € r—y holds. We mention that the converse of this implication
is not always valid, because if z and y are a-elements, then ~y € z — y, while,
generally, z ¢ y — y. Therefore:

{reH|zez+y}l{zeH|z€z-y}Ch
So:

Proposition 3.2. If h is a symmetrical subhypergroup, then z : yCh, for
every z,y € h with z # y.

Proposition 3.3. A non empty subset h of H is a symmetrical subhypergroup
of H if and only if z — yCh for every z,y € h.
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Proof. The above condition is obviously valid when & is a symmetrical sub-
hypergroup of H. Conversely now, let z € h. Then z —2Ch and therefore 0
belongs to h. Moreover 0—zCh, thus —z € h. Also, since h is a subset of H
the only axiom that needs to be proved is the reproductive one. Let z € h.
Then: z+h=2—(—h)Ch. Next let ¢t € h, then: t—2Ch = t—z+xCx+h =
= t+0Cz+h=—=1t € z+h, that is hCz+h. So z+h=Ah.

Corollary 3.1. A non empty subset h of H is a symmetrical subhypergroup
of H if and only if it is stable with regard to the hypercomposition and if it also
contains the opposite —z for every element x € h.

(Indeed, if z,y € h then z,—y € h and therefore, since h is stable, z — yCh
and according to the above Proposition, % is a symmetrical subhypergroup.)

Proposition 3.4. If a symmetrical subhypergroup h of H contains a c-element
different from 0, then it is join.

Proof. If z is a c-element of » then —z € A and therefore z — zCh. But,
according to Property 1.1 (iv), £ — z contains all the a-elements of H, that is
A"Ch and so z : yCh for every z,y € A", due to Proposition 2.4. Moreover, if
z,y are c-elements, then z : y = z — yCh and thus, again z : yCh. Lastly, if
z is a c-element and y an a-element, then, z : y = {w | z € w + y} and since
z # yit derivesthat 2 : y = {w | w € z — y}, so z : yCh. Similarly y : zCh
and consequently, for every z,y € A we have z : yCh. Thus % is join.

Corollary 3.2. The symmetrical subhypergroups that are not join consist only
of a-elements. ' '

For the intersection of symmetrical subhypergroups of a FJH hold similar
properties to the ones regarding the intersection of join subhypergroups. So:

Proposition 3.5. The intersection of two symmetrical subhypergroups of sym-
metrical subhypergroup of H.

Proof. Let hy, h; be two symmetrical subhypergroups of H. Then 0 € hy N A
and if z € hy N hy with z # 0, also —z € h; N hy. Next let z be an element
from the intersection h; N h,. Then

.’L‘+(h1 mhg)gl‘+h1 = h] and .’I,‘+(h1 ﬁhg)gl‘—f‘hg = h2

Therefore
z+ (k1 N hy)Chy Nhy

Now let y € hy N Ay, then
YEY+0Cy+(z~z)=z+(y—z)Cax+ (h1Nhy)

so hy NV h,Cz + (hy N Ry), thus + (hy N hy) = hy N hy, and so the Proposition.
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Now, from the above Proposition and since the intersection of two symmetrical
subhypergroups is always non empty (it always contains the 0) derives the:

Proposition 3.6. The set of the symmetrical subhypergroups of a FJH con-
sists a complete lattice.

And since every join subhypergroup of H is also symmetrical, for their
lattices holds:

Proposition 3.7. The lattice of the join sﬁbhypergroups of a FJH is sublattice
of the lattice of the symmetrical ones.

Now, let’s deal with the symmetrical subhypergroup that is generated
from a subset X of H, considering only the case where H is normal. Let X

k
be the set of all the elements £ € H which belong to sums of the type 3" z;
i=1
where the z; belong to —X UX. If y;, y, are two elements of X then y; € Zn:wi,
=1

m
y2 € 3 z; and so, since H is normal, we have:

1=1
n m n+m
y1— Q) wi— Y z;= Y zkCX
=1 7=1 k=1

Thus X is a symmetrical subhypergroup of H which contains —X U X. So, if
h(X) is the generated from X symmetrical subhypergroup, then h(X)gj(v. But
h(X) contains all the sums of elements from —X U X, and therefore X CA(X).
Consequently we have the Proposition:

Proposition 3.8. The symmetrical subhypergroup of a normal FIH which is
generated from a non empty set X consists of the unions of all the finite sums
of the elements that are contained in the union —X U X.

In the following appear certain symmetrical subhypergroups that generally
exist in every FJH. So let H be an arbitrary FJH and let X be a subset of
H. Let (X) be the union of the sums (z; — z;) + -+ + (z» — z,.) where n
arbitrary non negative integer and z;, 1 = 1,...,n takes all the possible values
from X. Also suppose that X consists only of normal elements. Then:

Lemma 3.1. Ifw € (z; —z1) 4+ - + (2, — z,), then
—w € (zy—z1)+ -+ (z, — z,), for every z,,z2,...,2, € X.

Proof. This Lemma will be proved by induction. So for n = 1 it is:
wET1—z; —> —w€ —(z;—21) =T,—1, since z; is normal. Now suppose that
it is true for n=k and let w € (21 —z;)+- -+ (zk — k) + (Zh+1 — Tk+1). Then
there exists s € (zy — z1) + -+ + (zx — ) such that w € s + (Tg41 — T41)
or w € ($ 4+ Zg41) — Zy41- Therefore there exists ¢ € s + z41 such that
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W Et—Tgy1. S0 ~w € —(t — T41). Now if £ = 244y, then ¢ is a normal element
and so —(t — Zg41) = —t + Tx41. The last equality is always valid if £ # zp4.
Thus —w € =t + 244+1C — (s + Zk41) — To41 = —S + (Tk41 — Tk41), Which, due
to the induction, gives:

—w € (1~ 21) 4+ -+ (2 — Tk) + (Th41 — Th1)-

Proposition 3.9. Q(X) is a symmetrical subhypergroup of H.

Proof. Apparently 0 € Q(X) and because of the Lemma —z € (X)) for every
z € Q(X). Next if z € Q(X) then z € (21 — z1) + -+ + (z» — z») for some
Z1,..., Iy from X. So:

T+ QX)C(z1—z1) + -+ (zn — z0) + UX)CSQUX)

Thus Q(X) is stable with regard to the hypercomposition and it also contains
the opposite of every one of its elements. Therefore, according to Corollary
3.1 it is a symmetrical subhypergroup of H.

Proposition 3.10. If X is the set of the a-elements A, or if X contains at
least one non zero c-element, then Q(X) is a join subhypergroup of H, and
therefore invertible.

Proof. Suppose that X = A. Then, because of Property 1.1 (iii), z € z — z
for every z € A. So A"CQ(X). Also, according to the same Property, the sum
of a-elements consists only of a-elements and 0. Thus Q(A)CA" and therefore
Y(A) = A". Now if X is a subset of H that contains a nonzero c-element z,
then ©(X) is a symmetrical subhypergroup which contains the difference z — 2.
If in Q(X) exists at least one c-element, then, because of Proposition 3.4, Q(X)
is join. Otherwise Q(X) = A", since A"Cz — z [Property 1.1 (iv)].

Corollary 3.3. If H does not contain non zero c-elements, then Q(H) = H.

Proposition 3.11. If Q(X) is the union of the sums (21 : 1)+ -+ (Tn : Zn),
where n arbitrary non negative integer and x;, 1 = 1,...,n are elements from
an arbitrary subset X of H, then Q(X) is a join subhypergroup of H.

Proof. If X C A", then Q(X) = A" (Proposition 2.6). Moreover, if X contains
a non zero c-element y then y : y = y — y contains A" and Q(X) = Q(X),
which is join because of Proposition 3.10.

The field for research on the FJHs is very extensive. The behaviour of the
subhypergroups under the homomorphisms [4], the monogene subhypergroups
and other relevant topics [9], which have already been studied do not lessen
the multitude of the problems that still remain open.
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