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Abstract

The theory of Languages and Automata is being viewed under the
light of theory of the Hipercompositional Structures. For this purpose,
not only the already existing structures have been properly used, but new
ones are introduced as well. This article is a brief presemtation of such
Hypercompositional Structures, the way there are being used and some
results that they can lead to. '

ASM-Clasification number: 68Q45, 08A70, 20N20, 68Q70

1 Automata émd Hipercompositional Structures

An automaton is a 5-tuple (A, S, 0,8, F') where A is the input alphabet, S is a
finite nonempty set of states, s € S the start state, § the state transition function:

8:5xA— Sand F C S the set of final states. Sometimes it is convenient to ase
the extended transition function §* : S x A* — S, instead of §, when working in
the set of the words A* over the alphabet A, which is defined recursively as follows:

i (Vs € 5)(Vd € A) 6*(s,a) = 8(s,a)
ii (Vs € S) 8%(s,A) = s where X is the empty string.
iii (Vs € S)(Vz € A*)(Va € A) 6 (s,az) = §*(6(s,a), z)

From the quintiple defining the automaton, the set of the states S can
receive tlie structute of a hypergroup through the proper definition of certain
hype rrompoqnhons In this way hypergroups are been aitacked to the automaton
and describe its structure and operation. According to their definition, these
attached hypergronps are:

a) The altached order Hypergroap,

1) The attached grade hypergroup,
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c) The attached hypergroup of the paths, and
d) The attached hypergroup of the operation.

Especially the order hypergroup and the grade hypergroup cau lead to the
creation of the minimum automaton that accepts the same language with the initial
one [2].

For te following let M = (A, 5, s¢, 6, F) be an automaton, deterrainistic or not.
Then: .

a. The attached ORDER hypergroup

The operation of the automaton can be seen as the moverment from state to
state, according to the input letter and function é. So the automaton can reach
a state different than sg only after it has read a string of letters from A. Also it
is possible for some state s; to be reached from sy, through different paths, that
is after the input of different words, or words with different number of letters, i.c.
different lengths.

Definition 1 The “order” of a state s € S, denoted by ord s, 1s the mimimum of
the length of words that lead from the start state sy to s.

Obviously ord sq = 0.

Thus it 1s possible to exist one or more “unreacheable from sy”states.
Apparently these states have no influence in the operation of the automiaton and
therefore their order is not necessary to be defined.

This order defines an equivalence relation and therefore it leads to the creation
of a partition of the set of states. So, s (O sy if ord 81 = ord s9, where s; and s
are two states from S and () is the order equivalence.

This equivalence relation on the set of the states have the following properties
generalized as:

1 The set of the classes 1s 1somorphic to a subset of the set of the natural
numbers N, and therefore

ii The set of the classes mod () is totally ordered.
111 There exists a minimal class.

iv Every class “covers” another, except thet of sy which does ot cover nther
class.

In a similar way it is posible to define the order of an element of an arbitrary set
T, provided that there exists an equivalence relation R in 7" which satisfies these
properties. In this case the order of the element is the order of ifs class, re. the
corresponding natural number according to the considered isomorphism.
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According to the defimition of the hypercomposition, different types of hyper-
groups can be introduced in 5, with the use of the notion of order. The following
are diferent cases of commutative (by dPﬁnlthH) attached order hypergroups:

If for every x, ¥ € 5

lst

U — v, if ordy < ord ¥
e Uord < ord 2+ Czy if ordy = ord ¥

the deriving structure (S,+) is a canonical polysymetrical hypergroup [8] with
neutral element the minimal element of S (the start state) in which for every
X € 5 1t is true that S(x) = Cy, and so x € S(x) (selfoposite, where S(x) is the
set of the symetrical elements of x).

274 _If in the above definition the strict order < is used instead of <, i.e. if:

X+ X =Usrd 2 < ord . forx' € Cy

the structure (.5,+) is not a hypergroup, except for the case when S is totally
ordered. Indeed, for every ¥ € S and ¥’ € C,, the associativity:

(X+X)+XI:X+(X+XI):>Uordw§ord :ch+X’:X+Uordz§0rd zCz

holds only if y = x’ and so C; = {x}. Then we have the superiorly canonical
hypergroup [6], [7] with
maz{z, ¥}, if x#0¥
T+ ¥ = ’ .
X+ { [50, x], if x =W

This is the case, when the states of the automaton is totally ordered.

:Srd
v, if ordy < ord ¥
x+V¥= UO;éord <orda:Cz) when ordy = ord ¥ and sq # x # ¥ # so
Uord/.gmd:cc when y = ¥

Now the hypergroup is canonical with selfopposite elements.
4‘£h

+q,_{ Cy, if ordy < ord ¥
: - Uord z < ord z Cs, if ord X = ord ¥



~J

/ 68 ’ Gerasimos G. Massouros 4

The structure (S,+) is a generalised canonical polysymetrical hypergroup [8]
having so as a non scalar neutral element, in which S(x) = C;, Vx € 5.

5'2_ If the case ord x # ord ¥ of the above definition is altered as bellow:

x +¥ =Cy, for ord sg # ord x < ord ¥
and so+x=x+so=Yx, forevery x€S

then the structure is again a canonical polysymetrical hypergroup with S(x) = C;
th

L= Ce, ~ifordy = ord ¥
x+r¥= Uordzgordzcz, if ordy < ord ¥

Now the structure is a generalised canonical polysymetrical hypergroup having
a non scalar neutral element (s¢) and S(x) = S\ C; for every x € S, x # so.

If in the case ord x # ord ¥ of this definition, it i1s assumed that ord z <
minf{ordy, ord ¥) instead of ord z < max(ordy, ord ¥}, then the hypermonoid
does not satisfy the “reproductivity” and therefore the hypercomposition does not

“give” a hypergroup.

Tth
: Cg, if ordy < ord ¥
x+¥= U()#ordzgordxcb- when ordy = ord ¥ and sp # x # ¥ # s¢
Uordzgord z Cs when so £ x = ¥
and

so+x=x+so=yxforevery x € S

The derived hypergroup is a canonical one with selfopposite elements.
b. The attached GRADE hypergroup

It is possible in an automaton to have states that lead to final states with exatly
the same word. If such states exist, it is really of no importance to keep track from
which one the automaton passes in order to reach a final state. They are considered
equivalent. So in the set of the states of an automaton another equivalence relation
R can be introduced through the notion of the grade.

_Definition 2 Lef 5 be a stale of an automaton (4, S, 80,6, F). The grade of this

state 5 1s the sel:
grad s = {r € A”| sz € F}

-~

—

.
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where A* is the set of the words over the alphabet A. From the definition it follows
that grad sg is the language accepted by the automaton.
Two states s; and s, are equivalent, if they have the same grade, i.e.

51 R s2 if grad s; = grad s,

Let’s denote by C(s)® = CZF the class which contains the state s. The
hypercomposition:
S1 + S = Cﬁ U CSF;

makes the set of the states S a join hypergroup. If the hypercomposition is defined
in the following way:

_ CSRUCSIE if CR £ CR and 51,55 # s
s‘““”‘{cﬁu{s,} if Cf = c

where s; is the only final state of the automaton or the conventional final state,

then the hypergroup (.S, +) is a join polysymetrical one [2], [3].

c. The attached hypergroup of the PATHS

In the set S there may exist states for which no letter, or word can lead from
the one to the other. Of course there exist states that can be reached, one from
the another. The latter are called connected, acording to the definition:

Definition 3 The state sy of S will be named connected to the state s; of S Az'f,
there exists w € A* such that s; = syw. If w s one letter only, then the state so 1s
called successive to sy. -

The fact that sy is connected (successive) to s; does not imiply that s; is
connected (succesive) to sg.
The set of the states with the hypercomposition:

, {s € S|s = s1w and sy = s, with w,y € A*} if s, is connected to s;
8118y = . .
{s1, 52}, , if 54 1s not connected to s;

becomes a non commutative hypergroup [4]. This hypergroup is needed for the
proof of Kleene’s theorem with the use of tools and methods from the Theory of
Hypercompositional Structures [4].

d. The attached hypergroup of the OPERATION

In the previous three kinds of the attached hypergroups, the automaton has
been approached as a static mechanism and references were made to the possible
movernents from one states to another. The operation of the automaton though
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takes place in real time and so “time” is one of the factors that are involved. This
basic ideas gave birth to the attached hypergroup of the operation.

Let an automaton be in state s; and in the next moment (clock pulse) it reads
a letter from the alphabet A that causes either a movement to another (successive)
state s; or a loop back to s;. Being in s; in the next clock pulse is different than
the srevious situation, since this new s; is a somehow different state. To point
out exactly this difference, it is convenient to consider the cartesian product SxN,
where S the set of the states and N the non negative integers, presenting thus the
statzs along with the corresponding clock pulse during which 1t has been reached.
So the pair (s;,t), which means that the automaton was in state s; during the
clock pulse ¢, shows exactly the difference from (s;,¢t + 1), which means that the
automaton s; during the next clock pulse too. A simpler and more convenient
notation that will be used from now on is s! instead of (s;, t).

Now, in the set of states there can exist states in which the automaton can be
“found” during the clock pulse ¢ and others where it can not. For instance, the
automaton cannot be found.in a state with order 5 during the clock: pulse 3. So a
the notation for the “activated” elements may be introduced:

Definition 4 An element si of the cartesian product S x N is called activated if,
after t clock pulses, the automaton can be found in the state s;.

Moreover the notions of the succesive and the connected elements may be
generalised for the set .S x N and so the elements s} and s} are called successive
if the state s; is successive to the state s; and r = ¢{ + 1 and also the element 57
is called connected with s} if the state s; is connected with the state s; and ¢ < r.
After this generalisation, the set A C .S x N of the activated elements becomes a
non commutative hypergroup with the hypercomposition [5]:

{64% (s, 2)|z € Prefia(r),6A*(s7,r) = 57}

s; +s) = if m <n and s, s7 are connected
{s,sT}, if s, s} -are not connected

where §A* is the generalisation of the extended state transition function §*, that
1s
SA*(st, z) = 6% (s, ) Hlel
Using this hypergroup and through a certain procedure, among others, all the
states at which the automaton can possibly be found, at a given time ¢, may be
effectively determined [5].

2 Languages and Hypercompositional Structures

In the papers [2] and [4], presented at the 4th ant 5th AHA, appears explicitly
how the expresion a + b from the Theory of Languages can be interpreted as a
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hypercomposition (a + b) = {a, b}, leading thus to the consideration of a special
kind of a join bypergroup [1], the B--hypergroup. Also the necessity of the existence
ol a unique. non scalar zero element led te the introduction of the Dilated B-
hypergroup, which is a Fortified Join Hypergroup (FJH), i.e. a Join Hypergroup
H having a unique neutral clement 0, such that z € # + 0 and 0 = 0 + 0 for every
r € H and also, for every 2 € H \ {0} there exists one and only one element

"¢ 1\ {0} for which 0 € x + 2/ (2’ is denoted by —z) [3].

Yet in the Theory of Languages the words consist of letters from an alphabet,
~writleu down side by side. The same thing can happen with strings and this whole
procedure is called concatenation. The concatenation of the word is an operation
and the set of the words A* over the alphabet A is a monoid with operation
the councatenation [2]. Moreover, the operation of concatenation is bilaterally
distributive to the above hypercomposition, giving birth thus to the B-hyperringoid
[2]. Generally a hyperringoid (Y, +,) is a nultiplicative-hyperadditive structure,
where (Y,+) is a hypergroup, (Y,-} 1s a semigroup and the multiplication is
billaterally distributive to the hypercomposition. If (Y, 4) is a join Hypergroup,
then (Y,4,-) is a Join Hyperringoid, while if the additive hypergroup of the
Hyperringoid is a FJH then the structure is a Fortified Join Hyperringoid or Join
Hyperring. In the case of the langkuageq the Hyperringoid A* is called linguistie
Hyperringoid and A* = A*U{0} is called Dilated Linguistic Hyperringoid. It must
be mentioned though that every B-Hhyperringoid is not a linguistic one. Indeed
every clement of the Linguistic Hyperringoid (word) has a unique factorization
into the elements (letters) of the alphabet. Therefore these elements (letters) from
a finite prime subset of the Linguistic Hyperringoid, that. is a finite set of prime
and irreductible elements such that eévery one of this elements (word) has a unique
factorisation with factors from the prime subset. Thus from every non commutative
frec monoid with finite basis a Lingunistic Hyperringoid can be derived.

3 Hypermeduloids — Supermoduloids

In an autoinaton the words of the language cause the system to move from state to
state. Tlicre appedrs thus the action of a set of operators which are the elements of
the set. A* | oni the set of ther states. In part two of this paper we show how can A*
he organised into the form of a certain hypercompositional structure; the Linguistic
Hyperringoid. The definition of the hypermoduloid and the supermoduloid [4] can
be naturally derived:

Définition 5 UM zs a Hypergroup and Y ¢ Hyperringoid of operators over M such
that for every k, N €Y ahd 5,t € M the azioms:

i (skYX = ','Hc/\)
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i (s+ A =sA+1A,
iii s(A+ k) C sA+ sk

hold, then M is called a hypermoduloid over Y. If Y 1s a set of hyperoperalors,
that is if there exists an external hyperoperation from M x Y lo P(M) satysfying
the aziom i, then M 1s called a supermoduloid over Y.

If in a hyperringoid Y, a congruence relation R is defined, then the quotient

set Y/R becomes a hypermoduloid over Y [4]. Thus, depending on whether rk(R)
" is finite or not, the deriving hypermoduloid will be finite or not. So il Y is a
linguistic hypermoduloid and rk(R) < +oo, then Y/R is a finite hypermoduloid.
The elements of such a hypermoduloid can represent the states of an automaton
which can be completely defined if one of the classes of Y/R is viewed as the start
state and a set of classes as the final states.

Let’s see the above working on the binary counter. The set of the natural
numbers becomes a linguistic hyperringoid having as a prime subset the singleton
{1}, operation (concatenation) the zy = = + y and hypercomposition the z { y =
{z,y} for every z,y € N. In N we consider the equivalence relation mod = i.e.

z=y(lmodn) < |z—y|=kn, kEN

This relation is also a homomorphic one and thus a congruence relation. Then
mod n creates n clases in N and so N/mod n is a hypermoduloid with 7 elements.
Consequently, according to the above, a set of n states can be Considered.

Counters are special types of sequential circuits that are important building
blocks in digital systems and they can appear on a varyety of forms. One of these
forms is the digital counter. A digital counter which can count in the binary system
from 0 to 2" — 1 consist of n states which are built from n flip-flops. The binary
counter is the hypermoduloid which derives from the partition of the linguistic
hyperringoid of the natural numbers through the relation mod 2.

For example the binary counter counting through the successive binay numbers
0 through 7 is the hypermoduloid N/mod 23 having 8 states as shown in the
diagram: :
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