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ABSTRACT

This survey article presents elements of the Theory of Hypergroups, Algebraic Structures for
which the result of the "composition" of two elements is a subset of the structure. It deals with
the several kinds of elements and types of sub-hypergroups that exist in a hypergroup, as well
as the homomorphisms. There also appear some special categories of hypergroups.

AMS - Classification number: 20N20

i. General

In a congress of Scandinavian Mathematicians held in Stokholm, in 1934, F. Marty introduced
a new mathematical structure, which he named hypergroup [15]. The axioms on which the
hypergroup has been founded in a non empty set H that has a composition law "*", are:

i) The result of a% is a subset of H, for every a,beH
i1) (a*b)x=axbx) for every a,b,ceH (associative axiom)
i) a*H+H=aH for every aeH (reproductive axiom)

These axioms are not artificial products of some imaginary process. On the contrary they
derived clearly as the result of the real mathematical necessity. Several problems in the non
commutative algebra led, in a natural way, to the introduction of these axioms. Let's mention,
for instance, the co-sets in the groups, that are produced from non invariant subgroups. (e.g. see
[16], [37]).

If only the first of the above axioms is valid in H, then (H,*) is called hypergroupoid, while if
the first two axioms are valid, then it i1s called semi-hypergroup. This composition 1a.., vhich
1s a multivalued operation, is called hy percomposition and it has been proved that result of the
hypercomposition in a hypergroup is always different from the empty set. One can easily see
that every group is a hypergroup. The study of the properties of this new structure has become
the subject of the research of many mathematicians ever since.

Next there appear some of the most important properties of the hypergroup and definitions of

the fundamental notions which derive from the axioms of this structure. For the sake of
simplicity we make no distinction between the elements and their corresponding singletons,
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when nothing opposes it.

The hypercomposition defined in the hypergroup, which, for the simplicity of the notation will

be written as Xy, instead of x#, introduces two new hypercompositions, the induced
hypercompositions, defined as follows [15]:

xysweH lxemy} and x..y{weH lxeym}

If the hypercomposition is commutative, then x:y %..y . It has been proved that the reproductive
axiom 1is equivalent to the relations [18]:

x:y=d, x..y=¢ for every x,yeH

The interaction of the hypercomposition with the induced hypercompositions is given from the
mixed associative law [19]:

1) (a:b).c=a:(cb) and ii) (a..b)..c=a..(bc)

Lastly it is worth mentioning that the reproductivity holds for the induced hypercompositions
as well, i.e. [19]:

H=h:a=a:H-H..a=a. H

An element of a hypergroup is called neutral (or unit, or zero) if the result of its
hypercomposition with any other element xeH, contains x.

More precisely:

I A left unit element is an element e, such that aee, a,, for every aeH.
A right unit element e_ is being defined in an analogous way.

B If ae=a=a for every aeH, then e 1s a scalar unit, or absolute unit.

An element of H is called scalar if the result of the hypercomposition of this element with any
other element from H 1is a singleton. That is:
Bl A left scalar element c, 1s an element such that ¢ aeH,%eH.

Next, regarding these elements, we have the Theorems [11]:
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Theorem 1.1. Let the hypergroup H contain a left (right) scalar unit €. If there exists any right
(left) unit in H, then it is unique and equal to € and e the only left (right) scalar unit of H.

If H contains an absolute unit, then there are no other units.

Theorem 1.2. If a hypergroup contains a bilaterally scalar element, then it contains an absolute
unit element e, and the set of all the bilaterally scalars is a group having e as uni element. The

group of scalars is called the nucleus of H.

Theorem 1.3. If H is a finite hypergroup which contains both a right and a left scalar, then all
scalars are two sided,

For the definition of the symmetrical (or inverse or oppesite) elements of an element x, we
should keep in mind that a hypergroup may have more than one unit elements. So we speak for

the left (resp. right) symmetricals of an element x only with regard to a neutral element e.
Thus the set of the left symmetrical of x as for the neutral e, denoted by S§(x,e), is the set
S,(x,e){ueH |ee ux}, (resp. S (x,e)={ueH |ee xu}).

The cancellation law holds for a left scalar element w if any relation wx =y implies that x= .

Theorem 1.4. Let H be a hypergroup in which the cancellation law holds for left scalars. Then:
i) The existence of a left scalar X, implies the existence of a left scalar unit e, .
ii) To each left scalar X there exists a uniqie left scalar inverse x*, such that xx?=x7x e .

iii) When Xy is a left scalar, then both X and y are left scalars.

Besides the study on the hypergroups, an extensive study on the hypergroupoids has been
carried out. For instance M. De Salvo [7], [8], [9] has studied the finite hypergroupoids of

constant length (i.e. the ones in which all the hyperproducts xy have the same size) and in [10]
he has studied the natural correspondence between the hypergroupoids-and the combinatorial
structures. Furthermore, R. Migliorato has defined a geometric structure for all hypergroupoids
and has presented relevant properties.

2. On the sub-hypergroups

A non empty subset h of H 1s a semi-subhypergroup if xych for every x,yeh. Morcover if
xh=hx#h for every xeh, then h is a sub-hypergroup of H.

A sub-hypergroup h of H is right closed (resp. left closed) in H if ah {1 h=p (resp. ha 1 h=p)
for every aeH\h.

2 - Fuzzy systems 15



FSAI Vol 4 No.2 (1995)

Theorem 2.1. The following are equivalent:

B h isright (resp. left) closed.

B H\WhH\h [resp. hH\W)H\}] (after [43])
B abch (resp. a.cch) for every a,beh (after [19])

Theorem 2.2. Let A be a non empty subset of a hypergroup H and let's use the notation:
AAUAAUAAUAA

Then <A>=Unz0 A_is the least closed sub-hypergroup of H, which contains A [6].

Theorem 2.3. The intersection of two sub-hypergroups, if it is not void, it is a semi-
subhypergroup, while the non void intersection of two closed sub-hypergroups is a closed sub-
hypergroup.

Remark The case of the hypergroups is different from the case of the groups, where the
intersection of two subgroups is always a subgroup.

Another category of sub-hypergroups is the invertible sub-hypergroups, 1.e. sub-hypergroups for
which:

B if ceH, c/eH and ch#c’h, then ch N c/h= (right ifivertible)
B if ceH,c’eH and hczhc/, then he M he/=p  (left invertible)

From their definition it derives that every invertible sub-hypergroup is also closed, but the
opposite 1s not valid. '

Theorem 2.4 If h is right invertible in H, then [14]

i) cech, for every ceH

i) aebh<>beah < ah=h for every a,beH

i1i} (ch) . is a partition of H, denoted Hrh [resp. Heh when h is left invertible].

ceH
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If h and h’ are two sub-hypergroups, then the set Ikh,h/) of all the elements that are contained
in some product made of factors from h and h’ is multiplicatively closed, but usually, is not
a sub-hypergroup even when h and h’ are closed. We denote by [h,h’] the least sub-hypergroup

which contains the elements of h U h/. Then:

Theorem 2.5. If h and h/ are invertible in H, then Tkh,h")4hh’] and [h,h'] is an invertible
sub-hvpergroup.

Y. Sureau in his theses [43] introduced two other ty.pes of sub-hypergroups, the ultra-closed and
the conjugable. A sub-hypergroup h of H is called right ultra-clesed (resp. left) in H, if for
every xeH holds:

xh N x@H\h) = (resp. hx N (H\h)x ).

If a sub-hypergroup is right and left ultra-closed, then it is called ultra-closed in H.
The way I see it, the ultra-closed sub-hypergroup most of the times behaves analogously to a
bubble moving around, in a liquid which is at rest.

Imagine that the hypergroup H is the entire mass (liquid+gass), and the ultra-closed sub-

hypergroup h is the gass somewhere in it. The hyperproduct xh causes the bubble to move to
another place, while its previous place is now being occupied by liquid. Of course the bubble
may expand as it moves towards the surface or shrink as it moves towards the bottom, but the
entire mass remains the same.

Proposition 2.1 The right (resp. left) ultra-closed sub-hypergroups in H are right (resp. left)
invertible and closed sub-hypergroups in H.

Theorem 2.6 Let H be a hypergroup and IP the set of partial identities, Ii.e.
e 3 x:xeex}Ute! 3 yiye ve')

If h is a sub-hypergroup of H, then h is ultra-closed if and only if it is closed and contains
[.

p

Now 1f H is a hypergroup and h is a closed sub-hypergroup of H, h is called conjugable if
and only if for every xeH there exists x’eH such that x’xcth. Y. Sureau has proved that this
is equivalent to the fact that for every xeH there exists x”€H such that x”c h (and also to the
fact that for every x,y€H the hyperproduct xy is contained either in h or in the complemetary
subset H\h of h in H). Then, for every xeH, the set xhx’ (resp. x”hx) is a conjugable sub-
hypergroup of h, called a conjugate of h, and for every y satisfying the conditionyx ¢ h
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holds y ehx’shy, hence xhx’/=hy. If h is conjugable the it is also ultra-closed, hence invertible

(the same holds for xhx’ and x”hx). Moreover, two essential results that Y. Sureau has
presented are:

1. for any equivalence relation R,H/R is a group if and only if R Is a relation
modulo a conjugable and invariant sub-hypergroup h of H (1.e. H/R~H/h)

ii. the heart of H,0, is the intersection of all conjugable sub-hypergroups of H

Lastly another category of sub-hypergroups is the invariant sub-hy pergroups. A sub-hypergrouph
of H 1s called right semi-invariant, if xhe hx for every xeh, while it is called invariant if 1t
1s both right and left semi-invariant, i.e. xh=hx, for every xeh. If h is invertible and H/h 1s
a group, then h is called strongly invariant.

Theorem 2.7.

i) If h is strongly invariant, then it is invariant as well.

ii) Let G be a group and G’,g subgroups with g€ G’ and also let the hypergroups H=G/g and
h=G'/g. If h is invariant, then it is strongly invariant in H. [14]

Some other important subsets of a hypergroup are the complete parts. The notion of the
complete parts has been introduces by Koskas [12]. In the bibliography there appear many
papers that analyse the subject from different points of view. P. Corsini [14] and Y. Sureau [43]
have been mainly studying it withing the context of the general theory of hypergroups.

M. De Salvo has approached the subject in such a way that the combinatorial aspect of the
theory arises.

Let A be a part of a semi-hypergroup H. A 1is called complete if the following is valid:
h h
“eN,¥x,,..x JeH" Tk  Azd=Tk eA
14 id

Complete closure C(A) of A in H is the intersection of all complete parts of H that contain
A . A semi-hypergroup H 1is called complete if for every x,yeH C(xy)=y. On this subject, R.
Migliorato has introduced and studied the n-complete semi-hypergroups, which are a
generalisation of the complete hypergroups. He has also shown that the complete hypergroupsH

are totally characterised by the structure of the group H/B and he has calculated the number
of all the complete hypergroups of a given order.

18
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Theorem 2.8. Let A be a non empty part of H. If we put K(A)-A, and
P »p

K, (A)=(xeH |3 peN.3 (x,,...x )eH xelk Ik, N K #} then the complete closure C(A) of A
id  is

is the union K(A)=UK (A).

nzl

Theorem 2.9. The relation:
| xKyexeC({y})
is an equivalence relation, and the quotient H/K is a group.

3. On the homomorphisms

Let H and H’ be two hypergroupoids and P(H’) the power set of H'.

According to Krasner's definition a function fH—PMH’) is called homomorphism if
tixy)g f(x)f(y) (1) for every x,yeH. f is called strong homomorphism if the above relation
holds as an equality i.e. f(xy) £(x)f(y) (2). A function f:H-¥’ is called strict homome rphism

it (1) is valid. f:H-#’ is called normal or good homomorphism if (2) is valid. Moreover, P.
Corsini has introduced many new types of homomorphisms and has studied relevant properties
in depth [2]. ‘

Theorem 3.1. If f:H-¥' is a good homomorphism then Imf is a sub-hypergroup of H'. If
fH—P(H’) is a strong homomorphism then Imf is, in general, a semi-subhypergroup of H'.

The image ofa sub-hypergroup under a homomorphism or a strict homomorphism is, in general,
neither a sub-hypergroup nor a semi-subhypergroup.

Theorem 3.2. Let f:H-¥' be a strict homomorphism. Then the inverse image of a semi-

subhypergroup of H' is a semi-subhypergroup of H and the inverse of a sub-hypergroup is a
closed sub-hypergroup.

So if H’ has a scalar neutral element e, then f(e) is a closed sub-hypergroup of H.

Theorem 3.3. Let f:H—¥' be a strict homomorphism, X a non empty subset of H and <X>
the closed sub-hypergroup generated by X, Then

i) f(<X>)e<f(X)>

i) <f(X)>=f(<X>)>
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iti) If f(<X>) is a closed sub-hypergroup of H', then <f(X)>H(<X>)
iv) f(C(x)C((x)), for every xeH.

Theorem 3.4. If {:H-¥' is a good homomorphism and H' has a scalar neutral element ¢, thenf(e)
is an invertible sub-hypergroup and H/f(e) is isomorphic to H'.

Theorem 3.5. Let H be a semi-hypergroup, K the equivalence relation of Theorem 2.9 and
¢:H—3/K the canonical projection. If S is a semigroup and f:H—$ is a homomorphism, then
a homomorphism gH/K—$ exists such that go .

Another notion, which is important for the theory of the hypergroups, is the one of the heart
or core of the hypergroup. If H is a hypergroup and G a group, Kemel of the homomorphism
fH—$ is the set

kerf = {xeH |f(x)=}

Then heart or core @, of H 1s the kernel of the canonical projection @,

Theorem 3.6. The heart of a hypergroup H is the intersection of all the sub-hypergroups of H
that are complete parts.

Now, if f-H-$1’ be a strict homomorphism of hypergroups, then the kernel of f is the set
kerf* (@, ).

Theorem 3.7. Let fH-¥' be a strict homomorphism of hypergroups. Then
i) kerf is a complete part, which is also a sub-hypergroup.

ii) kerf is an invariant sub-hypergroup.

4. Types of hypergroups

The hypergroup can be considered as one of the most general structures of the abstract Algebra
and very often it is being enriched with axioms which vary in strength, but that are always
defined by a specific mathematical or technological need. Already F. Marty in [16]has
introduced more axioms and he has spoken of the "hypergroupe normal”.

These new axioms created a great number of different branches, each one of which deals with
different kinds of difficulties, resulting thus to the development of new technics, methods and
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tools in order to continue the research. In this part we present some types of hypergroups:

4.1. Regular: is a hypergroup if it has at least one identity and each element has at least one
inverse. )

On the regular hypergroups P. Corsini has studied the structure of their heart and he has
presented a series of papers on this subject (see [3], [4], [S].

R. Migliorato has introduced and studied the totally regularhypergroups, that is the hypergroups

in which Wx,y)eH? {x,y}cxy. A special case of totally regular hypergroupoids are the Steiner
Hypergroupoids (in particular Steiner Hypergroup).

4.2. Reversible: is a regular hypergroup which also the following conditions:
i. If yeax, there exists an inverse a’ of a, such that xea'y

ii. If yexa, there exists an inverse a’ of a, such that xeya”

4.3. Canonical: 1is a hypergroup (H,.), that for every x,y,zeH satisfies the axioms:
1. Xy=¥x
i x(y2)<xy)z

1. there exists an element 1€H for which Ix=
iv. for every xeH there exists one and only one x/eH shuch that 1exx’.

v. zexy=xezy’
The name canomcal has been given to this hypergroup by J. Mittas, who 1s the first one that
studied it [22], [29]. The canonical hypergroup is strongly related to the structure of the
hyperfield [13], the additive part of which led to the introduction of its axioms [21], [30].
Moreover, J. Mittas, having under consideration the definition of the valuated hyperfield [13],
[28], has introduced the valuated ultrametric or more general, the hypervaluated or hyper
ultrametric canonical hypergroup and has proved that necessary and sufficient condition for
canonical hypergroup to be such, is the validity of certain additional properties of purely
algebraic type (1.e. properties that are expressed without the intervention of the valuation or
resp. the hypervaluation). There derived thus three new types of canonical hypergroups:
the strongly canonical, which also satisfies the axioms:

S;:W®,aeH, xex-a=x-a=x

S,:%,y,z,weH such that (x ) Xz )0, either x+yC z+w, or z+wC X4 1s valid, the almost
stongly canonical, which also safisfies S, and AS:&,y €H with x=y , either (x %)Xy %)% o (y )y %)=
is valid, instead of S, and the superiorly canonical, which is a strongly canonical that also
satisfies S.:%k,y,z,weH such that Oex+ and z,wex+ holds zz=w-w

S, If xezz and y@& =z then xxC y-y.
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J. Mittas has presented a very deep and extensive study on this area, with a great number and
variety of results [23], [24], [26], [27], [31], [32], [36], among which we mention the following
theorem from the theory of the hypervaluated canonical hypergroups:

Theorem 4.1. Necessary and sufficient condition for a canonical hypergroup to be
hypervaluatable (strictly), is to be superiorly canonical.

Apart from the canonical hypergroups, . Mittas has introduced several types of polysymmetrical
hypergroups [25], [34], the regenerative hypergroups [33] and with other collaborators other
types of hypergroups, such as the reticuled canonical hypergroups [42], hypergroups defined
from a linear space [35] etc.

Motivated by Mittas' strongly canonical hypergroup, P. Corsini has introduced the i.p.s.
hypergroup, i.e. a canonical hypergroup which also satisfies the axiom S,. P. Corsini has
analysed thoroughly this hypergroup, having proved among others that 8 is the maximum
integer k such that the class of i.p.s. hypergroups of order k coinsides with the one of the
strongly canonicals. Moreover, a non commutative canonical hypergroup, which has been called
quasicanonical by P. Corsini and P. Bonansinga and polygroup by S. Comer [1] has been
studied by themselves as well as by Ch. Massouros and M. De Salvo.

4.4. Join hypergroup is a commutative hypergroup (H,.), which for every x,y,z,w €H satisfies
the axiom:
x;y Nzw #¢ = xw Nyz #¢

This axiom has been introduced by W. Prenowitz, who has used a special type of this
hypergroup for a very important foundation of several types of Geometries through the theory
of the hypergroups [38], [39], [40], [41]. (Also see [18], [17]) .

In the space between the canonical and the join hypergroup, there appeared the Fortified Join
hypergroup, which came into being during the analysis of problems in the theory of Languages
and Automata with methods and tools from the theory of the Hypercompositional Structures
[20]. i

4.5. Fortified join hypergroup is a join hypergroup (H,$ which also satisfies the axioms:

FJ, There exists a unique neutral element, denoted by 0, -the zero element of H - such that for

every xeH:
x ex +0and 0 +0 =0
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FJ, For every xeH\{0} there exists one and only one element x'eH\{0} - opposite or

symmetrical of x- denoted by =, such that:

0 ex +x

The theory of the hypercompositional structures, beyond its independent great development and
the study of the problems created from inside it, has already been used in order to describe and
solve problems not only in algebra, but in other brances of mathematics as well, such as
harmonic analysis, geometry, graph theory, combinatorial analysis, probability, code theory etc.
Recently the theory has extended its influence into computer science with very promising
prospects.
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