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Abstract. The poset of noncrossing partitions can be naturally defined for any finite Coxeter
group W . It is a self-dual, graded lattice which reduces to the classical lattice of noncrossing partitions
of {1, 2, . . . , n} defined by Kreweras in 1972 when W is the symmetric group Sn, and to its type
B analogue defined by the second author in 1997 when W is the hyperoctahedral group. We give
a combinatorial description of this lattice in terms of noncrossing planar graphs in the case of the
Coxeter group of type Dn, thus answering a question of Bessis. Using this description, we compute
a number of fundamental enumerative invariants of this lattice, such as the rank sizes, number of
maximal chains, and Möbius function.

We also extend to the type D case the statement that noncrossing partitions are equidistributed to
nonnesting partitions by block sizes, previously known for types A, B, and C. This leads to a (case-
by-case) proof of a theorem valid for all root systems: the noncrossing and nonnesting subspaces
within the intersection lattice of the Coxeter hyperplane arrangement have the same distribution
according to W -orbits.

Key words. noncrossing partition, nonnesting partition, reflection group, root poset, antichain,
Catalan number, Narayana numbers, type D, Garside structure

AMS subject classifications. Primary, 06A07; Secondary, 05A18, 05E15, 20F55

DOI. 10.1137/S0895480103432192

1. Introduction and results. The lattice NCA(n) of noncrossing partitions
is a well-behaved and well-studied subposet inside the lattice Π(n) of partitions of
the set [n] := {1, 2, . . . , n}. It consists of all set partitions π of [n] such that if
a < b < c < d and a, c are contained in a block B of π while b, d are contained in a
block B′ of π, then B = B′. The lattice of noncrossing partitions arises naturally in
such diverse areas of mathematics as combinatorics, discrete geometry, representation
theory, group theory, probability, combinatorial topology, and mathematical biology;
see the survey [21] by Simion. This paper concerns analogues of this lattice for Coxeter
groups and, specifically, for the Coxeter group of type Dn.

Such analogues were suggested for the Coxeter groups of types Bn and Dn in
[20] and were shown to have enumerative and order theoretic properties similar to
those of NCA(n). Reiner [20, section 6] asked for a natural definition of the lattice of
noncrossing partitions for any finite Coxeter group W . Although the main idea may
be described as folklore (cf. [7]), only fairly recently, and in particular after the work
of Bessis [4] and Brady and Watt [12], it has become apparent that such a definition
is both available and useful. More precisely, for u,w ∈ W , let u ≤ w if there is a
shortest factorization of u as a product of reflections in W which is a prefix of such
a shortest factorization of w. This partial order turns W into a graded poset TW

having the identity 1 as its unique minimal element, where the rank of w is the length
of the shortest factorization of w into reflections. Let γ be a Coxeter element of W .
Since all Coxeter elements in W are conjugate to each other, the interval [1, γ] in TW
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is independent, up to isomorphism, of the choice of γ. We denote this interval by
NCW or by NCXn , where Xn is the Cartan–Killing type of W . The poset NCW

plays a crucial role in the construction of new monoid structures and K(π, 1) spaces
for Artin groups associated with finite Coxeter groups [4, 11, 12] and shares many of
the fundamental properties of NCA(n). For instance, it is self-dual [4, section 2.3]
and graded and has been verified case-by-case to be a lattice [4, Fact 2.3.1]; see also
[12, section 4].

In the case of the symmetric group it is known that the poset NCAn−1 is iso-
morphic to the lattice NCA(n) of noncrossing partitions; see, for instance, [6, 7, 11].
Similarly, in the case of the hyperoctahedral group, the poset NCBn is isomorphic to
the type B analogue NCB(n) of NCA(n) proposed in [20]; see [4, 9, 12]. However, it
was observed in [12, section 4] that NCDn is not isomorphic to the type D analogue
of NCA(n) suggested in [20]. Bessis [4, section 4.2] asked for an explicit description
of the elements of NCDn as noncrossing planar graphs, similar to those which appear
in the definition of NCB(n). We give such a description in section 3. Using a con-
struction similar to that of NCB(n), we define a poset NCD(n) which we suggest as
the type D analogue of NCA(n) and prove the following theorem.

Theorem 1.1. The poset NCDn is isomorphic to NCD(n).
In particular, this gives a different proof that the poset NCDn is indeed a lattice

[12, Theorem 4.14]; see Proposition 3.1. We should mention that, independently,
Bessis and Corran [5] have generalized this construction to a class of complex reflection
groups that contains Dn.

In our next main result we compute some basic enumerative invariants of NCDn .
Throughout, we use the convention that

(
n
k

)
= 0 unless k ∈ {0, 1, 2, . . . , n}.

Theorem 1.2. (i) The number of elements of NCDn of rank k is equal to the
type D Narayana number

Nar(Dn, k) =

(
n

k

)2

− n

n− 1

(
n− 1

k

)(
n− 1

k − 1

)

=

(
n

k

)((
n− 1

k

)
+

(
n− 2

k − 2

))
.

In particular, the total number of elements of NCDn is equal to the type D Catalan
number

Cat (Dn) =

(
2n

n

)
−

(
2n− 2

n− 1

)
.

(ii) More generally, for any composition s = (s1, s2, . . . , sm) of the number n,
the number of chains from the minimum to the maximum element in NCDn with
successive rank jumps s1, s2, . . . , sm is equal to

2

(
n− 1

s1

)
· · ·

(
n− 1

sm

)
+

m∑
i=1

(
n− 1

s1

)
· · ·

(
n− 2

si − 2

)
· · ·

(
n− 1

sm

)
.

(iii) The zeta polynomial of NCDn is given by

Z(NCDn ,m) = 2

(
m(n− 1)

n

)
+

(
m(n− 1)

n− 1

)
.
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(iv) In particular, NCDn has 2(n−1)n maximal chains, and has Möbius function
between the minimum and maximum element equal to

(−1)n
(

2

(
2n− 2

n

)
−
(

2n− 3

n− 1

))
.

The Narayana and Catalan numbers which appear in part (i) of Theorem 1.2
can be defined for any finite Coxeter group; see [2, 3] for a number of interesting
combinatorial and algebraic-geometric interpretations. It is known [16, 20] that the
number of elements of a given rank in NCW and the total number of elements are
equal to the corresponding Narayana and Catalan numbers, respectively, in the cases
of types A and B. Thus part (i) of the theorem extends this fact to the case of type
D. The statement on the cardinality of NCDn is also claimed to have been checked
by Picantin [19]. We note that the type D analogue of NCA(n) suggested in [20]
has the same cardinality and rank sizes as NCDn [20, Corollary 10] but different zeta
polynomial, number of maximal chains, and Möbius function.

Our definition of the poset NCD(n) leads naturally to a notion of “block sizes”
for noncrossing partitions of type D (see section 2). Such a notion was already sug-
gested in [1] for nonnesting partitions for the classical root systems, which are other
families of combinatorial objects counted by the corresponding Catalan numbers; see
[1], [20, Remark 2], [25, Exercise 6.19 (uu)], and section 2. Our next result refines
Theorem 1.2(i) and extends to the case of type D the main result of [1], stating that
noncrossing and nonnesting partitions are equidistributed by block sizes for each of
the classical root systems of types A, B, and C.

Theorem 1.3. Let λ be a partition of n−m with k parts, where m ≥ 0, and let
mλ = r1! · r2! · · · , where ri is the number of parts of λ equal to i. The numbers of
noncrossing or nonnesting partitions of type Dn with block sizes λ are equal to each
other and are given by the formula⎧⎪⎪⎨

⎪⎪⎩
(n− 1)!

mλ (n− k − 1)!
if m ≥ 2,

(r1 + 2(n− k))
(n− 1)!

mλ (n− k)!
if m = 0.

Note that the type D analogue of NCA(n) proposed in [20] fails to preserve this
similarity between noncrossing and nonnesting partitions [1, section 6].

Finally, we show that this equidistribution of noncrossing and nonnesting parti-
tions for the classical types A,B,C,D leads to a case-by-case proof of a result (Theo-
rem 6.3) valid for all (finite, crystallographic) root systems: there are embeddings of
the sets of noncrossing and nonnesting partitions into the intersection lattice ΠW of
the Coxeter hyperplane arrangement, and the two distributions according to W -orbits
coincide.

This paper is organized as follows. Section 2 collects the necessary background
and definitions related to the Coxeter group of type Dn, noncrossing partitions, and
nonnesting partitions. In particular, the poset NCDn is explicitly described. We also
include a few enumerative results from [1] which are used in the following sections.
Theorem 1.1 is proved in section 3 after the poset NCD(n) is defined. Theorem 1.2 is
proved in section 4 using Theorem 1.1 and bijective methods similar to those employed
in [13, 20] in the case of NCA(n) and NCB(n). Theorem 1.3 is proved in section 5.
Section 6 describes the embeddings of the sets of noncrossing and nonnesting partitions
into the intersection lattice ΠW and proves Theorem 6.3 on the equidistribution of
their W -orbits. Section 7 concludes with a few remarks.
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2. Background and definitions. This section includes notation, definitions,
and some basic background related to Coxeter groups as well as noncrossing and
nonnesting partitions of types B and D.

We will mostly follow notation introduced in [1, 12, 20]. We refer the reader to
the texts by Humphreys [15] and Stanley [24] for any undefined terminology related
to Coxeter groups and partially ordered sets, respectively. Throughout the paper we
let

[n] := {1, 2, . . . , n},
[n]± := {−1,−2, . . . ,−n, 1, 2, . . . , n}

for any positive integer n.
The Coxeter group Dn. Let S2n denote the symmetric group on the set [n]±.

For any cycle c = (i1, i2, . . . , ik) in S2n, we let c̄ = (−i1,−i2, . . . ,−ik). If c is the
transposition (i, j) and i �= −j, we denote by ((i, j)) the product cc̄ = (i, j)(−i,−j)
and call ((i, j)) a Dn-reflection, or simply a reflection. The Coxeter group WDn is
the subgroup of S2n generated by the reflections ((i, j)). Any element of WDn can be
expressed uniquely (up to reordering) as a product of disjoint cycles

c1c̄1 · · · ck c̄k d1 · · · dr,(2.1)

each having at least two elements, where d̄j = dj for j = 1, 2, . . . , r and r is even; see,
for instance, [12, Proposition 3.1]. Following [12], for a cycle c = (i1, i2, . . . , ik) in S2n

we write

((i1, i2, . . . , ik)) = cc̄ = (i1, i2, . . . , ik)(−i1,−i2, . . . ,−ik)

and call cc̄ a paired cycle if c is disjoint from c̄. We also write

c = [i1, i2, . . . , ik]

if c = c̄ = (i1, . . . , ik,−i1, . . . ,−ik) and call c a balanced cycle. Note that [i] denotes
both the balanced cycle (i,−i) and the set {1, 2, . . . , i}. We will leave it to the reader
to decide which notation is meant each time, hoping that no confusion will arise.

For w ∈ WDn we denote by l(w) the minimum number r for which w can be
written as a product of r reflections and call it the length of w. (Note: this is not
the usual Coxeter group length function, which is defined with respect to the simple
reflections as generating set.) The cycle ((i1, i2, . . . , ik)) has length k − 1. The length
of any element of WDn in the form (2.1) can be written as a sum over its paired and
balanced cycles, where the contribution of ((i1, i2, . . . , ik)) and [i1, i2, . . . , ik] to this
sum is k − 1 and k, respectively [12, section 3]. We denote by TDn the partial order
on the set WDn defined by letting u ≤ w if l(w) = l(u) + l(u−1w). The poset TDn

is graded by length and has the identity element 1 as its unique minimal element.
For a choice γ of a Coxeter element of WDn , which we fix as γ = [1, 2, . . . , n − 1][n]
for convenience, we denote by NCDn the interval [1, γ] in the poset TDn . The poset
NCDn is a self-dual, graded lattice of rank n [4, section 2], [12, section 4], where the
rank function is the restriction of the rank function from TDn .

Noncrossing partitions. A Bn-partition is a partition π of the set [n]± into blocks
such that (i) if B is a block of π, then its negative −B is also a block of π, and
(ii) there is at most one block, called the zero block if present, which contains both i
and −i for some i. The type of π is the integer partition λ which has a part equal to the
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(a)

1 2
3

4

5

6
−1

−6

−5

−4

−3
−2

  (b)

1 2
3

4

6

−1

−6

−5

−4

−3
−2

5

Fig. 1. Two elements of NCB(n) for n = 6 with blocks (a) {3, 4, 5}, {−3,−4,−5}, {1, 2, 6,
−1,−2,−6} and (b) {3, 4,−5}, {−3,−4, 5}, {2,−6}, {−2, 6}, {1}, {−1}.

cardinality of B for each pair {B,−B} of nonzero blocks of π. Thus λ is a partition of
n−m, where m is half the size of the zero block of π, if present, and m = 0 otherwise.
We refer to the parts of λ as the block sizes of π. A Dn-partition is a Bn-partition π
with the additional property that the zero block of π, if present, does not consist of a
single pair {i,−i}. The set of all Bn-partitions, ordered by refinement, is denoted by
ΠB(n). Its subposet consisting of all Dn-partitions is denoted by ΠD(n). The posets
ΠB(n) and ΠD(n) are geometric lattices which are isomorphic to the intersection
lattices of the Bn and Dn Coxeter hyperplane arrangements, respectively, and hence
they can be considered as type B and D analogues of the partition lattice Π(n). In
particular they are graded of rank n, and the corank of an element π in either poset
is the number of pairs {B,−B} of nonzero blocks of π.

Let us label the vertices of a convex 2n-gon as 1, 2, . . . , n,−1,−2, . . . ,−n clock-
wise, in this order. Given a Bn-partition π and a block B of π, let ρ(B) denote the
convex hull of the set of vertices labeled with the elements of B. We call π noncross-
ing if ρ(B) and ρ(B′) have void intersection for any two distinct blocks B and B′

of π. Two noncrossing partitions are depicted in Figure 1 for n = 6. The subposet
of ΠB(n) consisting of the noncrossing Bn-partitions is a self-dual, graded lattice of
rank n which is denoted by NCB(n) [20, section 2].

Nonnesting partitions. Let e1, e2, . . . , en be the unit coordinate vectors in R
n and

let Φ be a root system of one of the types Bn, Cn, or Dn. In what follows, we identify
Φ with its type Xn and fix the choices

Φ+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{ei ± ej : 1 ≤ i < j ≤ n} if Φ = Dn,

D+
n

⋃
{ei : 1 ≤ i ≤ n} if Φ = Bn,

D+
n

⋃
{2ei : 1 ≤ i ≤ n} if Φ = Cn

of positive roots for Φ. The root poset of Φ is the set Φ+ of positive roots partially
ordered by letting α ≤ β if β −α is a nonnegative linear combination of the elements
of Φ+. An antichain in Φ+ is a subset of Φ+ consisting of pairwise incomparable
elements.
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1 2 3 4 5 6 0 -6 -5 -4 -3 -2 -1

Fig. 2. A picture of the B6-nonnesting partition with blocks {1, 3}, {−1,−3}, {2, 5,−6},
{−2,−5, 6}, and {4,−4}.

1 2 3 4 5 -5 -4 -3 -2 -1

Fig. 3. A picture of the D5-nonnesting partition with blocks {2, 4}, {−2,−4}, and {1, 3, 5,
−1,−3,−5}.

Given an antichain A in Φ+, we define an equivalence relation on the set [n]±∪{0}
if Φ = Bn or Cn, and on the set [n]± if Φ = Dn, as follows. For 1 ≤ i < j ≤ n, let

i ∼ j and − i ∼ −j if ei − ej ∈ A,

i ∼ −j and − i ∼ j if ei + ej ∈ A.

Moreover, in the cases Φ = Bn or Cn, let

i ∼ 0 ∼ −i if ei ∈ A or 2ei ∈ A, respectively.

Let π0(A) be the set of equivalence classes of the transitive closure of ∼. Let π(A) be
the partition of [n]± obtained from π0(A) by removing 0 from its class if Φ = Bn or
Cn, and let π(A) = π0(A) if Φ = Dn. Observe that π(A) is a Bn-partition. Moreover,
in the case Φ = Dn, π(A) has a zero block if and only if A contains both ei − en
and ei + en for some i < n and hence, in this event, the zero block contains {n,−n}
and at least one more pair {i,−i}. Thus in general π(A) is a Φ-partition, where a
Cn-partition is defined to be the same as a Bn-partition. A Φ-nonnesting partition is
a Φ-partition of the form π(A) for some antichain A in Φ+. We denote by NNΦ the
set of Φ-nonnesting partitions and refer the reader to [1, section 2] and Figures 2 and 3
for the motivation behind the terminology “nonnesting,” suggested by Postnikov [1],
[20, Remark 2]. By definition, NNΦ is in bijection with the set of antichains in the
root poset Φ+.

Block size enumeration. For an integer partition λ, we denote by NCB
λ (n) the

set of elements of NCB(n) of type λ. Similarly, for Φ = Bn, Cn, or Dn we denote by
NNΦ

λ the set of Φ-nonnesting partitions of type λ. The following theorem is the main
result of [1].

Theorem 2.1 (see [1]). Let λ be a partition of n−m with k parts, where m ≥ 0,
and let mλ = r1! · r2! · · · , where ri is the number of parts of λ equal to i.

(i)

#NCB
λ (n) =

n!

mλ (n− k)!
.

(ii) The same formula holds for Φ-nonnesting partitions if Φ = Bn or Cn:

#NNBn

λ = #NNCn

λ =
n!

mλ (n− k)!
.
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3

4

5

6
−1−2

−6 3

6
−1−2

−6

−3

−4

−5

−3

−4

−5

−7  7, −7

7

5

4

1 21 2

(b)(a)

Fig. 4. Two elements of NCD(n) for n = 7 with blocks (a) {3, 4, 5, 6}, {−3,−4,−5,−6},
{1, 2, 7,−1,−2,−7} and (b) {1, 4, 7}, {−1,−4,−7}, {2, 3}, {−2,−3}, {5, 6}, {−5,−6}.

(iii) For m ≥ 2,

#NNDn

λ =
(n− 1)!

mλ (n− k − 1)!
.

3. Noncrossing partitions of type D. In this section we define our type D
analogue of the noncrossing partition lattice NCA(n) and prove Theorem 1.1. Let
us label the vertices of a regular (2n− 2)-gon as 1, 2, . . . , n− 1,−1,−2, . . . ,−(n− 1)
clockwise, in this order, and label its centroid with both n and −n. Given a Dn-
partition π and a block B of π, let ρ(B) denote the convex hull of the set of points
labeled with the elements of B. Two distinct blocks B and B′ of π are said to cross
if ρ(B) and ρ(B′) do not coincide and one of them contains a point of the other in
its relative interior. Observe that the case ρ(B) = ρ(B′), which we have allowed, can
occur only when B and B′ are the singletons {n} and {−n}, and that if π has a zero
block B, then B and the block containing n cross unless {n,−n} ⊆ B.

The poset NCD(n) is defined as the subposet of ΠD(n) consisting of those Dn-
partitions π with the property that no two blocks of π cross. Figure 4 shows two
elements of NCD(n) for n = 7, one with a zero block and one with no zero block.
Figure 5 shows the Hasse diagram of NCD(n) for n = 3.

Proposition 3.1. The poset NCD(n) is a graded lattice of rank n in which the
corank of π is equal to the number of pairs {B,−B} of nonzero blocks of π.

Proof. Since NCD(n) is finite with a maximum and minimum element, to prove
that it is a lattice, it suffices to show that meets in NCD(n) exist. Indeed, given
elements x, y of NCD(n), one can check that the meet z of x and y in ΠD(n) is an
element of NCD(n) and hence z is also the meet of x and y in NCD(n).

As was the case for NCB(n) [20, Proposition 2], the rest of the proposition follows
from the observation that given any two elements π1 ≤ π2 of NCD(n), there exists a
maximal chain in the interval [π1, π2] of ΠD(n) which passes only through elements
of NCD(n), so that the grading of NCD(n) is inherited from that of ΠD(n).

To prove Theorem 1.1 we need to describe the covering relations in the posets TDn

and NCD(n). In the case of TDn , the result of multiplying any element of Dn with a
reflection ((i, j)) is described explicitly in [12, Example 3.6]. From the computations
given there we can conclude that y covers x in TDn if and only if x can be obtained
from y by replacing one or two balanced cycles of y or one paired cycle of y with one
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1 2

−2

3,−3

−1

1 2

−1−2

3,−3

2

−2
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−3

2

−2

3

−3

−3
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1

−1

1

−1

−3
3
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3,−3

1 2

−1−2

3,−3

−2

1 2

−1

3

−3

−2

1 2

−1

3

−3

−2

1 2

−1

3 −3

1

−1

2

−2

3−3

1

−1

3,−3

2

−2

3,−3

Fig. 5. The lattice NCD(n) for n = 3.

or more cycles as follows:

[i1, i2, . . . , ik] −→ [i1, . . . , ij ] ((ij+1, . . . , ik)),
((i1, i2, . . . , ik)) −→ ((i1, . . . , ij)) ((ij+1, . . . , ik)),
[i1, . . . , ij ] [ij+1, . . . , ik] −→ ((i1, i2 . . . , ik)).

(3.1)

In the case of NCD(n), it follows directly from the definition that y covers x in
NCD(n) if and only if x can be obtained from y by one of the following:

(i) splitting the zero block of y into the zero block of x and a pair {B,−B} of
nonzero blocks,

(ii) splitting a pair of nonzero blocks {B,−B} of y into two such pairs of x, or
(iii) splitting the zero block of y into one pair {B,−B} of nonzero blocks of x (so

that one of B,−B contains n and the other contains −n).
Proof of Theorem 1.1. For x ∈ NCDn , let f(x) denote the partition of [n]±

whose nonzero blocks are formed by the paired cycles of x, and whose zero block is
the union of the elements of all balanced cycles of x if such exist. We first observe that
f(x) ∈ NCD(n). Indeed, this is clear if x is the top element γ = [1, 2, . . . , n − 1] [n]
of NCDn . If not, then x is covered by some element y of NCDn and we may assume,
by induction on the corank of x, that y has either zero or two balanced cycles, one
of which must be [n] in the latter case, and that f(y) ∈ NCD(n). Since x can be
obtained from y by one of the moves in the list (3.1), it follows with a case-by-case
check that x has zero or two balanced cycles as well, one of which must be [n] in the
latter case, and that f(x) ∈ NCD(n). The map

f : NCDn → NCD(n)
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is thus well-defined and order-preserving, since f(x) ≤ f(y) in NCD(n) follows from
(3.1) when x is covered by y in NCDn .

To define the inverse map, for x ∈ NCD(n), let g(x) be the element of NCDn

• whose paired cycles are formed by the nonzero blocks of x, each ordered with
respect to the cyclic order

−1,−2, . . . ,−n, 1, 2, . . . , n,−1,

and
• whose balanced cycles are [n] and the cycle formed by the entries of the zero

block of x other than n and −n, ordered in the same way, if the zero block is
present in x.

We claim that g(x) ∈ NCDn . This is clear if x is the top element of NCD(n). If not,
let y be any element of NCD(n) which covers x. We may assume, by induction on the
corank of x, that g(y) ∈ NCDn , in other words, that g(y) ≤ γ holds in TDn . It follows
from the possible types of covering relations in the posets NCD(n) and TDn that g(y)
covers g(x) in TDn . This implies that g(x) ≤ γ holds in TDn or, equivalently, that
g(x) ∈ NCDn . Thus the map

g : NCD(n) → NCDn

is well-defined and order-preserving, since g(x) ≤ g(y) in NCDn follows from (3.1)
when x is covered by y in NCD(n). Since f and g are clearly inverses of each other,
they are poset isomorphisms.

4. The zeta polynomial and chain enumeration. In this section we use
bijective methods similar to those employed in [13, 20] for NCA(n) and NCB(n) to
prove Theorem 1.2. We first recall a few constructions from [20, section 3]. After
setting

PB
n := {(L,R) : L,R ⊆ [n],#L = #R} ,

a map τB : PB
n → NCB(n) is constructed in [20, section 3] as follows. Given x =

(L,R) ∈ PB
n , place a left parenthesis before each occurrence of i and −i in the infinite

cyclic sequence

. . . ,−1,−2, . . . ,−n, 1, 2, . . . , n,−1,−2, . . .(4.1)

for i ∈ L and a right parenthesis after each occurrence of i and −i for i ∈ R. Let the
strings of integers inside the lowest level matching pairs of parentheses form blocks of
τB(x). Remove these lowest level parentheses from (4.1) and the integers they enclose
and continue similarly with the remaining parenthesization until all parentheses have
been removed. The remaining integers, if any, form the zero block of τB(x). We have
the following proposition.

Proposition 4.1 (see [20, Proposition 6]). The map τB is a bijection from the
set PB

n to NCB(n). Moreover, for any pair x = (L,R) ∈ PB
n , the number of pairs

{B,−B} of nonzero blocks of τB(x) is equal to #R.
To extend the previous proposition to the type D case, let

PD
n = PB

n−1

⋃
{(L,R, ε) : L,R ⊆ [n− 1],#R = #L + 1, ε = ±1} .

For x ∈ PD
n , we define a partition π = τD(x) ∈ ΠD(n) as follows. If x ∈ PB

n−1, then π
is the partition obtained from τB(x) by adding n and −n to the zero block of τB(x),
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if such a block exists, and by adding the singletons {n} and {−n} to τB(x) otherwise.
Suppose that x is not in PB

n−1, say, x = (L,R, ε). We parenthesize the infinite cyclic
sequence

. . . ,−1,−2, . . . ,−(n− 1), 1, 2, . . . , n− 1,−1,−2, . . .(4.2)

as in the type B case and form blocks of π with the same procedure, until a right
parenthesis remains after each occurrence of i and −i for a unique i ∈ [n− 1]. Then
let B and −B be blocks of π, where B consists of the integers in

{−i− 1, . . . ,−n + 1, 1, 2, . . . , i}

which have not been removed from the infinite sequence together with n or −n, if
ε = 1 or ε = −1, respectively. For instance, if n = 9, L = {2, 5, 6}, R = {1, 3, 7, 8},
and ε = −1, then π has blocks {2, 3}, {5, 8}, {6, 7}, {1,−4,−9}, and their negatives.

It is clear from the previous construction that π ∈ NCD(n); thus we have a
well-defined map τD : PD

n → NCD(n).
Proposition 4.2. The map τD is a bijection from the set PD

n to NCD(n).
Moreover, for any x ∈ PD

n , the number of pairs {B,−B} of nonzero blocks of τD(x)
is equal to ⎧⎪⎨

⎪⎩
#R if x ∈ PB

n−1 and τB(x) has a zero block,

#R + 1 if x ∈ PB
n−1 and τB(x) has no zero block,

#R if x /∈ PB
n−1.

Proof. The inverse of τD can be defined as in the proof of [20, Proposition 6]
for the map τB . More precisely, given π ∈ NCD(n), find a nonzero block B of π
such that the elements of B\{n,−n} form a nonempty, consecutive string of integers
in the sequence (4.2). If B does not contain n or −n, then place the absolute values
of the first and last element of B, with respect to (4.2), in L and R, respectively. If it
does, then place the absolute value i of the last element of B\{n,−n}, with respect to
(4.2), in R and let ε = 1 or ε = −1 if n or −n is in the same block as i, respectively.
Remove the elements of B and −B from π and (4.2) and continue similarly until the
zero block, or the singletons {n} and {−n}, or no block of π remains. We leave it to
the reader to check that this map is indeed the inverse of τD. The second statement
is obvious.

It is shown in [20, Proposition 7] that the bijection τB of Proposition 4.1 extends
to a bijection from the set

PB
n,m =

⎧⎨
⎩(L,R1, . . . , Rm−1) : L,Rj ⊆ [n],

m−1∑
j=1

#Rj = #L

⎫⎬
⎭

to the set of multichains π1 ≤ π2 ≤ · · · ≤ πm−1 in NCB(n). This bijection is
defined as follows. Given (L,R1, . . . , Rm−1) ∈ PB

n,m, place a left parenthesis before
each occurrence of i and −i in the infinite cyclic sequence (4.1) for i ∈ L and a
right parenthesis labeled )j after each occurrence of i and −i for i ∈ Rj . Observe
that more than one right parenthesis with different labels may have been placed after
some integers in (4.1). In this case order these right parentheses as

)j1 )j2 · · · )jt ,
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where j1 < j2 < · · · < jt. Read this parenthesization as in the case of the map τB to
obtain π1 ∈ NCB(n). Next, remove from the parenthesization all right parentheses
labeled )1 and their corresponding left parentheses to obtain π2 ∈ NCB(n), and
continue the process until all parentheses have been removed to obtain the multichain
π1 ≤ π2 ≤ · · · ≤ πm−1.

The type D analogue of this construction is given in the following proposition. To
state it we introduce the following notation. Think of a multichain π1 ≤ π2 ≤ · · · ≤
πm−1 in ΠB(n) as a multichain from 0̂ to 1̂ which has m steps; in other words, set
π0 := 0̂ and πm := 1̂. The rank jump vector for such a multichain c is the composition
s = (s1, . . . , sm) of the number n (denoted s |= n) defined by si := r(πi) − r(πi−1).
There is a unique step i at which a zero block is first created, meaning that πi−1 has
no zero block but πi does. Define ind(c) to be this index i.

Proposition 4.3. The bijection τD extends to a bijection from the union PD
n,m

of PB
n−1,m with the set{

(L,R1, . . . , Rm−1, ε) : L,Rj ⊆ [n− 1],

m−1∑
j=1

#Rj = #L + 1, ε = ±1

}

to the set of multichains π1 ≤ π2 ≤ · · · ≤ πm−1 in NCD(n). Moreover, for x ∈ PD
n,m,

one has that
• if x �∈ PB

n−1,m and x = (L,R1, . . . , Rm−1, ε), then the multichain in NCD(n)
corresponding to x has rank jump vector

s = (n− 1 − #L,#R1, . . . ,#Rm−1),

• if x ∈ PB
n−1,m and the multichain c in NCB(n− 1) corresponding to x under

the generalized map τB has rank jump vector s = (s1, . . . , sm) and ind(c) = i,
then the multichain in NCD(n) corresponding to x has rank jump vector

(s1, . . . , si−1, si + 1, si+1, . . . , sm).

Proof. Given x ∈ PD
n,m, we construct a multichain π1 ≤ π2 ≤ · · · ≤ πm−1 in

NCD(n) as follows. If x ∈ PB
n−1,m, let π′

1 ≤ π′
2 ≤ · · · ≤ π′

m−1 be the multichain

in NCB(n − 1) corresponding to x under the bijection of [20, Proposition 7]. Let
πi be the partition obtained from π′

i by adding n and −n to the zero block of π′
i if

such a block exists, and by adding the singletons {n} and {−n} to π′
i otherwise. It

is then clear that πi ∈ NCD(n) and that π1 ≤ π2 ≤ · · · ≤ πm−1 is a multichain in
NCD(n). Suppose now that x is not in PB

n−1,m, say, x = (L,R1, . . . , Rm−1, ε). Place
a left parenthesis before each occurrence of i and −i in the infinite cyclic sequence
(4.2) for i ∈ L and a right parenthesis labeled )j after each occurrence of i and −i
for i ∈ Rj , using the same rules as in the type B case described earlier for placing
multiple right parentheses. Read this parenthesization as in the case of the map τD

to obtain π1 ∈ NCD(n). Observe that the singletons {n} and {−n} may be blocks
of π1 if m − 1 ≥ 2. Next, remove from the parenthesization all right parentheses
labeled )1 and their corresponding left parentheses, if any, to obtain π2 ∈ NCD(n),
and continue the process until all parentheses have been removed. This results in a
multichain π1 ≤ π2 ≤ · · · ≤ πm−1 in NCD(n) in which n belongs to a nonsingleton,
nonzero block of πj for at least one index j.

To define the inverse of this map, let π1 ≤ π2 ≤ · · · ≤ πm−1 be a multichain in
NCD(n). Parenthesize the sequence (4.2) by applying the inverse of τD to πm−1 and
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label all right parentheses by )m−1. Repeat the process with πm−2 and label all right
parentheses by )m−2, but include neither the new pairs of parentheses that would
produce more than one left parenthesis before the occurrence of a single integer in
(4.2), nor a new unmatched right parenthesis, if one exists already. Continue similarly
with the remaining elements of the multichain to get an element of PD

n,m. We leave
it again to the reader to check that this map is well-defined and that the two maps
are indeed inverses of each other. The “moreover” statement is obvious from the
construction.

In [20, Proposition 7], the bijection from PB
n,m to multichains in NCB(n) was

used to deduce that there are
(
n
s1

)
· · ·

(
n
sm

)
chains in NCB(n) with rank jump vector

s = (s1, . . . , sm). In order to perform the analogous chain enumeration for NCD(n),
we will need the following refinement of this type B result, keeping track of the extra
statistic ind(c).

Lemma 4.4. Let s = (s1, . . . , sm) |= n. Then among the
(
n
s1

)
· · ·

(
n
sm

)
chains c in

NCB(n) having rank jump vector s, the fraction of those having ind(c) = i is equal
to si

n .
Unlike our other enumerative results, our proof of Lemma 4.4 is not bijective. For

this reason, we have relegated it to the appendix.
Proof of Theorem 1.2. In view of Theorem 1.1, it suffices to prove the theorem

for the poset NCD(n) instead.
(i) Clearly, the set PD

n has(
2n− 2

n− 1

)
+ 2

(
2n− 2

n

)
=

(
2n

n

)
−

(
2n− 2

n− 1

)

elements. Hence the statement on the total number of elements of NCD(n) follows
from the first statement in Proposition 4.2. By an easy computation, the statement
on the number of elements of rank k is equivalent to the case m = 2 in (ii).

(ii) This follows from Proposition 4.3 and Lemma 4.4. The summand
2
(
n−1
s1

)
· · ·

(
n−1
sm

)
counts the chains coming from x ∈ PD

n,m − PB
n−1,m. Within the

summation, the ith term(
n− 1

s1

)
· · ·

(
n− 2

si − 2

)
· · ·

(
n− 1

sm

)

=
si − 1

n− 1

(
n− 1

s1

)
· · ·

(
n− 1

si − 1

)
· · ·

(
n− 1

sm

)

counts the chains coming from x ∈ PB
n−1,m that correspond to chains c in NCB(n−1)

with rank jump vector (s1, . . . , si−1, si − 1, si+1, . . . , sm) and ind(c) = i.
(iii) Observe (as for PB

n,m in the proof of [20, Proposition 7]) that the set PD
n,m

has

2

(
m(n− 1)

n

)
+

(
m(n− 1)

n− 1

)

elements, and recall that the value Z(P,m) of the zeta polynomial for a poset P is
defined to be the number of multichains in P of cardinality m − 1. The formula in
(iii) for the zeta polynomial of NCD(n) then follows from Proposition 4.3.

(iv) Both assertions follow from the zeta polynomial calculated in (iii), via [24,
Proposition 3.11.1].
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Finally, we briefly discuss how Theorem 1.2(ii) leads to a nice expression for
FNCD(n), where FP denotes Ehrenborg’s quasi-symmetric function associated with a
ranked poset P ; we refer the reader to [14, 26] for the definitions.

As mentioned in section 1, the posets NCA(n), NCB(n), and NCD(n) are self-
dual by virtue of a result of Bessis [4, section 2.3], stating that the poset NCW is
always self-dual. A case-free proof of a stronger statement, namely, that all intervals
of NCW are self-dual, was outlined by McCammond [17, section 3]. Alternatively, it
is easy to check from the explicit descriptions of NCA(n), NCB(n), and NCD(n) that
any interval in one of these posets is isomorphic to a Cartesian product of posets lying
in the union of these three families; see also [18], [20, Remark 1], and the appendix.
Hence their intervals are also self-dual, which implies that the posets themselves are
locally rank-symmetric and their quasi-symmetric functions are actually symmetric
functions.

In [27], Stanley used the known explicit expressions for the numbers of chains
in NCA(n) and NCB(n) with given rank jump vector to compute nice formulas for
FNCA(n) and FNCB(n) (and to connect them with symmetric group actions on parking
functions of types A and B; see also Biane [8]). He proved that

FNCA(n) =
1

n

[
tn−1

]
E(t)n

and

FNCB(n) = [tn]E(t)n,

where E(t) :=
∏

i≥1(1 + xit) and [tn]ψ(t) denotes the coefficient of tn in a formal
power series ψ(t) in the variable t. An equally easy computation (which we omit)
shows that Theorem 1.2(ii) is equivalent to the following proposition.

Proposition 4.5. We have

FNCD(n) = [tn]E(t)n−1

(
2 +

∑
i≥1

x2
i t

2

1 + xit

)
.

5. Enumeration by block sizes. For an integer partition λ, let NCD
λ (n) de-

note the set of elements of NCD(n) with block sizes λ. To enumerate the elements of
NCD(n) by block sizes we define a map

τ : NCD(n) → NCB(n− 1)

as follows. Let π ∈ NCD(n). If π has a zero block B, then simply remove n and
−n from B to obtain τ(π). Otherwise n and −n are in distinct blocks B and −B
of π. Then either remove B and −B from π if they are singletons, or if not, replace
them with the zero block B ∪ (−B) \ {n,−n} to obtain τ(π). It should be clear that
τ(π) ∈ NCB(n− 1).

Lemma 5.1. The map τ : NCD(n) → NCB(n− 1) has the following property: if
x ∈ NCB

λ (n−1), with λ 	 n−m−1, then the set τ−1(x) consists of 2m+1 elements.
Moreover, 2m of these have type λ 
 {m + 1}, and the remaining element has type{

λ 
 {1} if m = 0,

λ if m ≥ 1.
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Proof. If x ∈ NCB
λ (n − 1) has no zero block, then τ−1(x) consists of a single

element π, obtained from x by adding the singletons {n} and {−n}. Suppose that
x has a zero block B of size 2m. A partition in τ−1(x) is obtained either by adding
n,−n to the zero block B, or by splitting B into two parts C and −C and replacing
B with the pair of blocks C ∪ {n} and −C ∪ {−n}. There are 2m ways to do the
latter so that the resulting partition is in NCD(n).

Corollary 5.2. If λ is a partition of n −m, where m ≥ 0, then #NCD
λ (n) is

given by the formula in Theorem 1.3.
Proof. Lemma 5.1 implies that

#NCD
λ (n) =

{
#NCB

λ (n− 1) if m ≥ 2,

#NCB
λ\1(n− 1) +

∑
p≥2 (2p− 2) #NCB

λ\p(n− 1) if m = 0,

and the result follows from Theorem 2.1(i). Note that, in the above formula, we
interpret NCB

λ\p(n− 1) as empty for any integer p ≥ 1 that does not appear as a part
of λ.

In the remainder of this section we show that nonnesting partitions of type D
have the same distribution by block sizes as noncrossing partitions of the same type.

Assume that λ 	 n, so that NNBn

λ ⊆ NNDn

λ , and observe that the inclusion is
strict for n ≥ 3 since {ei + en, ej − en} is an antichain in D+

n for i < j < n but not in

B+
n . Let π ∈ NNDn

λ . Since π does not have a zero block, n and −n belong to distinct
blocks B and −B of π, respectively. Let π′ denote the partition obtained from π by
exchanging n and −n in the blocks B and −B, and let

σ : NNDn

λ → NNBn

λ

be defined by

σ(π) =

{
π if π ∈ NNBn ,

π′ otherwise.

One can check directly from the definitions that σ is well-defined. Let Tλ(n) be the
set of partitions π ∈ NNBn

λ such that if B is the block of π containing n, then B \{n}
contains both positive and negative elements, and let T+

λ (n), T−
λ (n) be the sets of

those π ∈ NNBn

λ for which B \ {n}, if nonempty, contains only positive elements and
only negative elements, respectively.

Lemma 5.3. Let λ 	 n.
(i) The map σ : NNDn

λ → NNBn

λ induces a bijection between NNDn

λ \ NNBn

λ

and Tλ(n).
(ii) We have

#T+
λ (n) = #T−

λ (n) =
∑
p≥1

#NN
Bn−1

λ\p

and

#(T+
λ (n)

⋂
T−
λ (n)) = #NN

Bn−1

λ\1 .

Proof.
(i) If π ∈ NNDn

λ \NNBn

λ , then there exist integers i < j < n such that j and n
are in a block B of π, while i and −n are in a different block, which must be −B. Thus
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{i,−j,−n} is contained in a block of π and hence {i,−j, n} is contained in a block of
σ(π). This implies that σ(π) ∈ Tλ(n), so that the map σ : NNDn

λ \NNBn

λ → Tλ(n)
is well-defined. The inverse map again switches n and −n in a partition in Tλ(n) and
is checked to be well-defined by reversing the previous argument.

(ii) The first two equalities follow from the fact that either T+
λ (n) or T−

λ (n) is
in bijection with the set of Bn−1-nonnesting partitions whose type is obtained from
λ by removing one of its parts, where the bijection removes the blocks B and −B
containing n and −n of an element in T+

λ (n) or T−
λ (n) if these blocks are singletons,

or replaces them with the zero block B ∪ (−B)\{n,−n} if they are not. The last
equality is obvious.

Corollary 5.4. If λ is as in Corollary 5.2, then #NNDn

λ = #NCDn

λ ; that is,

#NNDn

λ is given by the formula of Theorem 1.3.
Proof. For m ≥ 2 the statement is the content of Theorem 2.1(iii). Suppose that

m = 0, i.e., λ 	 n. Lemma 5.3(i) implies that

#NNDn

λ = #NNBn

λ + #Tλ(n).

Since Tλ(n) = NNBn

λ \ (T+
λ (n) ∪ T−

λ (n)), part (ii) of the same lemma gives

#Tλ(n) = #NNBn

λ − #NN
Bn−1

λ\1 − 2
∑
p≥2

#NN
Bn−1

λ\p ,

and the result follows from Theorem 2.1(ii).
The next corollary also follows from the main result of [3] and the computations

in the type D case carried out there in section 5.
Corollary 5.5 (see [3, section 5]). The number of elements of NNDn with k

pairs {B,−B} of nonzero blocks is equal to

(
n

k

)2

− n

n− 1

(
n− 1

k

)(
n− 1

k − 1

)
.

Proof. This follows from Corollary 5.4 and Theorem 1.2(i).

6. Block sizes and root systems. The goal of this section is to generalize the
results of [1] and Theorem 1.3 on the classical root systems to an arbitrary (finite,
crystallographic) root system (Theorem 6.3). To this end we begin by recalling some
facts about noncrossing and nonnesting partitions for arbitrary finite Coxeter groups
and root systems.

For a finite Coxeter group (W,S), acting with its natural reflection representation
on a Euclidean space V , we denote by ΠW the poset of all subspaces of V which are
intersections of reflecting hyperplanes of W , ordered by reverse inclusion. Thus ΠW

is a graded (geometric) lattice of rank #S which is isomorphic to the lattice Π(n),
ΠB(n), or ΠD(n), defined in the first two sections, when W has type An−1, Bn, or
Dn, respectively.

There is a natural embedding of the lattice of noncrossing partitions NCW into
ΠW . Recall from section 1 that NCW is defined to be the interval [1, γ] in a certain
partial order TW on the group W , where γ is any Coxeter element of W . It follows
from results of Brady and Watt (see [4, Proposition 1.6.4]) that the map

NCW → ΠW ,

w �→ V w := {v ∈ V : w(v) = v}
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is a rank- and order-preserving embedding.
Now assume that W is the finite Weyl group associated to a crystallographic root

system Φ. Let Φ+ be a choice of positive roots, equipped with the standard root
order, and let Π be the corresponding set of simple roots. Let AΦ be the collection
of all antichains in Φ+, meaning subsets of pairwise incomparable elements. It turns
out that, like NCW , the set AΦ has a natural embedding into ΠW , endowing it with
a poset structure. The crucial fact needed is a recent result of Sommers [23].

Theorem 6.1 (see [23, page 1]). Given an antichain A of positive roots, there
exists w ∈ W such that w(A) ⊆ Π.

Corollary 6.2. If Φ is a crystallographic root system with Weyl group W, then
the map

AΦ → ΠW ,

A �→
⋂
α∈A

α⊥

is an injection, sending A to an element of rank #A.
Proof. The image of A has rank #A because Theorem 6.1 implies that any

antichain in AΦ is linearly independent (since Π is also). That the map is injective will
follow from a stronger assertion about the interaction between the linear independence
and convexity structure of Φ+. Given B ⊆ Φ+, let B denote the matroid closure of B,
meaning the subset of vectors in Φ+ lying in the linear span of B. Let ext(B) denote
the set of extreme vectors within the convex cone spanned by B. We then claim that
for an antichain A in Φ+,

A = ext(A).

This will show that the map is injective, since one has the alternate characterization
of A as

A =

{
β ∈ Φ+ :

⋂
α∈A

α⊥ ⊆ β⊥
}
.

To prove the claim note that, since A is linearly independent, ext(A) has at least as
many elements as A. Consequently it suffices to show the inclusion ext(A) ⊆ A. To
this end, given β ∈ ext(A), express β (uniquely) as

β =
∑
α∈A

cαα.(6.1)

Since β and all elements of A are positive roots, at least one of the coefficients cα must
be positive. Using Theorem 6.1 again, one can find w ∈ W so that w(A) ⊂ Π. As
w(β) lies in Φ, it has a unique expression in terms of simple roots with all coefficients
of the same sign. Hence the expression

w(β) =
∑
α∈A

cαw(α),

obtained by applying w to (6.1), forces all of the other coefficients cα to be nonneg-
ative. Therefore (6.1) shows that β lies in the convex cone spanned by A. Since β is
an extreme vector of the larger cone spanned by A, it is extreme in this smaller cone,
so it must lie in A.
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We require a notion that generalizes the “block sizes” of a type A,B, or D parti-
tion to an arbitrary intersection subspace in ΠW . This is supplied by the orbit map,
sending a subspace to its W -orbit:

ΠW → ΠW /W,

U �→ W · U := {w(U) : w ∈ W}.

We can now state the main result of this section.
Theorem 6.3. Let W be the Weyl group of a crystallographic root system Φ and

consider the two composite maps

f : NCW ↪→ΠW → ΠW /W,

g : AΦ ↪→ΠW → ΠW /W.

Then for each W -orbit x ∈ ΠW /W , we have

# f−1(x) = # g−1(x).

Proof. The general statement follows from the corresponding statement for irre-
ducible root systems, so one may proceed case-by-case via the classification.

For types A,B, and C, the statement follows from the results of [1] and the
fact that the W -orbits of ΠW are precisely the sets of intersection subspaces whose
corresponding type A or B partition has given block sizes. In the type D case, a slight
complication arises due to the fact that the W -orbit of an intersection subspace is not
always determined by the nonzero block sizes λ of its associated Dn-partition. In
fact this occurs exactly when λ is a partition of n having only even parts (so that, in
particular, n must be even). In this case the set of intersection subspaces in ΠW whose
corresponding Dn-partitions have block sizes λ decomposes further into exactly two
W -orbits, determined by one extra (parity) piece of data: pick arbitrarily one block
B out of each pair {B,−B} of blocks in the partition and compute the parity (even or
odd) of the total number of negative elements in the union of these blocks. We claim,
however, that the preimages under either f or g of two such parity orbits have the
same number of elements, so that the result follows from Corollaries 5.2 and 5.4. To
check the claim, simply observe that, for a partition λ of n with even parts, the swap
of n and −n gives rise to fixed-point free involutions on both NCD

λ (n) and NNDn

λ ,
which switch parity. This is obvious in the case of NCD

λ (n) and should be clear from

the discussion preceding Lemma 5.3 in the case of NNDn

λ .
The exceptional types E6, E7, E8, F4, G2 have been checked one by one with

computer calculations, using software in Mathematica available from the second
author.

7. Remarks.
1. It would be interesting to find a conceptual, case-free proof of Theorem 6.3.
2. The set of maximal chains in the poset NCW is in bijection with the set of

factorizations of shortest possible length, henceforth called minimal factorizations, of
a Coxeter element of W into reflections. Hence Theorem 1.2(iv) implies the following
statement.

Corollary 7.1. The number of minimal factorizations of a Coxeter element of
the group WDn into reflections is equal to 2(n− 1)n.

A direct proof of this fact, analogous to the proofs of the corresponding state-
ments by Biane [8] for the symmetric and hyperoctahedral group, is possible. More



414 CHRISTOS A. ATHANASIADIS AND VICTOR REINER

precisely, let γ = [1, 2, . . . , n − 1] [n] be as in section 2 and let Mn be the set of
tuples (t1, t2, . . . , tn) of reflections in WDn such that γ = t1t2 · · · tn. Let us label the
reflections in WDn as follows:

�(t) =

⎧⎪⎨
⎪⎩
i if t = ((i,±n)) and 1 ≤ i ≤ n− 1,

i if t = ((i, j)) and 1 ≤ i < j ≤ n− 1,

j if t = ((i,−j)) and 1 ≤ i < j ≤ n− 1.

It has been shown by the first author that the map which assigns to any element
(t1, t2, . . . , tn) of Mn the sequence of labels (�(t1), �(t2), . . . , �(tn)) is a two-to-one map
from the set Mn to [n− 1]n.

3. It is natural to conjecture that the poset NCD(n) is shellable. However, the
EL-labellings given by Edelman and Björner [10] in the case of NCA(n) and Reiner
[20] in the case of NCB(n) do not seem to extend to that of NCD(n).

4. It has been shown by Eleni Tzanaki (private communication) that the poset
NCD(n) has a symmetric chain decomposition analogous to those of NCA(n) [22,
Theorem 2] and NCB(n) [20, Theorem 13].

Appendix. Proof of Lemma 4.4. We recall the statement of the lemma.
Lemma 4.4. Let s = (s1, . . . , sm) |= n. Then among the

(
n
s1

)
· · ·

(
n
sm

)
chains c in

NCB(n) having rank jump vector s, the fraction of those having ind(c) = i is equal
to si

n .
The proof will utilize the type B generalization [20, Theorem 16] of a result of

Nica and Speicher [18] on incidence algebras, which we recall here.
Let R be any ring with unit and let P be a poset. The (R-valued) incidence

algebra for P consists of R-valued functions f on the set of intervals [a, b] of P , with
pointwise addition and multiplication by convolution:

(f ∗ g)[a, c] :=
∑

b∈P : a≤b≤c

f [a, b] g[b, c].

In [20, Remark 1] a certain multiplicative subgroup I0
mult(NCB ;R) of the union of

all R-valued incidence algebras of type A and B noncrossing partition lattices was
defined. As observed in [18, 20], every interval [a, b] in NCA(n) or NCB(n) has a
canonical isomorphism to a Cartesian product

NCB(n0) ×NCA(n1) ×NCA(n2) × · · · ×NCA(nr)

for some integers n0, n1, . . . , nr, where the factor NCB(n0) need not be present. The
multiplicative subgroup I0

mult(NCB ;R) consists of those elements f in the incidence
algebra which take the value 1 on NCA(1) and which are multiplicative, in the sense
that

f [a, b] = f(NCB(n0))

r∏
i=1

f(NCA(ni)).

Define a map

I0
mult(NCB ;R)

F→ R[[t, u]]/(u2) (∼= R[u]/(u2)[[t]]),

f �→ F(f) :=
φ
〈−1〉
f

t
,
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where

φf :=
∑
n≥1

f(NCA(n))tn + f(NCB(n))tnu(7.1)

and φ
〈−1〉
f denotes the compositional inverse of φf with respect to the variable t.

This map gives an isomorphism of I0
mult(NCB ;R) onto the multiplicative subgroup

of power series in R[[t, u]]/(u2) whose coefficient of t0 equals 1 [20, Theorem 16].

Proof of Lemma 4.4. We will perform generating function calculations in these
rings, choosing

R = Z[[x1, x2, . . . , y1, y2, . . . ]].

Define f ∈ I0
mult(NCB ;R) by

f(NCA(n)) :=
∑

s|=n−1

∑
chains in NCA(n)

with rank jump vector s

xs,

f(NCB(n)) :=
∑
s|=n

∑
chains c in NCB(n)

with rank jump vector s

xs yind(c)

xind(c)
,

(7.2)

where xs := xs1
1 · · ·xsm

m . A little thought shows that f coincides with the convolution
f = f1 ∗ f2 ∗ · · · , where

fi(NCA(n)) := xn−1
i ,

fi(NCB(n)) := xn−1
i yi.

From this, one calculates that

φfi =
∑
n≥1

xn−1
i tn + xn−1

i yit
nu =

t(1 + yiu)

1 − txi
,

and hence, by computing the compositional inverse,

φ
〈−1〉
fi

=
t

1 + txi + uyi
,

F(fi) =
φ
〈−1〉
fi

t
=

1

1 + txi + uyi
.

Therefore

F(f) =
∏

i≥1 F(fi) =
∏

i≥1
1

1+txi+uyi
,

φ
〈−1〉
f = tF(f) = t∏

i≥1
(1+txi+uyi)

.

One can apply the Lagrange inversion formula [25, Theorem 5.4.2] to this last expres-
sion. Letting [tk]ψ(t) denote the coefficient of tk in any formal power series ψ(t) in a
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variable t, one has that

[tn]φf =
1

n
[Tn−1]

∏
i≥1

(1 + xiT + yiu)n

=
1

n
[Tn−1]

∏
i≥1

n∑
k=0

(
n

k

)
(xiT + yiu)k

=
1

n
[Tn−1]

∏
i≥1

n∑
k=0

(
n

k

)
(xk

i T
k + k · xk−1

i yiT
k−1u)

=
∑

s|=n−1

1

n

(
n

s1

)
· · ·

(
n

sm

)
xs + u

∑
s|=n

(
n

s1

)
· · ·

(
n

sm

) m∑
i=1

si
n
xs yi

xi
.

Comparing (7.1), (7.2) with this last expression gives the result.

The proof of the lemma gives an alternative derivation for [13, Theorem 3.2] and,
by setting yi = xi for all i, also one for [20, Proposition 7].
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