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Abstract

The present thesis consists of two parts whose main protagonists are colored
quasisymmetric functions. In 1984, Gessel introduced quasisymmetric functions,
a generalization of symmetric functions. In 1993, together with Reutenauer they
studied specializations of families of quasisymmetric functions associated to subsets
of the symmetric group, which have many desirable properties, such as symmetry
and Schur-positivity. In 1998, Poirier introduced colored quasisymmetric functions,
a colored analogue of quasisymmetric functions. In the first part, we develop a
general theory of specializations of colored quasisymmetric functions in the spirit of
Gessel and Reutenauer’s work. This allows us to systematically prove refined Euler–
Mahonian identities on colored permutation groups and subsets of these, such as
derangements and involutions. In 2017, Elizalde and Roichman proved that the
quasisymmetric function of the product of a collection of permutations whose qua-
sisymmetric generating function equals the Frobenius characteristic of some char-
acter χ of the symmetric group and an inverse descent class equals the Frobenius
characteristic of the character of the tensor product of χ and the corresponding
descent representation of the symmetric group. The second part deals with proving
a colored analogue of Elizalde and Roichman’s result. More precisely, we introduce
a notion of colored ribbons and prove that the (colored) Frobenius characteristic of
the descent representation of colored permutation groups equals the colored qua-
sisymmetric generating function of colored ribbon shaped tableaux. This provides
a colored analogue of Gessel’s zig-zag shape approach to descent representations of
the symmetric group. In addition, exploiting Hsiao–Petersen’s theory of colored P -
partitions and the method developed in the first part, we prove a colored analogue
of Stanley’s shuffling theorem.



Introduction

It is said that if the twentieth century was the century of symmetric functions,
then perhaps the twenty-first century will be defined by the explosion of develop-
ments in the theory of quasisymmetric functions [26, Section 1]. The aim of this
thesis is to present further evidence for this hypothesis. In particular, it consists
of roughly two parts. The first part presents several generalizations of the author’s
published results [70, 71] on specializations of colored quasisymmetric functions and
the second part presents material on descent representations of colored permutation
groups and colored quasisymmetric functions.

A major theme in enumerative combinatorics is the study of distributions of
permutation statistics. It can be traced all the way back to MacMahon’s 1900
work on plane partitions (see [53, Section 3]). Stanley in his 1971 Ph.D. thesis
[86] developed the theory of P -partitions and used it to study, what we now call,
Euler–Mahonian distributions. Euler–Mahonian distributions appear often at the
intersection of algebra, combinatorics and geometry (see, for example, [74]).

The most prominent example of an Eulerian distribution is the number of de-
scents, encoded via Eulerian polynomials. The n-th Eulerian polynomial is the
numerator on the right-hand side of the identity∑

m≥0

(m+ 1)n xm =

∑
w∈Sn x

des(w)

(1− x)n+1
,

often used as its definition (for all missing definitions we refer to Chapter 1). Sev-
eral interesting q-analogues of Eulerian polynomials exist in the literature (see, for
example, the notes of [90, Chapter 1]). The one involving the major index will be
of particular interest in this thesis. The generating polynomial for the distribution
of the Euler-Mahonian pair (des,maj) satisfies

∑
m≥0

(1 + q + · · ·+ qm)nxm =

∑
w∈Sn x

des(w)qmaj(w)

(1− x)(1− xq) · · · (1− xqn)
.

Identities of this type are called Euler–Mahonian identities.

Since the symmetric group is a Coxeter group, a common theme in algebraic
combinatorics is to generalize a combinatorial statement involving the symmetric
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group to other Coxeter groups or complex reflection groups, starting from the hype-
roctahedral group, namely the group of symmetries of the higher dimensional cube.
In the past two decades, several combinatorialists such as Adin, Brenti, Foata, Ges-
sel, Mansour, Roichman and Zeng, to name a few, have studied such generalizations
of Euler–Mahonian identities. A systematic approach to the case of colored per-
mutation groups was established recently in 2013 by Beck and Braun [20] using
techniques from polyhedral geometry.

Another possible approach is via symmetric/quasisymmetric functions. Qua-
sisymmetric functions appeared in Stanley’s work as generating functions of P -
partitions (see [26, Section 2]). Gessel in his 1984 paper [52] formalized this new
tool and studied the algebra of quasisymmetric functions. Gessel and Reutenauer
in a 1993 seminal paper [55] initiated a study of specializations of families of qua-
sisymmetric functions associated to subsets of the symmetric group, which have
many desirable properties, such as symmetry and Schur-positivity.

Poirier in his 1998 Ph.D. thesis [76] introduced a colored generalization of qua-
sisymmetric functions. It is our purpose in the first part of this thesis to develop
a general theory of specializations of colored quasisymmetric functions in the spirit
of Gessel and Reutenauer’s work. This will allow us to systematically prove refined
Euler–Mahonian identities on colored permutation groups. The main advantage of
this theory is that it allows us to prove new Euler–Mahonian identities on several
important classes of colored permutations, such as involutions and colored permu-
tations without fixed points.

A major theme in algebraic combinatorics and combinatorial representation the-
ory is the study of character formulas which express the values of characters of the
symmetric group as weighted enumerations of combinatorial objects. An example of
such character formula is the Murnaghan–Nakayama rule [89, Section 7.17], where
the enumerated objects are border strip tableaux. Particularly interesting is the
discovery of such formulas expressing the values of characters in terms of the dis-
tribution of the descent set over certain classes of permutations. The archetypal
example is Roichman’s rule [78], a formula for the irreducible characters of the sym-
metric group where the enumerated objects are standard Young tableaux. It turns
out that the existence of such formulas is closely related to Schur-positivity.

Representation theory of the symmetric group is connected to the theory of sym-
metric functions via the Frobenius characteristic map. In particular, it maps the
irreducible characters of the symmetric group to Schur functions, which in turn, by
a result of Stanley, are the quasisymmetric generating functions of standard Young
tableaux. Adin and Roichman in 2015 [8] developed an abstract framework to cap-
ture this phenomenon. More recently, in 2017, Adin, Athanasiadis, Elizalde and
Roichman [1] introduced and studied a signed analogue, in which colored quasisym-
metric functions, in the special case of two colors, play a central role.

The set of elements in a Coxeter group having a given descent set carries a natural
representation of the group, called the descent representation. The study of descent
representations has its origin’s in Solomon’s work [82] on Weyl groups, where they
appear as alternating sums of certain permutation representations. This concept
was first extended to the hyperoctahedral group by Adin, Brenti and Roichman in
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a 2005 paper [3]. Shortly after, in 2007, Bagno and Biagioli [15] further extended it
to complex reflection groups. This construction involves the coinvariant algebra as
the representation space.

Descent representations are closely related to inverse descent classes of permuta-
tions. It is well known that the Frobenius characteristic of the descent representation
of the symmetric group can be expressed as the quasisymmetric generating function
of the corresponding inverse descent classes. Elizalde and Roichman [39] proved a
strengthening of this fact, where the descent representations are replaced by their
tensor product with some representation of the symmetric group. The second part
of this thesis aims to provide a colored analogue of this result, via studying descent
representations of colored permutation groups. In particular, a colored version of
Gessel’s approach to descent representations, which uses ziz-zag (or ribbon) shapes,
is developed by introducing a notion of colored ribbons. This could potentially yield
many instances of Schur-positive classes of colored permutations.

One of the main ingredients of the proof of the aforementioned result is of par-
ticular interest. Hsiao and Petersen [62] developed a colored analogue of Stanley’s
theory of P -partitions in order to exploit several connections between Hopf algebras
arising from colored quasisymmetric functions. Building upon their theory, we aim
to provide a colored analogue of Stanley’s shuffling theorem. Stanley’s shuffling
theorem asserts that the distribution of the descent set over all shuffles of two dis-
joint permutations u and v depends only on the descent sets of u and v and their
lengths. Recently, Gessel and Zhuang [56] formalized this remarkable property of
the descent set, called shuffle-compatibility and studied in depth several shuffle-
compatible permutation statistics such as the descent number, major index, peak
set, peak number, left peak set, left peak number and so on. In particular, we aim
to present a colored analogue of a small portion of their work and thus initiate the
study of shuffle-compatible colored permutation statistics.

This thesis is structured as follows. Chapter 1 reviews background material
needed for chapters that follow. In particular, it surveys Euler–Mahonian distri-
butions on colored permutation statistics and reviews the combinatorics of colored
permutation groups, symmetric/quasisymmetric functions and the connection be-
tween Schur-positivity, quasisymmetric functions and the representation theory of
the symmetric group. Chapters 2 and 3 and Chapters 4 and 5 comprise the first
and second part of this thesis, respectively.

Chapter 2 reviews the notion of colored quasisymmetric functions and develops
a method for specializing them to derive general refined formulas for the distribution
of a Mahonian statistic and the pair of an Eulerian and a Mahonian statistic. In
addition, it introduces the (k, `)-flag major index of signed permutations, a notion
which generalizes both the major index and the flag major index and derives general
refined formulas for the distribution of this statistic and its joint distribution with
some Eulerian partner.

Chapter 3 applies the method developed in the previous chapter to prove refined
Euler–Mahonian identities. In particular, Section 3.1 refines known Euler–Mahonian
identities on colored permutations. Section 3.2 refines known Euler–Mahonian iden-
tities on colored derangements and proves several new ones. Section 3.3 studies re-
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finements of fix–Euler–Mahonian distributions on colored involutions. Lastly, Sec-
tion 3.4 studies refinements of multivariate distributions, involving Eulerian and
Mahonian statistics on colored permutations.

Chapter 4 reviews Hsiao and Petersen’s theory of colored P -partitions and uses
it to prove colored analogues of Stanley’s shuffling theorem. Afterwards, it briefly
reviews Gessel and Zhuang’s theory of shuffle-compatible permutation statistics and
proves that the colored descent set and the colored peak composition are shuffle-
compatible.

Chapter 5 reviews elements of the combinatorial theory of colored permuta-
tion groups, especially Poirier’s version of the characteristic map and proves useful
identities for the sequel. In addition, it reviews descent representations and their
connection to quasisymmetric functions and reviews Schur-positivity in the colored
context. A notion of colored ribbons is introduced, similar to that of regular ribbons
(or zig-zag shapes), which is used to describe colored descent representations for col-
ored permutation groups. The rest of the chapter is devoted to the statement and
proof of the colored analogue of Elizalde and Roichman’s result mentioned above.
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A stagecoach passed by on the road and went on;
And the road didn’t become more beautiful or

even more ugly.
That’s human action on the outside world.

We take nothing away and we put nothing back,
we pass by and we forget;

And the sun is always punctual every day.

Fernando Pessoa



Chapter 1
Preliminaries

This chapter fixes notation and reviews background material on colored permu-
tation statistics, colored permutation groups, symmetric/quasisymmetric functions
and connections with the representation theory of the symmetric group.

Throughout this thesis we assume familiarity with basic combinatorics of the
symmetric group, including combinatorics of permutations and tableaux, represen-
tations and symmetric functions, as presented in [90, Chapter 1], [7], [89, Chapter 7]
and [80], as well as with basic theory of partially ordered sets (posets hereafter) as
presented in [90, Section 3].

1.1 Permutation statistics and the Euler-Mahonian iden-
tity

For a positive integer n, let Sn be the set of permutations of [n] := {1, 2, . . . , n}.
We will think of permutations w ∈ Sn as n-element words w = w1w2 · · ·wn. For
w ∈ Sn, an index i ∈ [n − 1] is called a descent of w, if wi > wi+1. The set of all
descents of w, written Des(w), is called the descent set of w. The cardinality and
the sum of all elements of Des(w) are written as des(w) and maj(w), respectively,
and called the descent number and major index of w.

A statistic on Sn which is equidistributed with des (resp. maj) is called Eulerian
(resp. Mahonian). Let

An(x, q) :=
∑
w∈Sn

xdes(w)qmaj(w) (1.1)

be the generating polynomial for the joint distribution (des,maj) on Sn, sometimes
called the n-th q-Eulerian polynomial1. The polynomial An(x) := An(x, 1) is called
the n-th Eulerian polynomial and constitutes one of the most important polynomials

1Several q-analogues of Eulerian polynomials appear in the literature (see, for example, the
references in [90, Section 1]). In this thesis we focus on those involving the pair (des,maj) and
variants of those.
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in combinatorics. They have been in the spotlight of research in combinatorics in
recent years and throughout the second half of the 20th century. For a detailed
exposition of their importance in combinatorics, algebra and geometry we refer to
Petersen’s excellent book [74].

MacMahon [65, Vol.2, Section IX] proved a formula which specializes to∑
m≥0

[m+ 1]nq x
m =

An(x, q)

(1− x)(1− xq) · · · (1− xqn)
, (1.2)

where [n]q := 1 + q + · · · + qn−1 is the q-analogue of n. This formula is usually
attributed to Carlitz [30] and hence called the Carlitz identity. We will call it
the Euler–Mahonian identity . Several proofs of the Euler–Mahonian identity are
known in the literature. For example, one can prove it using a “balls into boxes”
argument similar to that of [74, Exercise 1.14]. In Section 2.2, we provide a proof
of Equation (1.2) using (quasi)symmetric functions, which serves as the motivation
for the method developed in that chapter.

Remark 1.1.1. For q = 1, Equation (1.2) reduces to the following identity [90,
Proposition 1.4.4] ∑

m≥0

(m+ 1)nxm =
An(x)

(1− x)n+1
, (1.3)

which is sometimes used as the definition of Eulerian polynomials.

1.2 Colored permutation statistics

Fix a positive integer r and let Zr be the additive cyclic group of order r. The
elements of Zr will be represented by those of [0, r − 1] and will be thought of as
colors. We think of the set [n]× Zr as the set of r-colored integers

Ωn,r := {10, 20, . . . , n0, 11, 21, . . . , n1, . . . , 1r−1, 2r−1, . . . , nr−1}.

We may often identify colored integers i0 with i.

The r-colored permutation group, denoted by Sn,r, consists of all permutations
of Ωn,r, i.e. bijective maps σ : Ωn,r → Ωn,r, such that

σ(a0) = bj ⇒ σ(ai) = bi+j , (1.4)

where i + j is computed modulo r and the product of Sn,r is composition of per-
mutations. The r-colored permutation group can be realized as the wreath product
Zr o Sn, that is the semidirect product Znr o Sn for the usual permutation action
of the symmetric group Sn on Znr . It can be also realized as a complex reflection
group, consisting of all n×n matrices whose non-zero entries are rth roots of unity
such that there is exactly one non-zero entry in every row and every column.

Elements of Sn,r are called r-colored permutations. We will think of colored
permutations wε ∈ Sn,r as n-element words wε = wε11 w

ε2
2 · · ·wεnn on Ωn,r. We will

call w = w1w2 · · ·wn ∈ Sn the underlying permutation and ε = (ε1, ε2, . . . , εn) ∈ Znr
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the color vector of wε2. The product of two colored permutations in Sn,r is given
by

uε · vδ = (uv)v(ε)+δ

where uv = u ◦ v is evaluated from right to left, v(ε) := (εv1 , εv2 , . . . , εvn) and
the addition is coordinatewise modulo r. The inverse of wε ∈ Sn,r is the element(
w−1

)δ
, where w−1 is the inverse of w in Sn and δ = −w−1(ε), where

−ε := (−ε1,−ε2, . . . ,−εn)

where the entries are computed modulo r. Also, define wε := w−ε3. The following
observation will be useful in Chapter 5.

Observation 1.2.1. For all wε ∈ Sn,r, we have (wε)
−1

=
(
w−1

)w−1(ε)
. In addition, if

u = (wε)
−1

, then

(1) u = (wε)−1,

(2) u−1 = wε, and

(3) u−1 = wε.

The case r = 2 is of special interest: Sn,2 is the hyperoctahedral group, written
Bn, the group of signed permutations of length n. The hyperoctahedral group is a
Coxeter group of type Bn which can be realized as the group of symmetries of the
n-dimensional cube (see, for example, [74, Part III]). In this case, following [1], we
use the bar notation to indicate 1-colored integers, i.e.

Ωn := Ωn,2 = {1, 2, . . . , n, 1, 2, . . . , n},

and the words color and colored are replaced by bar and barred, respectively. In
this case also, we think of signed permutations as n-element words w = w1w2 · · ·wn
on Ωn.

Following the success of the study of permutation statistics in the second half
of the twentieth century (although its origin traces back to the work of MacMahon
[65]) many authors studied combinatorial properties of the distributions of signed
permutation statistics. In particular, Brenti [29] studied a notion of descent for
signed permutations that arises when we view Bn as a Coxeter group. Around the
same time, Reiner [77] studied a notion of descent based on the usual geometric de-
scription of Bn using root systems. Later, Adin, Brenti and Roichman [2] addressed
Foata’s problem of extending the Euler–Mahonian distribution of (des,maj) to the
hyperoctahedral group Bn.

We discuss several developments on Foata’s problem for colored permutation
groups. For this purpose, we need to specify what colored permutation statistics
qualify as Eulerian, Mahonian and Euler–Mahonian.

2When there is no case of confusion we will represent both the colored permutation and its
underlying permutation by the same letter.

3This is essentially the complex conjugate of wε, when viewed as a complex reflection group.
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1.2.1 Eulerian statistics

Steingŕımsson in his Ph.D. thesis [92] initiated the study of colored permutation
statistics, by introducing a notion of descent for colored permutations. For wε ∈
Sn,r, an index i ∈ [n] is called a descent of wε, if

• 1 ≤ i ≤ n− 1 and either εi > εi+1, or εi = εi+1 and wi > wi+1

• i = n and εn 6= 0.

Consider the right lexicographic order on [n]× Zr, or in other words, the following
total order

10 <St · · · <St n
0 <St 11 <St · · · <St n

1 <St · · · <St 1r−1 <St · · · <St n
r−1

on Ωn,r. We may equivalently4 define a descent of wε as an index i ∈ [n] such that

• 1 ≤ i ≤ n− 1 and wεii >St w
εi+1

i+1

• i = n and εn 6= 0.

Let Des<St(w
ε) be the set of all descents of wε and des<St(w

ε) be its cardinality.
Steingŕımsson [92, Theorem 17] proved that

∑
m≥0

(rm+ 1)n xm =

∑
w∈Sn,r x

des<St
(w)

(1− x)n+1
. (1.5)

This formula reduces to Equation (1.3) for r = 1 and generalizes a formula of Brenti
[29, Theorem 3.4 (ii)] for r = 2.

Biagioli and Caselli [22] studied a notion of descents by considering the right
lexicographic order on [n] × Zr, when the elements of Zr are ordered as r − 1 <′

· · · <′ 1 <′ 0. This is often called the color order and in terms of colored integers is
the following total order

1r−1 <c · · · <c nr−1 <c · · · <c 11 <c · · · <c n1 <c 10 <c · · · <c n0

on Ωn,r. For wε ∈ Sn,r, we define Des<c(w
ε) to be the set of all indices i ∈ [n− 1]

such that wεii >c w
εi+1

i+1 together with 0, whenever ε1 6= 0 and write des<c(w
ε) for

its cardinality. It follows from their work [22, Corollary 5.3 for p = s = q = 1]
that Equation (1.5) holds if we replace <St with <c. This fact can also be proved
bijectively (see, for example, the proof of [11, Proposition 2.2]).

Another notion of descent set was studied by Biagioli and Zeng [24]. In partic-
ular, let <` be the following total order on Ωn,r

nr−1 <` · · · <` n1 <` · · · <` 1r−1 <` · · · <` 11 <` 10 <` · · · <` n0,

called the length order . For wε ∈ Sn,r, we define Des<`(w
ε) to be the set of all

indices 1 ≤ i ≤ n − 1 such that wεii >` w
εi+1

i+1 together with 0, whenever ε1 6= 0

4For the purposes of this thesis it is more convinient to consider descents on colored permutations
according to some fixed total order on Ωn,r.
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and write des<`(w
ε) for its cardinality. They proved [24, Proposition 8.1 for q = 1]

that Equation (1.5) still holds if we replace <St with <`. It also follows from [22,
Proposition 7.1]. So, the above three mentioned distributions are all equidistributed
on Sn,r and define the Eulerian distribution on colored permutations.

1.2.2 Mahonian statistics

As a group, Sn,r is generated by the set S := {s0, s1, . . . , sn−1}, where s0 :=
(10 11) and si := (i0 (i + 1)0) in cycle notation, for all 1 ≤ i ≤ n − 1 (see, for
example, [6, Section 2] and [14, Section 2.2]). The length function, written `S , with
respect to S satisfies [14, Theorem 4.4]

∑
w∈Sn,r

q`S(w) =
n∏
i=1

[i]q(1 + qi[r − 1]q). (1.6)

For r = 1, Equation (1.6) reduces to MacMahon’s celebrated formula

An(1, q) = [1]q[2]q · · · [n]q (1.7)

for the distribution of the major index over Sn (see, for example, [90, Chap-
ter 1, Notes]).

From this point of view, a Mahonian statistic on Sn,r, is expected to be equidis-
tributed with the length function. Bagno [14, Theorem 5.2] introduced such a
statistic by using the length order. We recall its definition. For wε ∈ Sn,r, let

lmaj(wε) := maj<`(w
ε) +

∑
ci 6=0

(wi − 1) + csum(wε),

where maj<`(w
ε) is the sum of all elements of Des∗<`(w

ε) := Des<`(w
`) {0}5 and

csum(wε) := ε1 + ε2 + · · ·+ εn

is the color sum statistic.

It is worth noticing, as the authors in [22, Section 7] point out, that the length
order seems to be the suitable order for proving a combinatorial interpretation of
the length function of Sn,r, whereas the color order is often used in the study of
some algebraic aspects, such as the invariant theory of Sn,r.

Another Mahonian candidate, the flag major index, was introduced by Adin and
Roichman in their seminal paper [6]. We use the following combinatorial interpreta-
tion [6, Theorem 3.1] as our definition. The flag major index of w ∈ Sn,r is defined
by

fmaj<c(w) := rmaj<c(w) + csum(w),

where maj<c(w) is the sum of all elements of Des∗<c(w) := Des<c(w) {0}. The
authors remark, after the proof of [6, Theorem 2.2], that the flag major index is not

5The ∗-descent set is often called type A descent set because it does not take into account the
descents in positions 0 or n (see, for example, [20, Definition 5.4]).



1.2 Colored permutation statistics 6

equidistributed with the length function on Sn,r for r ≥ 3. Haglund, Loehr and
Remmel [61, Equation (34)] were the first to explicitly compute a formula for the
distribution of the flag major index∑

w∈Sn,r

qfmaj<c (w) = [r]q[2r]q · · · [nr]q. (1.8)

Because the right-hand side does not coincide with that of Equation (1.6) for
r ≥ 3, considering the flag major index as a Mahonian statistic on Sn,r is an abuse
of terminology, which is motivated by the following reasons. On the one hand, for
r = 1 Equation (1.8) reduces to MacMahon’s formula (1.7). On the other hand,
it is known that r, 2r, . . . , nr are the degrees of Sn,r, when viewed as a complex
reflection group, so the right-hand side of Equation (1.8) is the Hilbert series for the
coinvariant algebra of Sn,r (see [18, Equation (1.4)]).

Chow and Mansour [36, Theorem 5] prove a different interpretation for the flag
major index using Steingŕımsson’s total order on Ωn,r, namely

fmaj<c(w) = rmaj<St
(w)− csum(w),

where maj<St
(w) is the sum of all elements of Des<St(w), for all w ∈ Sn,r. We

denote by fmaj<St
the right-hand side of the above equation. It is also true that

Equation (1.8) holds if we replace <c by <` as the authors remark in [22, Propos-
tion 7.1] and [24, Remark 2.2]. Thus, fmaj< for all <∈ {<c, <St, <`} on Ωn,r can
be called Mahonian statistics on colored permutations6.

1.2.3 Euler–Mahonian statistics

Now that we have explained what it means for a colored permutation statistic
to be Eulerian or Mahonian, we discuss Euler–Mahonian pairs of statistics. In
particular, we will be interested in (what we call) colored Euler–Mahonian identities,
meaning colored generalizations of Equation (1.2) involving generating polynomials
of distributions of triples (csum, eul,mah), where eul is an Eulerian statistic and
mah is a Mahonian statistic on colored permutations. For ease of notation, we will
write

A(eul,mah)
n,r (x, q, p) :=

∑
w∈Sn,r

xeul(w)qmah(w)pcsum(w),

for an Eulerian (resp. Mahonian) statistic eul (resp. mah) on Sn,r.

Biagioli and Caselli [22, Theorem 5.2 for s = p = 1] prove, in the more general
setting of projective reflection groups, the following colored Euler–Mahonian identity

∑
m≥0

([m+ 1]qr + pq[m]qr [r − 1]pq)
n xm =

A
(des<c ,fmaj<c )
n,r (x, q, p)

(1− x)(1− xqr) · · · (1− xqnr)
. (1.9)

Equation (1.9) reduces to Equations (1.2) and (1.5) for r = 1 and q = 1, respectively,
and p = 1 and generalizes a formula of Chow and Gessel [34, Theorem 3.7] for r = 2

6For the applications, in Chapter 3, we will deal with the color order.
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and p = 1. Chow and Mansour [36, Theorem 9 (iv)] prove that the above identity
holds if we replace <c with <St. It is worth mentioning that, in the case r = 2,
Chow–Mansour’s identity was first noticed by Biagioli and Zeng [23, Section 3].

In a subsequent paper, these authors showed [24, Proposition 8.1] that it also
holds if we replace <c by <`. Furthermore, they prove [24, Equation (8.1)] that

∑
m≥0

([m+ 1]q + p[r − 1]p[m]q)
n xm =

A
(des<` ,maj<`

)
n,r (x, q, p)

(1− x)(1− xq) · · · (1− xqn)
, (1.10)

which reduces to Equations (1.2) and (1.5) for r = 1 and q = 1, respectively and
generalizes a formula of Chow and Gessel [34, Equation (26)] for r = 2. We will
demonstrate how one can prove Equation (1.10) for <St using the classical method
of “balls into boxes” [90, Section 1.9], [73].

Proposition 1.2.2. For every positive integer n,

∑
m≥0

([m+ 1]q + p[r − 1]p[m]q)
n xm =

A
(des<St

,maj<St
)

n,r (x, q, p)

(1− x)(1− xq) · · · (1− xqn)
. (1.11)

Proof. Given a colored permutation w = wε11 w
ε2
2 · · ·wεnn ∈ Sn,r there are n + 1

positions at the beginning, between letters and at the end of w. The right-hand
side of Equation (1.11) is the generating function of the number of bars, the sum
of all colors and the positions of bars (counted by x, p and q, respectively) over
all colored permutation wε ∈ Sn,r with any numbers of bars inserted in the n + 1
available positions such that there must be a bar between wεii and w

εi+1

i+1 for every
i ∈ Des<St(w

ε). In particular, if εn > 0, then there must be a bar after wεnn .

We will show that this is also equal to the left-hand side of Equation (1.11).
Suppose we have a colored permutation w ∈ Sn,r and m bars. These bars create
m+ 1 boxes for increasing colored integers according to Steingŕımsson’s total order
to be placed. For each 1 ≤ i ≤ n, we have to make two choices:

� choose a color for i and

� choose in which box to put it.

The letters in each box are then placed in increasing order. Notice that the last
box cannot contain a positive-colored integer; otherwise n would be a descent, but
there would not be a bar succeeding the last letter. Therefore, if i is a letter of color
1 ≤ j ≤ r − 1, then it contributes

pj(1 + q + · · ·+ qm−1)

to the sum and can be put in any of the first m boxes. But, if i is a letter of color
0, then it contributes

1 + q + · · ·+ qm
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in the sum and can be put in any of the m + 1 boxes. Therefore, we have a total
contribution ofr−1∑

j=1

(pj [m]q) + [m+ 1]q

n

= ([m+ 1]q + p[r − 1]p[m]q)
n.

The proof follows by summing over all m ≥ 0.

Remark 1.2.3. The preceding proof can be refined, so as to keep track of each color
that appears in a colored permutation individually and not only the sum of those
colors. In particular, if p = (p0, p1, . . . , pr−1) is a sequence of indeterminates, then
for every positive integer n

∑
m≥0

(p0[m+ 1]q + (p1 + p2 + · · ·+ pr−1)[m]q)
n xm =

A
des<St

,maj<St
n,r (x, q,p)

(1− x)(1− xq) · · · (1− xqn)
,

(1.12)
where7

A
des<St

,maj<St
n,r (x, q,p) :=

∑
wε∈Sn,r

xdes<St
(wε)qmaj<St

(wε)p
n0(wε)
0 p

n1(wε)
1 · · · pnr−1(wε)

r−1 ,

and nj(w
ε) := |{i ∈ [n] : εi = j} for each 0 ≤ j ≤ r− 1. In Chapter 3, we will prove

several formulas like Equation (1.12), which refine known colored Euler–Mahonian
identities in the literature.

Bagno and Biagioli [15] defined the flag descent number of a colored permutation
wε ∈ Sn,r

fdes<c(w
ε) := r des∗<c(w

ε) + ε1,

where des∗<c(w
ε) is the cardinality of Des∗<c(w

ε), generalizing a notion first intro-
duced by Adin, Brenti and Roichman [2, Section 4] for the hyperoctahedral group
Bn (see also [11, Section 2.2]). They proved [15, Theorem A. 1] that

∑
m≥0

[m+ 1]nq x
m =

A
(fdes<c ,fmaj<c )
n,r (x, q, 1)

(1− x)(1− xrqr)(1− xrq2r) · · · (1− xrqnr)
, (1.13)

which generalizes Adin, Brenti and Roichman’s formula [2, Theorem 4.2] for r = 2.

Biagioli and Caselli [22, Theorem 5.4] further generalized Equation (1.13) in
order to include the color sum statistic. For a nonnegative integer m, we write
m = rQ(m) + R(m) for some nonnegative integer Q(m) and 0 ≤ R(m) < r. Then,∑
m≥0

([Q(m) + 1]qr + pq[r − 1]pq[Q(m)]qr + pqrQ(m)+1[R(m)]pq)
n xm

=
A

(fdes<c ,fmaj<c )
n,r (x, q, p)

(1− x)(1− xrqr)(1− xrq2r) · · · (1− xrqnr)
.

(1.14)

7In general throughout this thesis we will use boldface letters to represent r-partite concepts.
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For the sake of completeness, we remark that Bagno [14] introduced an Eulerian
partner to his lmaj statistic, defined by

ldes(w) := des∗<`(w) + csum(w),

for every w ∈ Sn,r and proved the following Euler–Mahonian identity

∑
m≥0

[m+ 1]nq x
m =

A
(ldes,maj)
n,r (x, q, 1)

(x; q)n+1(−x[r − 1]qx; q)n+1
, (1.15)

where (x; q)n := (1 − x)(1 − xq) · · · (1 − xqn). In Corollary 3.1.4, we prove refined
colored Euler–Mahonian identities for the pairs (ldes,maj) and (ldes, fmaj), where
both statistics are computed using the color order.

Furthermore, Bagno introduced an Euler–Mahonian pair (ndes,nmaj) on colored
permutations, which together with csum satisfy Equation (3.11). This serves as
a generalization of the “negative” statistics first considered by Adin, Brenti and
Roichman [2, Section 3] for the hyperoctahedral group Bn.

1.3 Compositions, partitions and Young tableaux

1.3.1 Compositions and sets

A composition of a positive integer n, written α � n, is a sequence α =
(α1, α2, . . . , αk) of positive integers, called parts, summing to n. Compositions
of n are in one to one correspondence with subsets of [n − 1]. In particular, let
S(α) = {r1, r2, . . . , rk−1} be the set of partial sums ri := α1 + α2 + · · · + αi,
for each 1 ≤ i ≤ k. Also, if S = {s1 < s2 < · · · < sk} ⊆ [n − 1], then let
co(S) = (s1, s2 − s1, . . . , sk − sk−1, n− sk). The maps α 7→ S(α) and S 7→ co(S) are
bijections and mutual inverses.

It is often convenient to work with subsets of [n− 1] which contain n. For this
purpose, we define S

∧
:= S ∪ {n} for each S ⊆ [n − 1]. We remark that the maps8

α→ S
∧

(α) and S
∧
7→ co(S) remain bijections and are mutual inverses. In other words,

compositions of n are in one-to-one correspondence with subsets of [n] containing
n. Let Comp(n) be the set of all compositions of n.

We consider the partial order of reverse refinement on Comp(n), whose covering
relations are of the form

(α1, . . . , αi + αi+1, . . . , αk) ≺ (α1, . . . , αi, αi+1, . . . , αk).

The corresponding partial order on the set 2[n−1] of all subsets of [n − 1] is just
inclusion of subsets.

8Notice that S
∧

(α) = {r1, r2, . . . , rk}.
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{1, 2, 3} (1, 1, 1, 1)

{1, 2} {1, 3} {2, 3} (1, 1, 2) (1, 2, 1) (2, 1, 1)

{1} {2} {3} (1, 3) (2, 2) (3, 1)

∅ ∅

Figure 1.1: The posets 2[3] and Comp(4).

1.3.2 Partitions and Young tableaux

A partition of n, written λ ` n, is a composition λ of n whose parts appear in
weakly decreasing order. The number of parts of λ, written `(λ), is called the length
of λ. It is well known that partitions of n are in one-to-one correspondence with
conjugacy classes of Sn.

The Young diagram of λ = (λ1, λ2, . . . , λk) ` n is an array of n boxes into left-
justified rows such that the ith row contains λi boxes. A standard Young tableau
(resp. semistandard Young tableau) of shape λ is a bijective filling (resp. filling)
of the boxes of the Young diagram of λ with the integers 1, 2, . . . , n (resp. positive
integers) such that

� rows increase (resp. weakly increase) from left to right and

� columns increase from top to bottom.

We denote by SYT(λ) and SSYT(λ) the set of standard and semistandard Young
tableaux, respectively. We also write SYTn for the set of all standard Young
tableaux of size n.

There exists a notion of descent for standard Young tableaux, which we now
recall. A descent of a standard Young tableau Q is an entry 1 ≤ i ≤ n−1 such that
i+ 1 appears in a lower row than i. We denote by Des(Q) the descent set of Q and
write des(Q) for its cardinality. Also, we write maj(Q) for the sum of all elements
of Des(Q).

The Robinson–Schensted correspondence [89, Section 7.11] is a bijection from
the symmetric group Sn to the set of pairs of standard Young tableaux of the same
shape and size n with the properties that Des(w) = Des(Q(w)) and Des(w−1) =
Des(P (w)), where (P (w), Q(w)) is the pair of tableaux associated to w ∈ Sn. The
Knuth class [89, Appendix 1], written KT , corresponding to a standard Young
tableau T of size n is the set of all permutations w ∈ Sn, such that P (w) = T ,
where P (w) is defined as before. If T has shape λ, then we say that KT is a Knuth
class of shape λ and by abuse of notation we may write Kλ.
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1.3.3 Ribbons

A zig-zag diagram, also called ribbon9, skew hook and border strip is a connected
skew shape that does not contain a 2 × 2 square. Ribbons with n squares are in
one-to-one correspondence with compositions of n (and therefore subsets of [n−1]).

In particular, for α ∈ Comp(n) let Zα be the ribbon with n cells whose row
lengths, when read from bottom to top, are the parts of α. Now, given S ⊆ [n− 1]
we construct a skew shape with n cells, labelled 1, 2, . . . , n as follows: Start with a
single cell labelled 1. For every 1 ≤ i ≤ n − 1, place a cell labelled i + 1 directly
north (resp. east) of the cell labelled i whenever i ∈ S (resp. i /∈ S). Let Zn,S be
the underlying ribbon. The maps α 7→ Zα and S 7→ Zn,S are bijections between
Comp(n) (resp. 2[n−1]) and the set of ribbons with n cells. For example, for n = 9
and S = {2, 3, 5, 8, 9} we have

Zn,S = .

This ribbon is also equal to Zco(S), where co(S) = (2, 1, 2, 3, 1).

For S ⊆ [n− 1], let

Dn,S := {w ∈ Sn : Des(w) = S}
D−1
n,S := {w ∈ Sn : Des(w−1) = S}

be the descent class and the inverse descent class, respectively, corresponding to S.
Also, define

Rn,S := {w ∈ Sn : Des(w) ⊆ S}
R−1
n,S := {w ∈ Sn : Des(w−1) ⊆ S}.

It is well known that permutations of Sn correspond bijectively to standard Young
tableaux of ribbon shape with n cells. The following refinement of this fact explains
the connection between (inverse) descent classes and tableaux of ribbon shape (see,
for example, [7, Propositions 3.5 and 10.12]).

Lemma 1.3.1. For every S ⊆ [n−1], there exists a bijection from the set SYT(Zn,S)
to the descent class Dn,S such that Des(Q) = Des(w−1), where w is the permutation
associated to Q ∈ SYT(Zn,S). In particular, the distribution of the descent set is
the same over D−1

n,S and SYT(Zn,S).

9We will use the term ribbon.
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1.4 Colored compositions, r-partite partitions and Young
tableaux

1.4.1 Colored compositions and colored sets

An r-colored composition of a positive integer n [67, Definition 6.3]10 is a pair

(γ, ε), where γ is a composition of n and ε ∈ Z`(γ)
r is a sequence of colors. We will

also represent a colored composition by γε (or simply γ). Equivalently, it can be
viewed as a sequence of colored integers which when forgetting all colors sum to n.
For example,

γ = (20, 21, 11, 13, 31, 12)

is a 4-colored composition of 10. Let Comp(n, r) be the set of all r-colored compo-
sitions of n.

Colored compositions correspond bijectively to colored subsets of [n]. An r-
colored subset of [n] is a pair σ = (S

∧
, ε), where S ⊆ [n − 1] and ε : S

∧
→ Zr is the

color map which assigns to each element of S
∧

a color from Zr. The correspondence
between r-colored compositions of n and r-colored subsets of [n] is given by (γ, ε) 7→
(S
∧

(γ), ε) with inverse (S
∧
, ε) 7→ (co(S), ε). We write Σ(n, r) for the set of all r-colored

subsets of [n] which can also be viewed as subsets of Ωn,r where each ij appears at
most once for 1 ≤ i ≤ n− 1 and exactly once for i = n11. For example, the colored
subset of [10] corresponding to (20, 21, 11, 13, 31, 12) is

σ = {20, 41, 51, 63, 91, 102}.

For an r-colored composition γ = (γε11 , γ
ε2
2 , . . . , γ

εk
k ) of n, we may extend the

sequence ε ∈ Zkr to ε̃ = (ε̃1, ε̃2, . . . , ε̃n) ∈ Znr , called the color vector of γ, by defining

ε̃ := (ε1, ε1, . . . , ε1︸ ︷︷ ︸
γ1 times

, ε2, ε2, . . . , ε2︸ ︷︷ ︸
γ2 times

, . . . , εk, εk, . . . , εk︸ ︷︷ ︸
γk times

).

Equivalently, for an r-colored subset σ = (S
∧
, ε) of [n], with S

∧
= {s1 < s2 < · · · <

sk−1 < sk := n} we extend ε to a map ε̃ : [n] → Zr by setting ε̃(j) := ε(si)
for every si−1 < j ≤ si for each i ∈ [k] where s0 := 0. We refer to ε̃ as the
color vector of σ and write (ε̃1, ε̃2, . . . , ε̃n) instead. For example, the color vector of
σ = {20, 41, 51, 63, 91, 102} (and (20, 21, 11, 13, 31, 12)) is (0, 0, 1, 1, 1, 3, 1, 1, 1, 2).

We consider the partial order of reverse refinement on consecutive parts of the
same color on Comp(n, r), whose covering relations are of the form

(γε11 , . . . , (γi + γi+1)εi , . . . , γεkk ) ≺ (γε11 , . . . , γ
εi
i , γ

εi
i+1, . . . , γ

εk
k ).

The corresponding partial order on the set Σ(n, r) is inclusion of subsets of the same
color vector. Notice that the posets Comp(n, r) and Σ(n, r) are not connected, in
contrast to their uncolored counterparts.

10See also [62, Section 3.2], [19, Section 5.2], [21, Section 2.1] and for the case r = 2 see [1,
Section 2.1].

11For a similar notion of colored subset see [88, Section 6] for r = 2 and [11, Section 3.2] for
r ≥ 3.
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(1, 1, 1, 1) {1, 2, 3, 4}

(1, 1, 2) (1, 2, 1) {1, 2, 4} {1, 3, 4}

(1, 3) {1, 4}

Figure 1.2: A connected component of the poset Σ(4, 2) and its corresponding
component in Comp(4, 2).

In enumerative combinatorics it is common to associate a composition (resp.
set) to each permutation in order to record its increasing runs (resp. descents),
called the descent composition (resp. descent set). Mantaci and Reutenauer [67,
Page 53] introduced a similar notion, called descent shape to record the lengths and
colors of increasing runs of constant color of colored permutations. Following [1]
and [62], we define the colored descent set and colored descent composition.

Definition 1.4.1. Let wε ∈ Sn,r be a colored permutation.

� The colored descent set of wε, written sDes(wε), is the colored subset (S
∧
, ε) of

[n], where S consists of all 1 ≤ i ≤ n− 1 such that εi 6= εi+1, or εi = εi+1 and
wi > wi+1 and ε : S

∧
→ Zr is the map given by ε(s) = εs for each s ∈ S

∧
.

� The colored descent composition of wε, written co(wε), is the colored compo-
sition corresponding to sDes(wε).

Two remarks on Definition 1.4.1 are in order. We denote both the color vector of
wε and the color map of sDes(wε) by the same letter. This notation is unambiguous
since the latter is completely determined by the former. The colored descent set
is called signed descent set in [1] and therefore, by analogy, it would be reasonable
to write cDes for the colored descent set. We choose to keep the notation sDes to
avoid any confusion created by the fact that cDes is widely used in the literature to
denote the cyclic descent set of a permutation, introduced by Cellini [31].

Example 1.4.2. To illustrate Definition 1.4.1, the colored descent set and the
colored descent composition of wε = 54134161207030 ∈ S7,6 are

sDes(wε) = ({1, 2, 4, 6, 7}, (4, 3, 1, 0, 0))

co(wε) = (14, 13, 21, 20, 10).

1.4.2 r-partite partitions and standard Young r-partite tableaux

An r-partite partition of n is a r-tuple λλλ = (λ(0), λ(1), . . . , λ(r−1)) of (possibly
empty) integer partitions of total sum n. In this case we write λλλ ` n. For example,

λλλ = (2, 321, 1, 1)

is a 4-partite partition of n = 10.
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The direct sum of two partitions λ and µ, written λ ⊕ µ, is the skew shape
whose diagram is obtained by placing the diagrams of λ and µ in such a way that
the lower-left vertex of the diagram of µ coincides with the upper-right vertex of
that of λ. One can also think of an r-partite partition λλλ = (λ(0), λ(1), . . . , λ(r−1)) as
the direct sum of r partitions λ(r−1) ⊕ · · · ⊕ λ(1) ⊕ λ(0). For example, the 4-partite
partition λλλ = (2, 321, 1, 1) of 10 can be thought of as

.

A standard Young r-partite tableau of shape λλλ = (λ(0), . . . , λ(r−1)) ` n is an
r-tuple QQQ = (Q(0), . . . , Q(r−1)) of tableaux which are strictly increasing along rows
and columns such that Q(i) has shape λ(i), for all 0 ≤ i ≤ r−1 and every element of
[n] appears exactly once as an entry of Q(i) for some 0 ≤ i ≤ r− 1. These tableaux
are called parts of QQQ. Let SYT(λλλ) (resp. SYTn,r) be the set of all standard Young
r-partite tableaux of shape λλλ ` n (resp. of any shape and size n).

For QQQ = (Q(0), . . . , Q(r−1)) ∈ SYTn,r, an integer i ∈ [0, n− 1] is called a descent
of QQQ, if

� i and i+ 1 belong in the same part of QQQ and i+ 1 appears in a lower row than
i does, or

� i ∈ Q(j) and i+ 1 ∈ Q(k), for some 0 ≤ j < k ≤ r − 1, or

� i = 0 and 1 appears in Q(j) for some j 6= 0.

The set of all descents of QQQ, written Des(QQQ), is called the descent set of QQQ. The
cardinality of Des(QQQ), denoted by des(QQQ), is called the descent number of QQQ. Also,
let Des∗(QQQ) be the set obtained from Des(QQQ) by removing the zero, if present and
write maj(QQQ) for the sum of all elements of Des∗(QQQ).

For example, an element of SYT(2, 321, 1, 1) is

QQQ =

(
1 9 ,

3 5 6
4 10
7

, 2 , 8

)
.

We have Des(QQQ) = {1, 3, 6, 7, 9} and des(QQQ) = 5. Using the representation of an
r-partite partition as the direct sum of r partitions mentioned above, one sees that
the ∗-descent set of QQQ is essentially the descent set of the standard Young tableau
of this skew shape. In our running example, we have

1 9
3 5 6
4 10
7

2
8

Des7−→ {1, 3, 6, 7, 9}.

The following definition of the colored descent set of an r-partite tableau first
appeared in [1, Definition 2.3] for the case of r = 2 and analogously to the case
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of colored permutations it records the lengths and colors of increasing runs in each
part of the r-partite tableau.

Definition 1.4.3. The colored descent set of QQQ ∈ SYTn,r, denoted sDes(QQQ), is the

colored set (S
∧
, ε) ∈ Σ(n, r), where

� the set S consists of all entries 1 ≤ i ≤ n − 1 of QQQ for which either i and
i+ 1 appear in different parts or they appear in the same part of QQQ and i+ 1
appears in a lower row than i,

� the map ε : S
∧
→ Zr is defined by ε(i) = j, where j is the color of the part of

QQQ in which i ∈ S
∧

belongs.

Also, we define the color vector ε̃ : [n] → Zr of QQQ by letting ε̃(i) = j, where j
is the color of the part in which i belongs. We will use sequence notation for the
color vector of QQQ. The 4-partite tableau of our running example has color vector
(0, 2, 1, 1, 1, 1, 1, 3, 0, 1) and colored descent set

sDes(QQQ) = ({1, 2, 3, 6, 7, 8, 9, 10}, (0, 2, 1, 1, 1, 3, 0, 1)).

The Robinson–Schensted correspondence has a natural colored analogue, first
considered by White [98, Corollary 9 and Remark 11] and further studied by Stanton
and White [91]. It is a bijection from the r-colored permutation group Sn,r to the
set of pairs (PPP ,QQQ) of standard Young r-partite tableaux of the same shape and
size n. It has the following property (cf. [18, Proposition 6.2], [5, Lemma 5.2]). If
w 7→ (PPP (w),QQQ(w)) via this map, then

sDes(w) = sDes(QQQ(w))

and
sDes(w−1) = sDes(PPP (w)).

The Knuth class, written KTTT , corresponding to a standard Young r-partite tableau
TTT of size n is the set of all r-colored permutations w ∈ Sn,r, such that PPP (w) = TTT ,
where P (w) is defined as before. If TTT has shape λλλ, then we say that KTTT is a Knuth
class of shape λλλ and by abuse of notation we may write Kλλλ.

1.5 Symmetric and quasisymmetric functions and their
specializations

For a sequence x = (x1, x2, . . . ) of commuting indeterminates, let C[[x]] be the C-
algebra of formal power series in x over the complex numbers C. The multiplication
in C[[x]] is the usual multiplication of formal power series. We denote by Sym(x)
(resp. QSym(x)) the C-algebra of symmetric (resp. quasisymmetric) functions in
x with complex coefficients.

Quasisymmetric functions are certain power series in infinitely many variables
that generalize the notion of symmetric functions. In particular, a quasisymmet-
ric function f(x) is an element of C[[x]] of bounded degree such that for every



1.5 Symmetric and quasisymmetric functions and their specializations 16

α1, α2, . . . , αk ∈ Z>0, we have

[xα1
i1
xα2
i2
· · ·xαkik ]f(x) = [xα1

j1
xα2
j2
· · ·xαkjk ]f(x),

for all i1 > i2 > · · · > ik and j1 > j2 > · · · > jk, where [xα1
1 xα2

2 · · ·x
αk
k ]f(x) is

the coefficient of the monomial xα1
1 xα2

2 · · ·x
αk
k in f(x). There is an inclusion of C-

algebras Sym(x)→ QSym(x), but not every quasisymmetric function is necessarily
a symmetric function. For example, ∑

i>j

x2
ixj

is quasisymmetric, but it is not symmetric because x2
2x1 appears as term whereas

x2
1x2 does not. Notice that adding ∑

i>j

xix
2
j

makes it symmetric.

Quasisymmetric functions first appeared, not with this name yet, in Stanley’s
thesis [87] as generating functions of P -partitions (for a detailed description of Stan-
ley’s contribution to symmetric and quasisymmetric functions see [26]) and were
later defined and studied systematically by Gessel [52] (see also [89, Section 7.19]
and [53, Section 8.5]). In Section 4.1 we review the connection between the theory
of P -partitions and quasisymmetric functions.

Both Sym(x) and QSym(x) are graded C-algebras. We write Symn(x) (resp.
QSymn(x)) for their n-th homogeneous components. The dimension of Symn(x)
(resp. QSymn(x)) is the number p(n) of partitions of n (resp. 2n−1). It follows
immediately from the definition of QSymn(x) that the set of

Mα(x) :=
∑

i1>i2>···>ik

xα1
i1
xα2
i2
· · ·xαkik

for all composition α = (α1, α2, . . . , αk) of n forms a basis for this vector space.
These elements are called monomial quasisymmetric functions. For S ⊆ [n− 1], we
write Mn,S(α)(x) := Mα(x).

Apart from the monomial basis, QSymn(x) has another very interesting basis,
called the fundamental basis. The fundamental quasisymmetric function associated
to S ⊆ [n− 1] is defined by

Fn,S(x) :=
∑

i1≥i2≥···≥in
j∈S⇒ ij>ij+1

xi1xi2 · · ·xin , (1.16)

and F0,∅(x) := 1. By groupping together the sequences i1 ≥ i2 ≥ · · · ≥ in according
to whether ij > ij+1 or ij = ij+1 we get

Fn,S(x) =
∑

S⊆T⊆[n−1]

Mn,T (x).
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For example, we have

F4,{1}(x) =
∑

i1>i2≥i3≥i4

xi1xi2xi3xi4

=
∑

i1>i2=i3=i4

xi1x
3
i2 +

∑
i1>i2>i3=i4

xi1xi2x
2
i3 +

∑
i1>i2>i3>i4

xi1xi2xi3xi4

= M4,{1}(x) +M4,{1,2}(x) +M4,[3](x).

Remark 1.5.1. The original definition of quasisymmetric functions (see [52]and [89,
Section 7.19]) requires that the inequalities i1 > i2 > · · · > ik and j1 > j2 > · · · > jk
are reversed. These two approaches are equivalent. In particular, consider the
automorphism ∗ : QSym→ QSym defined by F ∗n,S(x) = Fn,n−S(x) where n− S :=
{n − s : s ∈ S} for any S ⊆ [n − 1] and extending linearly (see, for example, [63,
Section 3.6]). It is not hard to see that

F ∗n,S(x) =
∑

i1≤i2≤···≤in
j∈S⇒ ij<ij+1

xi1xi2 · · ·xin .

The main theme of Chapters 2 and 3 concerns specializations of symmetric
and quasisymmetric functions. Specializations of symmetric functions date back
to Stanley’s work on the enumeration of plane partitions [86]. Formally, a spe-
cialization of Sym(x) (resp. QSym(x)) is an algebra homomorphism Sym(x) → A
(resp. QSym(x) → A) where A is a (commutative) C-algebra. In this thesis, we
will be interested in specializations that arise from substituting elements of A for
the variables xi, when this substitution makes sense.

A well studied pair of specializations of this kind is that of principal specializa-
tions [89, Section 7.8]. In particular,

• the stable principal specialization is the homomorphism psq : R → C[[q]] de-
fined by the substitutions

x1 = 1, x2 = q, x3 = q2, . . .

• and the principal specialization of order m is the homomorphism psq,m : R→
C[q] defined by the substitutions

x1 = 1, x2 = q, . . . , xm = qm−1, xm+1 = xm+2 = · · · = 0,

where R ∈ {Sym(x),QSym(x)}.
We conclude this section by recalling some notable bases of Symn(x). The Schur

basis is perhaps the most important basis. We say that a semistandard Young
tableau Q has type (or content) α = (α1, α2, . . . ) if it has αi entries equal to i. The
Schur function associated to λ is

sλ(x) =
∑

Q∈ SSYT(λ)

xQ,
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where xQ := xα1
1 xα2

2 · · · . For more information on Schur functions and their im-
portance in enumerative and algebraic combinatorics we refer to Stanley’s excellent
exposition [89, Chapter 7]. Here, we just recall the following well known expansion12

[89, Theorem 7.19.7]

sλ(x) =
∑

Q∈ SYT(λ)

Fn,Des(w)(x) (1.17)

which will be used in the sequel. Other notable bases, which will be used throughout
this thesis are the complete homogeneous symmetric functions, written hλ(x), the
elementary symmetric functions, written eλ(x), the power sum symmetric functions,
written pλ(x) and the monomial symmetric functions, written mλ(x). Notice that
Fn,∅(x) = hn(x) and Fn,[n−1](x) = en(x).

1.6 Schur-positivity and quasisymmetric functions

It is well known that (complex, finite-dimensional) irreducible Sn-characters are
indexed by integer partitions. Let R(Sn) be the Z-module generated by irreducible
Sn-characters13 and let

R(S) := Z⊕R(S1)⊕R(S2)⊕ · · · .

The Z-module R(S) has a ring structure, induced by the induction product. The
induction product, written f ◦ g, of an Si-character f and an Sj-character g is
defined by

f ◦ g := (f ⊗ g) ↑Sn+mSn×Sm ,

where ↑ denotes induction and Sn × Sm is viewed as a subgroup of Sn+m in
the obvious way, that is Sn permutes the elements of [n] and Sm permutes the
elements of [n+1, n+m]. The ring R(S) is closely related to Sym via the Frobenius
characteristic map.

The Frobenius characteristic map ch : R(S)→ Sym(x) is a ring isomorphism14,
with the property that

ch(χλ)(x) = sλ(x),

where χλ is the irreducible Sn-character corresponding to λ ` n. In particular, we
have

ch(1 ↑SnSα
)(x) = hα(x)

where Sα is the Young subgroup corresponding to α and 1n denotes the trivial
Sn-character.

One of the primary objectives of combinatorial representation theory according
to [17] is the study of character formulas of the type

χ(α) =
∑
T

weightα(T )

12This equation holds for every skew shape λ/µ (see [89, Proposition 7.19.7]).
13Elements of R(Sn) are often called virtual Sn-characters.
14Here Sym(x) is viewed as a Z-algebra, for which the complete symmetric functions hn are alge-

braically independent generators (see [89, Corollary 7.6.2]). In addition, Schur functions constitute
a basis for the Z-module Sym(x) (see the discussion after [89, Corollary 7.10.6]).
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where the sum runs over all T in a set of nice combinatorial objects and weightα(T ) is
a weight on those objects which depends on α. A well celebrated character formula
of this sort the Murnaghan–Nakayama rule [89, Section 7.17] for the irreducible
Sn-character, where the enumerated objects are border strip tableaux.

Many instances of these formulas occur in the literature (see, for example, [1, 8]
and references therein). Adin and Roichman [8] proposed an abstract setting which
captures these phenomena for the symmetric group and has close connection with
Schur-positivity. A symmetric function is called Schur-positive if its expansion in
the Schur basis has nonnegative coefficients. Examples of Schur-positive symmet-
ric functions often reveal hidden structures in the symmetric group and thus the
problem of Schur-positivity is of interest.

A permutation w = w1w2 · · ·wn ∈ Sn is called unimodal if there exists an index
1 ≤ k ≤ n such that

w1 > · · · > wk < · · · < wn.

For a composition α = (α1, α2, . . . , αk) of n and each 1 ≤ i ≤ k, let

Bi(α) := [ri−1 + 1, ri],

be the ith block of α of cardinality αi where ri are the partial sums of α and r0 := 0.
A permutation w ∈ Sn is called α-unimodal if the restriction of π to each block of
α is unimodal. A subset S ⊆ [n − 1] is called α-unimodal if it is the descent set
of an α-unimodal permutation of Sn. For example, for α = (n) the set [n − 1] is
α-unimodal because it is the descent set of n(n− 1) · · · 21. Let Uα be the set of all
α-unimodal subsets of [n − 1]. For more information on α-unimodality we refer to
[8, 9].

We will say that a collection A of permutations of Sn is Schur-positive if the
quasisymmetric generating function

F (A; x) :=
∑
w∈A

Fn,Des(w)(x)

associated to A is symmetric and Schur-positive. Adin and Roichman [8, Theo-
rem 1.5] proved that A is Schur-positive if and only if the function χA : Comp(n)→
Z defined by

χA(µ) =
∑

w∈A∩Uµ

(−1)|Des(w) S(µ)|

is a nonvirtual character of the symmetric group Sn. Adin and Roichman called
such A a fine set . Later, Adin et al. [1, Theorem 3.2] proved that χA is a virtual
Sn-character if and only if

ch(χA)(x) = F (A; x)

and therefore in this case the distribution of the descent set over A is uniquely
determined by χA. We will say that A ⊆ Sn is Schur-positive for the Sn-character
χ, if A is Schur-positive and ch(χ)(x) = F (A; x).
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To illustrate the phenomenon with a specific example, consider A = Sn to be the
whole symmetric group. On the one hand, the Robinson–Schensted correspondence
implies (see [89, Corollary 7.12.5])

F (Sn; x) = h1(x)n. (1.18)

The right-hand side of Equation (1.18) is known to equal15 the Frobenius character-
istic of 1n ↑SnS1×···×S1

. But, this is exactly the character of the regular representation
of Sn, denoted by χreg. On the other hand, it follows by a result of Roichman (see
[8, Corollary 3.8]) that χreg = χSn , which completes the picture.

The concept of a Schur-positive set, as well as the results of this section, can
be generalized to any set of combinatorial objects equipped with a descent map.
They can also be generalized to multisets instead of just sets. In particular, for
a collection (with repetitions) A of combinatorial objects equipped with a descent
map Des : A → 2[n−1], we write

F (A; x) :=
∑
a∈A

mA(a)Fn,Des(a)(x),

where mA(a) denotes the multiplicity of a in A, for the quasisymmetric generating
function of A.

For every partition λ, Equation (1.17) rewritten as

sλ(x) = F (SYT(λ); x)

is an instance of a Schur-positive set of combinatorial objects endowed with a descent
map. The Robinson–Schensted correspondence implies that the distribution of Des
over SYT(λ) is equal to its distribution over all permutations in the Knuth class
KP for some P ∈ SYT(λ) and therefore

sλ(x) = F (KP ; x).

Lemma 1.6.1. (cf. [39, Remark 3.4]) A (multi)set A of combinatorial objects
endowed with a descent map Des : A → 2[n−1] is Schur-positive if and only if there
exists a (multi)set partition A = A1 t A2 t · · · t Am and Des-preserving bijections

Ai −→ KP i

for P i ∈ SYT(λi) and a partition λi ` n, for all 1 ≤ i ≤ m.

Another consequence of the Robinson–Schensted correspondence is that inverse
descent classes are disjoint unions of Knuth classes and therefore Schur-positive. In
particular, for S ⊆ [n− 1] we have

D−1
n,S =

⊔
P∈SYTn
Des(P )=S

KP .

15See the discussion in [89, Example 7.18.8(c)].
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Inverse descent classes are connected to ribbon Schur functions.

Each ribbon defines a skew Schur function, sometimes called ribbon Schur func-
tion. For a subset S ⊆ [n − 1] (resp. composition α of n) we define rn,S(x) :=
sZn,S (x) (resp. rα(x) := sZα(x)). Their study goes back to MacMahon [65] and in
recent years they appeared in seminal works of Gessel [52] and Gessel–Reutenauer
[55] and in Schur-positivity problems [25, 54]. Ribbon Schur functions are the im-
ages via the Frobenius characteristic map of the Sn-characters of Specht modules of
ribbon shape, often called the Foulkes characters. The latter were initially consid-
ered by Foulkes [47] and later studied by Diaconis and Fulman [38] and others. Their
connection with descent representations of the symmetric group will be reviewed in
Section 5.2

Combining Lemma 1.3.1 and Equation (1.17) yields the following result of Gessel
[52, Theorem 7] (see also [89, Corollary 7.23.4]).

Lemma 1.6.2. For every S ⊆ [n− 1], we have

rn,S(x) = F (D−1
n,S ; x) = F (SYT(Zn,S); x).

In particular, inverse descent classes are Schur-positive for the Foulkes characters
of Sn and

rn,S(x) =
∑
λ`n

cλ(S)sλ(x), (1.19)

where cλ(S) counts the number of standard Young tableaux Q ∈ SYT(λ) such that
Des(Q) = S.

Foulkes characters appear in disguised form in Stanley’s work on group actions
on finite posets [88] as well as in Louis Solomon’s work on group algebras of Coxeter
groups [83] . In particular, we have (cf. [88, Theorem 4.3] and [83, Section 6])

φα =
∑
β�α

(−1)`(α)−`(β) 1β ↑SnSβ
(1.20)

for the Foulkes character φα associated to the composition α of n, where 1β is the
trivial Sβ-character. The symmetric function version of Equation (1.20)

rα(x) =
∑
β�α

(−1)`(α)−`(β) hβ(x), (1.21)

which also follows from the work of MacMahon, was used by Gessel [52] as the defi-
nition of ribbon Schur functions. We write φn,S for the Foulkes character associated
to the subset S of [n− 1]. Both Equations (1.20) and (1.21) can be stated in terms
of subsets of [n− 1].



Chapter 2
Specializations of colored
quasisymmetric functions; General
formulas

This chapter reviews the notion of colored quasisymmetric functions and then
develops a method for specializing them to derive general formulas for the joint
distribution of

� a Mahonian statistic and the statistics which count the number of entries of
a colored permutation of a certain color

� an Eulerian statistic, a Mahonian statistic and the statistics which count the
number of entries of a colored permutation of a certain color

on colored permutation groups. In addition, it introduces the notion of (k, `)-flag
major index on signed permutations which generalizes both the major and the flag
major index and derives general formulas involving the distribution of this statistic.

Let q, p, p0, . . . , pr−1 be indeterminates and p = (p0, p1, . . . , pr−1). For a function
f : Zr → N, we define

pf := p
f(0)
0 p

f(1)
1 · · · pf(r−1)

r−1 .

Similarly, for a and other such bold variables. For a nonnegative integer n, let

(x; q)n :=

{
1, if n = 0

(1− x)(1− xq) · · · (1− xqn−1), if n ≥ 1

and set (q)n := (q, q)n. Also, for a statement P , let χ(P ) = 1, if P is true and
χ(P ) = 0, otherwise.



2.1 Colored symmetric and quasisymmetric functions 23

2.1 Colored symmetric and quasisymmetric functions

A signed analogue of the algebra of quasisymmetric functions was introduced in
Chow’s Ph.D. thesis [32, Chapter 2]. Chow’s homogeneous type B quasisymmetric
functions of degree n are indexed by pseudo-compositions of n, which are composi-
tions of n whose first part is a nonnegative integer. Although, this notion may be
useful when viewing Bn as a Coxeter group (see, for example, [16, 68]) this does
not seem to be the case when Bn is viewed as a colored permutation group.

In this direction, Poirier [75, 76] introduced a colored analogue of the algebra
of quasisymmetric functions. For a comparison between Chow and Poirier’s notion
of signed quasisymmetric functions we refer to Petersen’s comprehensive note [72].
Throughout this thesis we deal with Poirier’s colored quasisymmetric functions.
This choice is motivated by their role in Adin, Athanasiadis, Elizalde and Roich-
man’s recent work [1] on developing a signed analogue of the concept of fine sets
and fine characters of Adin and Roichman [8], which will be reviewed in Section 5.3.

Since their introduction, colored quasisymmetric functions were studied by sev-
eral authors, including Baumann and Hohlweg [19] and Bergeron and Hohlweg [21]
from a Hopf algebra point of view. Later, Hsiao and Petersen [62] developed a
colored P -partition theory in which Poirier’s fundamental colored quasisymmetric
functions play the role of Gessel’s fundamental quasisymmetric functions to Stan-
ley’s P -partition theory. We will review the relation between quasisymmetric func-
tions and P -partitions, as well as Hsiao–Petersen’s theory of colored P -partitions in
Chapter 4.

We mostly follow the exposition of [1] and [62], although some adjustments have

to be made. Let x(j) = (x
(j)
1 , x

(j)
2 , . . . ) be sequences of commuting indeterminates,

for each 0 ≤ j ≤ r − 1 and C[[X(r)]] be the C-algebra of formal power series in

X(r) := (x
(0)
i , x

(1)
i , . . . , x

(r−1)
i )i≥1. The multiplication in C[[X(r)]] is again the usual

multiplication of formal power series. For ease of notation we will not mention the
variables x(i), except when it is needed. Let Sym(r) be the subalgebra of all elements
of C[[X(r)]], which are symmetric in each x(i) separately. We call this the algebra of
colored symmetric functions.

The algebra Sym(r) can be viewed in two more ways. Firstly, as discussed in [64,
Chapter 1, Appendix B] it is the graded C-algebra generated by the independent

indeterminates p
(0)
n , p

(1)
n , . . . , p

(r−1)
n , for n ≥ 1, where each of p

(j)
n is of degree n. With

this in mind, every p
(j)
n may be regarded as the n-th power sum symmetric function

in x(j). Secondly, we can think of Sym(r) as the tensor product Sym⊗Sym⊗ · · · ⊗
Sym (r times). Since, the algebra of symmetric functions is generated by the power

sum symmetric functions, p
(j)
n may be regarded as 1⊗ · · · ⊗ pn ⊗ · · · ⊗ 1, where pn

lies in the jth component.

Consider the left lexicographic order on [n] × Zr or equivalently, the following
total order

10 <llex 11 <llex · · · <llex 1r−1 <llex · · · <llex n
0 <llex n

1 <llex · · · <llex n
r−1

on Ωn,r. The following observation follows immediately from the definition of <llex.
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Observation 2.1.1. Let i, j ∈ [n] and α, β ∈ Zr.

� If α ≤ β, then iα >llex j
β if and only if i > j.

� If α > β, then iα >llex j
β if and only if i ≥ j.

Definition 2.1.2. (cf. [62, Page 269]) A colored quasisymmetric function f is an
element of C[[X(r)]] of bounded degree such that for all α1, α2, . . . , αk ∈ Z>0 and all
ε1, ε2, . . . , εk ∈ Zr we have1

[x
(ε1)
i1

α1
x

(ε2)
i2

α2
· · ·x(εk)

ik

αk
]f = [x

(ε1)
j1

α1
x

(ε2)
j2

α2
· · ·x(εk)

jk

αk
]f

for all iε11 >llex i
ε2
2 >llex · · · >llex i

εk
k and jε11 >llex j

ε2
2 >llex · · · >llex j

εk
k .

Let QSym(r) be the C-algebra of colored quasisymmetric functions. There is a
natural inclusion of algebra Sym(r) → QSym(r), but not every colored quasisym-
metric function belongs to Sym(r). For example, the element∑

i0>llexj1

x
(0)
i

2
x

(1)
j =

∑
i>j

x
(0)
i

2
x

(1)
j ∈ QSym(2)

does not belong to Sym(2) because x
(0)
2

2
x

(1)
1 appears as term, whereas x

(0)
1

2
x

(1)
1 does

not. Notice that adding∑
i1>llexj0

x
(1)
i x

(0)
j

2
=
∑
i>j

x
(1)
i x

(0)
j

2
+
∑
i=j

x
(1)
i x

(0)
i

2
∈ QSym(2)

makes it an element of Sym(2).

It is apparent from the descriptions above that Sym(r) is a graded algebra. Let

Sym
(r)
n be its homogeneous n-th component, whose dimension as a vector space

equals the number of r-partite partitions of n. A natural basis of Sym
(r)
n is spanned

by elements

mλλλ(X(r)) := mλ(0)(x
(0))mλ(1)(x

(1)) · · ·mλ(r−1)(x(r−1))

for every r-partite partition λλλ = (λ(0), λ(1), . . . , λ(r−1)) of n.

The algebra of colored quasisymmetric functions QSym(r) is also a graded al-

gebra. Let QSym
(r)
n be its homogeneous n-th component, whose dimension as a

vector space equals r(r + 1)n−1, the number of r-colored compositions of n. It
follows immediately from Definition 2.1.2 that the set of

Mγε(X
(r)) :=

∑
i
ε1
1 >llexi

ε2
2 >llex···>llexi

εk
k

x
(ε1)
i1

γ1
x

(ε2)
i2

γ2
· · ·x(εk)

ik

γk

for all r-colored composition γε = (γε11 , γ
ε2
2 , . . . , γ

εk
k ) of n forms a basis for this vector

space. These are called monomial colored quasisymmetic functions. The following
lemma explains the connection between the monomial bases of Sym(r) and QSym(r).

1The notation is somewhat complicated but we will not need to exponentiate any colored variable
in what follows, expect for the current section.
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Lemma 2.1.3. (cf. [76, Lemma 12]) For an r-partite partition λλλ = (λ(0), λ(1), . . . ,
λ(r−1)) of n, we have

mλλλ(X(r)) =
∑
γ

Mγ(X(r)) (2.1)

where the sum runs through all r-colored compositions γ of n whose ith colored
component2, when arranged in decreasing order yields the underlying composition of
λ(i).

Proof. The proof follows by expanding each mλ(i)(x
(i)) on the left-hand side of

Equation (2.1) via the rule [89, Proof of Proposition 7.19.9]

mλ(i)(x
(i)) =

∑
Mγ(i)(x

(i))

where the sum runs through every composition γ(i) � |λ(i)| such that when rear-
ranging its parts in decreasing order yields the underlying composition λ(i).

Example 2.1.4. To illustrate Lemma 2.1.3, for the bipartition ((2), (1)) of 3 we
explicitly compute

m((2),(1))(x
(0),x(1)) = m(2)(x

(0))m(1)(x
(1))

= M(2)(x
(0))M(1)(x

(1))

= (x
(0)
1

2
+ x

(0)
2

2
+ · · · )(x(1)

1 + x
(1)
2 + · · · )

= x
(0)
1

2
x

(1)
1 + x

(0)
1

2
x

(1)
2 + · · ·+ x

(0)
2

2
x

(1)
1 + x

(0)
2

2
x

(1)
1 + · · ·

=
∑
i>j

x
(0)
i

2
x

(1)
j︸ ︷︷ ︸+

∑
i>j

x
(1)
i x

(0)
j

2
+
∑
i=j

x
(1)
i x

(0)
i

2

︸ ︷︷ ︸
=

∑
i0>llexj1

x
(0)
i

2
x

(1)
j +

∑
i1>llexj0

x
(1)
i x

(0)
j

2

= M(20,11) +M(11,20).

It is quite interesting how the (left) lexicographic order comes into play in the second
to last equality.

We will now introduce the fundamental colored quasisymmetric functions. The
fundamental colored quasisymmetric function associated to γ ∈ Comp(n, r) is de-
fined by

Fγ(X(r)) :=
∑
γ�β

Mβ(X(r)).

Grouping together inequalities in the left lexicographic order as was done in Sec-
tion 1.5 yields an alternative formula for Fγ(X(r)) similar to Equation (1.16). For

2By component of a colored composition we simply mean the composition obtained by merging
together all parts of certain color in order of appearance and forgetting the color.



2.1 Colored symmetric and quasisymmetric functions 26

an r-colored composition γε = (γε11 , γ
ε2
2 , . . . , γ

εk
k ) of n, we have

Fγε(X
(r)) =

∑
i
ε̃1
1 ≥llexi

ε̃2
2 ≥llex···≥llexi

ε̃n
n

i
ε̃j
rj
>llexi

ε̃j+1
rj+1

, for all 1 ≤ j ≤ k − 1

xε̃1i1x
ε̃2
i2
· · ·xε̃nin

=
∑

i1≥i2≥···≥in
εj≤εj+1 ⇒ irj>irj+1 , for all 1 ≤ j ≤ k − 1

xε̃1i1x
ε̃2
i2
· · ·xε̃nin , (2.2)

where the second equality follows from Observation 2.1.1. Therefore, if we define

Des(γε) := {ri : εi ≤ εi+1, for each 1 ≤ i ≤ k − 1} ⊆ [n− 1],

Equation (2.2) becomes

Fγε(X
(r)) =

∑
i1≥i2≥···≥in

j∈Des(γε) ⇒ ij>ij+1

xε̃1i1x
ε̃2
i2
· · ·xε̃nin . (2.3)

Example 2.1.5. To illustrate this argument, consider the 2-colored composition
γ = (10, 11, 21) of 4 with color vector (0, 1, 1, 1). We have

F(10,11,21) = M(10,11,21) +M(10,11,11,11)

=
∑

i01>llexi
1
2>llexi

1
3=i14

x
(0)
i1
x

(1)
i2
x

(1)
i3

2

+
∑

i01>llexi
1
2>llexi

1
3>llexi

1
4

x
(0)
i1
x

(1)
i2
x

(1)
i3
x

(1)
i4

=
∑

i01>llexi
1
2>llexi3≥llexi

1
4

x
(0)
i1
x

(1)
i2
x

(1)
i3
x

(1)
i4

=
∑

i1>i2>i3≥i4

x
(0)
i1
x

(1)
i2
x

(1)
i3
x

(1)
i4

and Des(γε) = {1, 2}.

We define the monomial and fundamental colored quasisymmetric functions as-
sociated to a colored subset σ of [n] as the monomial and fundamental colored
quasisymmetric functions associated to its corresponding colored composition. We
do the same with Des(σ). The case where σ is the colored descent set of an r-colored
permutation wε or a standard Young r-partite tableau QQQ ∈ SYTn,r is of particular
interest. In particular,

Des(sDes(wε)) = Des∗<c(w
ε)

Des(sDes(QQQ)) = Des∗(QQQ)

and therefore Equation (2.3) becomes

FsDes(wε)(X
(r)) =

∑
i1≥i2≥···≥in

j∈Des∗<c (wε) ⇒ ij>ij+1

x
(ε1)
i1

x
(ε2)
i2
· · ·x(εn)

in
(2.4)
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and similarly for FsDes(QQQ). For ease of notation we will write Fwε := FsDes(w) and
FQQQ = FsDes(QQQ).

The original definition of colored quasisymmetric functions (see [19, Page 1533],
[21, Section 5.2] and [62, Page 269]) required that the inequalities in Definition 2.1.2
are reversed. This approach leads to a different definition of Des(γε) than ours. The
advantage of our approach will be unveiled in the next section. Nevertheless, we
will explain why these two approaches are equivalent (see, also, Remark 1.5.1).

Consider the following operation on Comp(n, r)

(γε11 , γ
ε2
2 , . . . , γ

εk
k )

∗
7−→ (γεkk , γ

εk−1

k−1 , . . . , γ
ε1
1 ).

In terms of colored subsets of [n], it reads

{sε(s1)
1 , s

ε(s2)
2 , . . . , s

ε(sk)
k , nε(n)}

∗
7−→ {nε(1), (n− s1)ε(s2), . . . , (n− sk)ε(n)}.

To emphasize the interplay between passing from a colored composition to a colored
subset and backwards and applying ∗, we notice the following commutative diagram

Comp(n, r) Σ(n, r)

Comp(n, r) Σ(n, r).

∗ ∗

�

For example, for n = 11 and r = 3 we have

(22, 22, 20, 10, 20, 11, 10)
∗
7→ (10, 11, 20, 10, 20, 22, 22) 7→ {10, 21, 40, 50, 70, 92, 112}

and

(22, 22, 20, 10, 20, 11, 10) 7→ {22, 42, 60, 70, 90, 101, 110}
∗
7→ {112, 92, 70, 50, 40, 21, 10}.

Lemma 2.1.6. The map ∗ : QSym(r) → QSym(r) defined by F ∗γε := Fγε∗, for all
γε ∈ Comp(n, r) and extending linearly is an algebra automorphism and3

F ∗γε(X
(r)) =

∑
i
ε̃1
1 ≤llexi

ε̃2
2 ≤llex···≤llexi

ε̃n
n

i
ε̃j
rj
<llexi

ε̃j+1
rj+1

, for all 1 ≤ j ≤ k − 1

xε̃1i1x
ε̃2
i2
· · ·xε̃nin

=
∑

i1≤i2≤···≤in
εj≥εj+1 ⇒ irj<irj+1 , for all 1 ≤ j ≤ k − 1

xε̃1i1x
ε̃2
i2
· · ·xε̃nin .

Closing this section, we recall the relation between the Schur basis of QSym(r),
spanned by the elements

sλλλ(X(r)) := sλ(0)(x
(0))sλ(1)(x

(1)) · · · sλ(r−1)(x(r−1)),

3This formula coincides with the definition of the fundamental colored quasisymmetric function
used in [19, 21, 62].
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for all r-partite partitions λλλ = (λ(0), λ(1), . . . , λ(r−1)) of n and the fundamental basis
of QSym(r). Recently, Adin et al. [1, Proposition 4.2] provided a signed analogue
of Equation (1.17). The following colored analogue

sλλλ(X(r)) =
∑

QQQ∈SYT(λλλ)

FQQQ(X(r)), (2.5)

follows from a trivial generalization of the proof of [1, Proposition 4.2] and will be
used in Section 3.1.

2.2 Specializations of symmetric/quasisymmetric func-
tions; Motivation

Gessel and Reutenauer, in their seminal paper [55], used the stable principal
specialization and the principal specialization of order m of fundamental quasisym-
metric functions, together with the fact that the quasisymmetric generating function
of the set of permutations of fixed cycle type is symmetric, to derive formulas for
the joint distribution of the descent statistic and major index on cycles, involutions
and derangements.

The principal specialization of order m and the stable principal specialization of
Fn,S(x) satisfy the following formulas [55, Lemma 5.2] (see also the first half of [52,
Section 4])

∑
m≥1

psq,m(Fn,S(x))xm−1 =
x|S| qsum(S)

(x; q)n
(2.6)

psq(Fn,S(x)) =
qsum(S)

(q)n
, (2.7)

where sum(S) stands for the sum of all elements of S. The standard way to connect
quasisymmetric functions with permutation statistics is by letting S = Des(w) in
Equation (1.16), as done in [55, Section 5]. Equations (2.6) and (2.7) allow us to
study the Euler–Mahonian distribution on Sn by specializing the quasisymmetric
generating function associated to a subset A ⊆ Sn. In particular, one has [55,
Theorem 5.3]

∑
m≥1

psq,m(F (A; x))xm−1 =

∑
w∈A x

des(w) qmaj(w)

(x; q)n
(2.8)

psq(F (A; x)) =

∑
w∈A q

maj(w)

(q)n
. (2.9)

Gessel and Reutenauer [55] studied subsets of the symmetric group whose qua-
sisymmetric generating function is, in fact, symmetric and exploited a connection
with the representation theory of the symmetric group. Let us now illustrate how
one can specialize fundamental quasisymmetric functions in order to prove Equa-
tions (1.2) and (1.7). Although the relation between these formulas is not obvious,



2.3 Main formulas 29

the above mentioned machinery allows us to easily prove both in a uniform way.
This proof will serve as a prototype for all proofs of our applications in Chapter 3.
For a similar approach, see Gessel and Zhuang’s recent work [57].

Proof of Equations (1.2) and (1.7). As we saw in Equation (1.18), the quasisym-
metric generating function of Sn has the following nice form

F (Sn; x) = (x1 + x2 + · · · )n. (2.10)

Taking the principal specialization of order m and the stable principal specialization
of Equation (2.10) yields

psq,m(F (Sn; x)) = [m]nq

psq(F (Sn; x)) =
1

(1− q)n
,

respectively. Then, Equations (1.2) and (1.7) follow by substituting these compu-
tations in Equations (2.8) and (2.9), for A = Sn, respectively.

This proof suggests that whenever F (A; x) has a nice form, then one can use
Equations (2.8) and (2.9) to prove Euler–Mahonian identities on A. Particularly in-
teresting examples include (among others) the following collections of permutations

• derangements (permutations without fixed points)

• involutions (permutations which are equal to their own inverses)

• conjugacy classes (permutations of a given cycle type)

• inverse descent classes (sets of permutations whose inverse has a fixed descent
set)

In the following section we will provide various colored generalizations of Equa-
tions (2.8) and (2.9)

2.3 Main formulas

Fix a total order < on Ωn,r. For an r-colored permutation wε ∈ Sn,r, we define
the following statistics

Des<(wε) := {i ∈ [n− 1] : wεii > w
εi+1

i+1 } ∪ {0 : ε1 6= 0}
Des∗<(wε) := Des<(wε) {0}
des<(wε) := |Des<(wε)|
des∗<(wε) := |Des∗<(wε)|

fdes<(wε) := r des∗<(wε) + ε1

maj<(wε) := sum(Des∗<(wε))

fmaj<(wε) := rmaj<(wε) + csum(w)

nj(w
ε) := |{i ∈ [n] : εi = j}|, for all 0 ≤ j ≤ r − 1

n(wε) := (n0(wε), n1(wε), . . . ,nr−1(wε)).
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For the rest of this section we omit the total order subscript in colored statistics for
ease of notation. Also, when there is no need to specify the color vector of a colored
permutation, we will simply write w instead of wε.

We begin by considering the specialization ps
(r)
q,p defined by the substitutions

x
(j)
i = qi−1pj for every i ≥ 1 and 0 ≤ j ≤ r − 1, the specialization ps

(r)
q,p,m defined

by the substitutions
x

(0)
i = qi−1p0, 1 ≤ i ≤ m
x

(j)
i = qi−1pj , 1 ≤ j ≤ r − 1 and 1 ≤ i ≤ m− 1

x
(j)
i = 0, otherwise

and the specialization p̃s(r)
q,p,m, defined by the substitutions x

(j)
i = qi−1pj for every

1 ≤ i ≤ m and 0 ≤ j ≤ r − 1 and x
(j)
i = 0 otherwise.

Theorem 2.3.1. For a positive integer n and every w ∈ Sn,r, we have

ps
(r)
q,p(Fw(X(r))) =

qmaj(w)pn(w)

(q)n
(2.11)

∑
m≥1

ps
(r)
q,p,m(Fw(X(r)))xm−1 =

xdes(w)qmaj(w)pn(w)

(x; q)n+1
(2.12)

∑
m≥1

p̃s(r)
q,p,m(Fw(X(r)))xm−1 =

xdes∗(w)qmaj(w)pn(w)

(x; q)n+1
. (2.13)

Proof. We prove Equations (2.11) and (2.12) in parallel. Equation (2.13) follows in
a similar way. For a colored permutation wε ∈ Sn,r, we have

ps
(r)
q,p(Fwε(X

(r))) =
∑

i1≥i2≥···≥in≥1
j∈Des∗(wε)⇒ ij>ij+1

qi1+i2+···+in−n pn(wε) (2.14)

ps
(r)
q,p,m(Fwε(X

(r))) =
∑

m:=i0≥i1≥i2≥···≥in≥1
j∈Des(wε)⇒ ij>ij+1

qi1+i2+···+in−n pn(wε). (2.15)

Under the specialization ps
(r)
q,p,m, substitutions x

(1)
m , x

(2)
m , . . . , x

(r−1)
m occur only if

ε1 6= 0, which in turn is exactly when 0 is considered a descent of wε, explaining the
first inequality under the sum on the right-hand side of Equation (2.15). Define

i′j = ij − χj − · · · − χn−1

i′n = in,

where χj := χ(j ∈ Des(wε)), for every 0 ≤ j ≤ n − 1. Then, Equations (2.14)
and (2.15) become

ps
(r)
q,p(Fwε(X

(r))) =
∑

i′1≥i′2≥···≥i′n≥1

qi
′
1+i′2+···+i′n−n+maj(wε)pn(wε) (2.16)

ps
(r)
q,p,m(Fwε(X

(r))) =
∑

m−des(wε)≥i′1≥i′2≥···≥i′n≥1

qi
′
1+i′2+···+i′n−n+maj(wε)pn(wε),

(2.17)



2.3 Main formulas 31

because

des(wε) =
n−1∑
j=0

χj

maj(wε) =

n−1∑
j=1

jχj .

Now, let

a0 = m− des(wε)− i′1
aj = i′j − i′j+1

an = i′n − 1,

for every 1 ≤ j ≤ n− 1. On the one hand, Equation (2.16) becomes

ps
(r)
q,p(Fwε(X

(r))) =
∑

a1,a2,...,an∈N
qa1+2a2+···+nan+maj(wε) pn(wε) =

qmaj(wε)pn(wε)

(q)n
.

On the other hand, Equation (2.17) becomes

ps
(r)
q,p,m(Fwε(X

(r))) =
∑

qa1+2a2+···+nan+maj(wε) pn(wε)

where the sum runs through all N-solutions of a0 + a1 + · · ·+ an = m− des(wε)− 1.
This is exactly the coefficient of xm−1 in the expansion of the right-hand side of
Equation (2.12) and the proof follows.

Notice that in the proof of [55, Lemma 5.2] (see also [89, Lemma 7.19.10]) the
authors deal with the comajor index, instead of the major index. Our choice of the
direction of inequalities in the definition of the fundamental colored quasisymmetric
functions (see Equation (2.3)) allows us to deal with the major index directly. This
observation explains the motivation behind our choice. The following formulas are
immediate consequences of Theorem 2.3.1.

Corollary 2.3.2. For a positive integer n and every A ⊆ Sn,r, we have

ps
(r)
q,p(F (A; X(r))) =

∑
w∈A q

maj(w)pn(w)

(q)n
(2.18)

∑
m≥1

ps
(r)
q,p,m(F (A; X(r)))xm−1 =

∑
w∈A x

des(w)qmaj(w)pn(w)

(x; q)n+1
(2.19)

∑
m≥1

p̃s(r)
q,p,m(F (A; X(r)))xm−1 =

∑
w∈A x

des∗(w)qmaj(w)pn(w)

(x; q)n+1
. (2.20)

Remark 2.3.3. Setting pj = pj , we have that pn(wε) = pcsum(wε) because

r−1∑
j=0

j nj(w
ε) =

r−1∑
j=0

j|{i ∈ [n] : εi = j}| =

n∑
i=0

εi = csum(wε)

for every colored permutation wε ∈ Sn,r. Therefore, in this case, formulas presented
in Theorem 2.3.1 and Corollary 2.3.2 would involve the color sum statistic.
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Next, we consider the specialization ψ
(r)
q,p defined by the substitutions x

(j)
i =

qr(i−1)+jpj for every i ≥ 1 and 0 ≤ j ≤ r − 1, the specialization ψ
(r)
q,p,m defined by

the substitutions
x

(0)
i = qr(i−1)p0, 1 ≤ i ≤ m
x

(j)
i = qr(i−1)+jpj , 1 ≤ j ≤ r − 1 and 1 ≤ i ≤ m− 1

x
(j)
i = 0, otherwise

and the specialization ψ̃
(r)
q,p,m defined by the substitutions x

(j)
i = qr(i−1)+jpj for every

1 ≤ i ≤ m and 0 ≤ j ≤ r − 1 and x
(j)
i = 0 otherwise.

Theorem 2.3.4. For a positive integer n and every w ∈ Sn,r, we have

ψ
(r)
q,p(Fw(X(r))) =

qfmaj(w)pn(w)

(q)n
(2.21)

∑
m≥1

ψ
(r)
q,p,m(Fw(X(r)))xm−1 =

xdes(w)qfmaj(w)pn(w)

(x; q)n+1
(2.22)

∑
m≥1

ψ̃
(r)
q,p,m(Fw(X(r)))xm−1 =

xdes∗(w)qfmaj(w)pn(w)

(x; q)n+1
. (2.23)

Proof. The proof follows from Theorem 2.3.1 by setting q → qr and pj → qjpj , for
all 0 ≤ j ≤ r − 1.

The following formulas are immediate consequences of Theorem 2.3.4.

Corollary 2.3.5. For a positive integer n and every A ⊆ Sn,r, we have

ψ
(r)
q,p(F (A; X(r))) =

∑
w∈A q

maj(w)pn(w)

(q)n
(2.24)

∑
m≥1

ψ
(r)
q,p,m(F (A; X(r)))xm−1 =

∑
w∈A x

des(w)qfmaj(w)pn(w)

(x; q)n+1
(2.25)

∑
m≥1

ψ̃
(r)
q,p,m(F (A; X(r)))xm−1 =

∑
w∈A x

des∗(w)qfmaj(w)pn(w)

(x; q)n+1
. (2.26)

Lastly, we consider a more complicated specialization φ
(r)
q,p,m defined as follows:

If m = rs + t, for some 1 ≤ t ≤ r and s ≥ 0, then let x
(j)
i = 0 if the pair (i, j) is

lexicographically greater than the pair (rs+ 1, t− 1) and otherwise

x
(j)
i =

{
qi+j−1pj , if i ≡ 1 (mod r)

0, if i 6≡ 1 (mod r).
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We illustrate the definition of φ
(r)
q,p,m by considering a specific example for r = 3

and m ∈ {7, 8, 9}. The substitutions become

(x
(j)
i )0≤j≤2

i≥1
=



 p0 0 0 q3p0 0 0 q6p0 0 · · ·
qp1 0 0 q4p1 0 0 0 0 · · ·
q2p2 0 0 q5p2 0 0 0 0 · · ·

 , if m = 7

 p0 0 0 q3p0 0 0 q6p0 0 · · ·
qp1 0 0 q4p1 0 0 q7p1 0 · · ·
q2p2 0 0 q5p2 0 0 0 0 · · ·

 , if m = 8

 p0 0 0 q3p0 0 0 q6p0 0 · · ·
qp1 0 0 q4p1 0 0 q7p1 0 · · ·
q2p2 0 0 q5p2 0 0 q8p2 0 · · ·

 , if m = 9.

Theorem 2.3.6. For a positive integer n and every w ∈ Sn,r, we have

∑
m≥1

φ
(r)
q,p,m(Fw(X(r)))xm−1 =

xfdes(w)qfmaj(w)pn(w)

(1− x)(1− xrqr)(1− xrq2r) · · · (1− xrqnr)
.

(2.27)
Furthermore, for every A ⊆ Sn,r we have

∑
m≥1

φ
(r)
q,p,m(F (A; X(r)))xm−1 =

∑
w∈A x

fdes(w)qfmaj(w)pn(w)

(1− x)(1− xrqr)(1− xrq2r) · · · (1− xrqnr)
.

(2.28)

Proof. Taking the specialization φ
(r)
q,p,m of the fundamental colored quasisymmetric

function associated to wε ∈ Sn,r yields

φ
(r)
q,p,m(Fwε(X

(r))) =
∑

m:=i0≥i1≥i2≥···≥in≥1
j∈Des(wε)⇒ ij>ij+1

i1,...,in ≡ 1 (mod r)

qi1+i2+···+in−n+csum(wε) pn(wε), (2.29)

because as in Equation (2.15), x
(1)
m , x

(2)
m , . . . , x

(r−1)
m occur only if ε1 6= 0, which is

equivalent to 0 being a descent of wε. Define

i′0 = i0 − ε1 − rχ1 − · · · − rχn−1

i′j = ij − rχj − · · · − rχn−1

i′n = in,

where χj := χ(j ∈ Des(wε)), for every 1 ≤ j ≤ n − 1. Then, Equation (2.29)
becomes

φ
(r)
q,p,m(Fwε(X

(r))) =
∑

m−fdes(wε)≥i′1≥i′2≥···≥i′n≥1
i′1,i
′
2...,i

′
n ≡ 1 (mod r)

qi
′
1+i′2+···+i′n−n+fmaj(wε) pn(wε),

(2.30)
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because

fdes(wε) = c1 + r
n−1∑
j=1

χj

fmaj(wε) = r

n−1∑
j=1

jχj + csum(wε).

The first inequality under the summation on the right-hand side of Equation (2.30)

is justified by the fact that the last nonzero substitution is x
(t−1)
m−t+1 = qm−1, where

m ≡ t (mod r), for every 1 ≤ t ≤ r. Now, making the substitution

a0 = m− fdes(wε)− i′1
aj = i′j − i′j+1

an = i′n − 1,

for every 1 ≤ j ≤ n− 1, Equation (2.30) becomes

φ
(r)
q,p,m(Fwε(X

(r))) =
∑

qa1+2a2+···+nan+fmaj(wε)pn(wε), (2.31)

where the sum runs through all N-solutions of a0+a1+a2+· · ·+an = m−fdes(wε)−1
with the requirement that a1, a2, . . . , an ≡ 0 (mod r), because they are differences of
two positive integers congruent to 1 (mod r). The right-hand side of Equation (2.31)
is precisely the coefficient of xm−1 in the expansion of Equation (2.27) and the proof
follows.

Remark 2.3.7. All formulas presented in this section can be stated for general r-
colored subsets of [n]. For example, for σ = (S

∧
, ε) ∈ Σ(n, r) we have

ps
(r)
q,p(Fσ(X(r)) =

qmaj(σ)pn(σ)

(q)n
, (2.32)

where

maj(σ) :=
∑

i∈Des(σ)

i

n(σ) := n0(σ) + n1(σ) + · · ·+ nr−1(σ),

nj(σ) := |{i ∈ [n] : ε̃i = j}|.

Thus, letting σ be the colored descent set of some colored permutation yields Equa-
tion (2.11).

2.4 The (k, `)-flag major index

For this section we work in the case r = 2. We will write x and y instead of
x(0) and x(1), respectively. We fix a total order < on Ωn and assume the notation
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introduced at the beginning of the previous section with the following modifications
to match the barred notation

n−(w) := |{i ∈ [n] : wi is barred}|
n+(w) := |{i ∈ [n] : wi is not barred}|,

for every signed permutation w ∈ Bn. We will also write neg(w) for n−(w) which
is the notation widely used in the literature.

Let k and ` be a positive and a nonnegative, respectively, integer. For w ∈ Bn,
we define

fmajk,`(w) := kmaj(w) + `neg(w)

to be the (k, `)-flag major index of w. The (1, 0)-flag major index coincides with the
major index and the (2, 1)-flag major index is just the flag major index on signed
permutations. We are going to derive general formulas for the joint distribution
of des, fmajk,` and neg, by considering a (k, `)-variation of the specializations of
Theorem 2.3.4 for r = 2.

Consider the specialization ϑk,`q,a,b defined by substitutions xi = qk(i−1)a and yi =

qk(i−1)+`b, for every i ≥ 1, the specialization ϑk,`q,a,b,m defined by the substitutions
xi = qk(i−1)a, for every 1 ≤ i ≤ m
yi = qk(i−1)+`b, for every 1 ≤ i ≤ m− 1

xi = yi = 0, otherwise

and the specialization ϑ̃k,`q,a,b,m defined as ϑk,`q,a,b,m, but including the substitution

xm = qk(m−1)+`b. For (k, `) = (1, 0) and (k, `) = (2, 1), these specializations coincide

with ps
(2)
q,p,ps

(2)
q,p,m, p̃s(2)

q,p,m and ψ
(2)
q,p, ψ

(2)
q,p,m, ψ̃

(2)
q,p,m for p = (a, b), respectively.

Theorem 2.4.1. For a positive integer n and every w ∈ Bn, we have

ϑk,`q,a,b(Fw(x,y)) =
qfmajk,`(w)an+(w)bn−(w)

(qk)n
(2.33)

∑
m≥1

ϑk,`q,a,b,m(Fw(x,y))xm−1 =
xdes(w)qfmajk,`(w)an+(w)bn−(w)

(x; qk)n+1
(2.34)

∑
m≥1

ϑ̃k,`q,a,b,m(Fw(x,y))xm−1 =
xdes∗(w)qfmajk,`(w)an+(w)bn−(w)

(x; qk)n+1
. (2.35)

The proof of Theorem 2.4.1 is a variant of the proof of Theorem 2.3.1 and is
therefore omitted. The following formulas are immediate consequences of Theo-
rem 2.4.1.
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Corollary 2.4.2. For a positive integer n and every A ⊆ Bn, we have

ϑk,`q,a,b(F (A; x,y)) =

∑
w∈A q

fmajk,`(w)an+(w)bn−(w)

(qk)n
(2.36)

∑
m≥1

ϑk,`q,a,b,m(F (A; x(0),x(1)))xm−1 =

∑
w∈A x

des(w)qfmajk,`(w)an+(w)bn−(w)

(x; qk)n+1

(2.37)∑
m≥1

ϑ̃k,`q,a,b,m(F (A; x,y))xm−1 =

∑
w∈A x

des∗(w)qfmajk,`(w)an+(w)bn−(w)

(x; qk)n+1
.

(2.38)



Chapter 3
Specializations of colored
quasisymmetric functions; Applications

This chapter applies the corollaries of Section 2.3 to prove color sum Euler–
Mahonian identities on colored permutation groups, colored derangements and ab-
solute involutions. In particular, Section 3.1 proves most of the Euler–Mahonian
identities mentioned in Section 1.2 and introduces new examples. Section 3.2 stud-
ies color sum Mahonian and color sum Euler–Mahonian distributions on derange-
ments, providing a colored analogue of a result of Wachs [96, Theorem 4] (see [55,
page 209]). Section 3.3 studies Eulerian and fix-Euler-Mahonian distributions on
involutions and their colored analogues and generalizes a formula of Désarménien
and Foata [37, Equation (1.8)] and Gessel and Reutenauer [55, Equation (7.3)] (see
also [57, Section 5]) and a formula of Athanasiadis [12, Equation (40)]. Lastly,
Section 3.4 studies color sum bimahonian and multivariate distributions, involving
Eulerian and Mahonian statistics on colored permutations. In what follows, we use
the color order for colored permutation statistics.

3.1 Colored permutations

The following observation, which appears in [75, Proposition 1.13] in the more
general setting of wreath products of the symmetric group and a finite abelian group,
is a generalization of Equation (2.10) and computes the colored quasisymmetric
generating function associated to the r-colored permutation group Sn,r. It is the
key that allows us to pass from general formulas to Euler–Mahonian identities by
suitable specialization. We will give two independent proofs of this fact, one in
Section 4.4 using a theory of colored P -partitions and one in Section 5.1 using the
Frobenius formula for Sn,r.

Lemma 3.1.1. For a nonnegative integer n, we have

F (Sn,r; X
(r)) =

(
h1(x(0)) + h1(x(1)) + · · ·+ h1(x(r−1))

)n
, (3.1)
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where h1(x(j)) :=
∑

i≥1 x
(j)
i , for every 0 ≤ j ≤ r − 1.

For a positive integer n, let

Aeul,mah
n,r (x, q,p) :=

∑
w∈Sn,r

xeul(w)qmah(w)pn(w)

Amah
n,r (q,p) := Aeul,mah

n,r (1, q,p),

where eul and mah is an Eulerian and a Mahonian statistic on Sn,r, respectively.
We will specialize Equation (3.1) and apply the corollaries of Section 2.3 to prove
colored Euler–Mahonian identities.

Corollary 3.1.2. For a positive integer n, we have

Amaj
n,r (q,p) = (p0 + p1 + · · ·+ pr−1)n[n]q! (3.2)

and ∑
m≥0

(p0[m+ 1]q + (p1 + · · ·+ pr−1)[m]q)
n xm =

Ades,maj
n,r (x, q,p)

(x; q)n+1
(3.3)

∑
m≥0

((p0 + p1 + · · ·+ pr−1)[m+ 1]q)
n xm =

Ades∗,maj
n,r (x, q,p)

(x; q)n+1
. (3.4)

Proof. Specializing Equation (3.1) as in Theorem 2.3.1 yields

ps
(r)
q,p(F (Sn,r; X

(r))) =

(
p0 + p1 + · · ·+ pr−1

(q)1

)n
ps

(r)
q,p,m(F (Sn,r; X

(r))) = (p0[m]q + (p1 + · · ·+ pr−1)[m− 1]q)
n

p̃s(r)
q,p,m(F (Sn,r; X

(r))) = ((p0 + p1 + · · ·+ pr−1)[m]q)
n .

The proof follows by substituting in Corollary 2.3.2 for A = Sn,r.

Notice that Equation (3.3) appeared as Equation (1.12) in Section 1.2.3, but
in that section the descent number and the major index were computed using the
Steingŕımsson’s order. Equations (3.2) and (3.3) for pj = pj are due to Assaf [10,
Equation (13)] and Biagioli and Zeng [24, Equation (8.1)], respectively.

Corollary 3.1.3. For a positive integer n, we have

Afmaj
n,r (q,p) = (p0 + p1q + · · ·+ pr−1q

r−1)n[n]qr ! (3.5)

and∑
m≥0

(
p0[m+ 1]q + (p1q + · · ·+ pr−1q

r−1)[m]qr
)n

xm =
Ades,fmaj
n,r (x, q,p)

(x; qr)n+1
(3.6)

∑
m≥0

(
(p0 + p1q + · · ·+ pr−1q

r−1)[m+ 1]q
)n

xm =
Ades∗,fmaj
n,r (x, q,p)

(x; qr)n+1
. (3.7)
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Proof. The proof follows from Corollary 3.1.2 by setting q → qr and pj → qjpj for
each 0 ≤ j ≤ r − 1.

Equation (3.5) refines a computation due to Haglund, Loehr and Remmel [61,
Equation (34)] for the distribution of the flag major index over colored permutations
and Equation (3.6) for pj = pj appears in the work of Biagioli and Caselli [22,
Theorem 5.2].

Corollary 3.1.4. For a positive integer n, we have

∑
m≥0

[m+ 1]nq x
m =

Aldes,maj
n,r (x, q,p)

(x; q)n+1(p0 + xp1 + · · ·+ xr−1pr−1)n
(3.8)

∑
m≥0

[m+ 1]nqr x
m =

Aldes,fmaj
n,r (x, q,p)

(x; qr)n+1(p0 + xqp1 + · · ·+ (xq)r−1pr−1)n
. (3.9)

Proof. The proof follows by setting pj → xjpj for each 0 ≤ j ≤ r − 1 in Equa-
tions (3.4) and (3.7), respectively.

Remark 3.1.5. Equations (3.3) and (3.6) for q = p0 = · · · = pr−1 = 1 become

∑
m≥0

(m[r]p + 1)nxm =

∑
w∈Sn,r x

des(w)pcsum(w)

(1− x)n+1
, (3.10)

which reduces to an identity of Brenti [29, Equation (12)] for r = 2. In particular,
the polynomial

∑
w∈Sn,r x

des(w)pcsum(w) :=
∑n

i=0 an,r,i(p)x
i satisfies the formula

(m[r]p + 1)n =

n∑
i=0

an,r,i(p)

(
m+ n− i

n

)
and therefore has only real roots1 for every positive integer n and every p ≥ 1 (cf.
[29, Corollary 3.7]). Although this result may not be new, it served as a motivation
to introduce the parameters pj which keep track of the number of entries of a colored
permutation of each color.

The following corollary for pj → pj appears in the work of Biagioli and Caselli
[22, Theorem 5.4].

Corollary 3.1.6. For a nonnegative integer m, we write m = rQ(m) + R(m) for
some nonnegative integer Q(m) and 0 ≤ R(m) < r. Then

∑
m≥0

R(m)∑
j=0

pjq
j [Q(m) + 1]qr +

r−1∑
j=R(m)+1

pjq
j [Q(m)]qr

n

xm =
[r]xA

fdes,fmaj
n,r (x, q,p)

(xr; qr)n+1
.

(3.11)

1Real-rooted polynomials appear often in combinatorics, algebra and geometry (see, for example,
[28])
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Proof. Suppose m = rs+ t, for some 1 ≤ t ≤ r. In order to compute φ
(r)
q,p,mF (Sn,r),

imagine the defining substitutions as entries of the following r × (s− t+ 1)-matrix
and then take the sum of all its elements

x
(0)
1 · · · x

(0)
r+1 · · · x

(0)
r(s−1)+1 · · · x

(0)
rs+1

x
(1)
1 · · · x

(1)
r+1 · · · x

(1)
r(s−1)+1 · · · x

(1)
rs+1

...
...

...
...

x
(t−1)
1 · · · x

(t−1)
r+1 · · · x

(t−1)
r(s−1)+1 · · · x

(t−1)
rs+1

x
(t)
1 · · · x

(t)
r+1 · · · x

(t)
r(s−1)+1 · · · 0

...
...

...
...

x
(r−1)
1 · · · x

(r−1)
r+1 · · · x

(r−1)
r(s−1)+1 · · · 0


.

Notice that, by definition, the last nonzero substitution occurs in the

(t− 1, s− t+ 1) = (t− 1, rs+ t− t+ 1) = (t− 1, rs+ 1)

position. Therefore, we have

ψ
(r)
q,p,mF (Sn,r) = (p0(1 + qr + · · ·+ qr(s−1) + qrs)+

p1(q + qr+1 + · · ·+ qr(s−1)+1 + qrs+1) + · · ·+
pt−1(qt−1 + qr+(t−1) + · · ·+ qr(s−1)+(t−1) + qrs+(t−1))+

pt(q
t + qr+t + · · ·+ qr(s−1)+t) + · · ·+

pr−1(qr−1 + qr+(r−1) + · · ·+ qr(s−1)+(r−1)))n

=

 t−1∑
j=0

pjq
j [s+ 1]qr +

r−1∑
j=t

pjq
j [s]qr

n

.

The proof follows by substituting in Equation (2.27) for A = Sn,r and noticing that
going from m to m+ 1 leaves s intact and changes t to t+ 1.

For the remainder of this section we assume that r = 2. The following corol-
lary gives a formula for the joint distribution of the (k, `)-flag major index and the
pair (n−, n+) on signed permutations of Bn. Equation (3.12) below refines Adin
and Roichman’s formula [6, Theorem 2] for the distribution of the flag major in-
dex. Furthermore, it computes signed Euler–Mahonian identities on Bn for the
Mahonian statistic fmajk,`. We remark that Equation (3.13) reduces to Chow and
Gessel’s formulas [34, Equation (26)] for (k, `) = (1, 0) and a = 1 and refines [34,
Theorem 3.7] for (k, `) = (2, 1) (see also [23, Remark 5.2]).

Corollary 3.1.7. For a positive integer n, we have

A
fmajk,`
n,2 (q, a, b) = (a+ bq`)n[n]qk !, (3.12)
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and

∑
m≥0

(a[m+ 1]qk + bq`[m]qk)n xm =
A

des,fmajk,`
n,r (x, q, a, b)

(x; qk)n+1
(3.13)

∑
m≥0

(a+ bq`)n[m+ 1]nqk x
m =

A
des∗,fmajk,`
n,r (x, q, a, b)

(x; qk)n+1
. (3.14)

Proof. The proof follows by specializing Equation (3.1) for r = 2 as in Theorem 2.4.1
and substituting in Corollary 2.4.2 for A = Bn.

In view of Theorem 2.4.1 and Corollary 2.4.2 we pose the following question.

Question 3.1.8. Does the (k, `)-flag major index have some algebraic meaning for
k ≥ 1 and ` ≥ 2, similar to that of the flag major and major indices?

3.2 Colored derangements

Permutations in Sn without fixed points are called derangements. Let Dn be
the set of all derangements in Sn. For a positive integer n, let

Dn(x, q) :=
∑
w∈Dn

xdes(w)qmaj(w)

be the n-th (x, q)-derangement polynomial and dn(q) := Dn(1, q) the q-derangement
numbers. The q-derangement numbers satisfy the following formula

dn(q) = [n]q!

n∑
k=0

(−1)k
q(
k
2)

[k]q!
. (3.15)

proved bijectively by Wachs [96, Theorem 4] and later by Gessel and Reutenauer [55,
page 209]. Eulerian and Mahonian distributions on derangements have been studied
by many authors (see, for example, [12, Section 2.1.4] and references therein). The
following theorem provides an Euler–Mahonian identity on derangements in Sn,
which refines Wachs’ formula (3.15). For 0 ≤ k ≤ n, the q-binomial coefficient,
written

(
n
k

)
q

is defined by (
n

k

)
q

:=
[n]q!

[k]q![n− k]q!
,

where [n]q! := [1]q[2]q · · · [n]q for all n ≥ 1 and [0]q! := 1.

Theorem 3.2.1. For a positive integer n, we have

∑
m≥0

n∑
k=0

(−1)kq(
k
2)
(
m+ 1

k

)
q

[m+ 1]n−kq xm =
Dn(x, q)

(x; q)n+1
. (3.16)
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Proof. Setting A = Dn, Equation (2.8) becomes∑
m≥1

psq,m(F (Dn; x))xm−1 =
Dn(x, q)

(x; q)n+1
. (3.17)

Gessel and Reutenauer [55, Theorem 8.1] computed the quasisymmetric gener-
ating function of Dn

F (Dn; x) =
n∑
k=0

(−1)kek(x)h1(x)n−k. (3.18)

The principal specialization of order m of elementary symmetric functions is given
by [89, Proposition 7.8.3]

psq,m(ek(x)) = q(
k
2)
(
m

k

)
q

. (3.19)

Taking the principal specialization of order m of Equation (3.18) and computing,
using Equation (3.19), yields

psq,m(F (Dn; x)) =
n∑
k=0

(−1)kq(
k
2)
(
m

k

)
q

[m]n−kq . (3.20)

The proof follows by substituting Equation (3.20) in Equation (3.17).

Another proof of Equation (3.15) can be obtained by considering the stable
principal specialization of Equation (3.18) instead and following the steps of the
previous proof, as done by Gessel and Reutenauer [55, Theorem 8.4]. Next we
consider a colored analogue of Theorem 3.2.1.

An element of Sn,r without fixed points of zero color is called a colored derange-
ment . Let Dn,r be the set of all colored derangements in Sn,r. Faliharimalala and
Zeng [40, Equation (2.7)] (see also [10, Theorem 2.1], where colored derangements
are called cyclic derangements) proved the following formula

|Dn,r| = rnn!

n∑
k=0

(−1)k

rkk!
, (3.21)

which generalizes the well known formula [90, Equation (2.11)] for the number of de-
rangements in the symmetric group Sn. In a subsequent paper [41, Equation (2.5)],
where the authors use the color order, they provide a formula for the colored q-
derangement numbers

∑
w∈Dn,r

qfmaj(w) = [r]q[2r]q · · · [nr]q
n∑
k=0

(−1)k
qr(

k
2)

[r]q[2r]q · · · [kr]q
, (3.22)

which reduces to Wachs’ formula (3.15) for r = 1 and generalizes a formula of Chow
[33, Theorem 5] for r = 2.
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For a positive integer n, let

Deul,mah
n,r (x, q,p) :=

∑
w∈Dn,r

xeul(w)qmah(w)pn(w)

Dmah
n,r (q,p) := Deul,mah

n,r (1, q,p),

where eul and mah is an Eulerian and a Mahonian statistic on Sn,r, respectively.
The corollaries which follow provide a refinement of Equation (3.22) as well as
several colored Euler–Mahonian identities on colored derangements. Our starting
point will the following colored analogue of Gessel and Reutenauer’s formula (3.18)

F (Dn,r; X(r)) =
n∑
k=0

(−1)kek(x
(0))(h1(x(0)) + · · ·+ h1(x(r−1)))n−k. (3.23)

It was recently proven for r = 2 by Adin et al. [1, Theorem 7.3]. Equation (3.23)
can be proved by trivially generalizing Adin et al.’s argument in the proof of [1,
Theorem 7.3] for general r and using [76, Theorem 16].

Corollary 3.2.2. For a positive integer n, we have

Dmaj
n,r (q,p) = (p0 + p1 + · · ·+ pr−1)n[n]q!

n∑
k=0

(−1)k
q(
k
2)

(p0 + p1 + · · ·+ pr−1)k[k]q!

(3.24)
and∑

m≥0

n∑
k=0

(−1)kq(
k
2)
(
m+ 1

k

)
q

(p0[m+ 1]q + (p1 + · · ·+ pr−1)[m]q)
n−k xm

=
Ddes,maj
n,r (x, q,p)

(x; q)n+1
(3.25)

∑
m≥0

n∑
k=0

(−1)kq(
k
2)
(
m+ 1

k

)
q

((p0 + p1 + · · ·+pr−1)[m+ 1]q)
n−k xm

=
Ddes∗,maj
n,r (x, q,p)

(x; q)n+1
. (3.26)

Proof. The proof follows by specializing Equation (3.23) as in Theorem 2.3.1 and
substituting in Corollary 2.3.2 for A = Dn,r.

Equation (3.24) for pj = pj can be found in Assaf’s work [10, Theorem 3.2].
The following corollary can be proven by setting q → qr and pj → qjpj for each
0 ≤ j ≤ r− 1 in Corollary 3.2.2. Equation (3.27) below refines Equation (3.22) and
Equation (3.28) reduces to Equation (3.16) for r = 1.

Corollary 3.2.3. For a positive integer n, we have

Dfmaj
n,r (q,p) =

(p0 + p1q + · · ·+ pr−1q
r−1)n[n]qr !

n∑
k=0

(−1)k
qr(

k
2)

(p0 + p1q + · · ·+ pr−1qr−1)k[k]qr !

(3.27)



3.2 Colored derangements 44

and∑
m≥0

n∑
k=0

(−1)kqr(
k
2)
(
m+ 1

k

)
qr

(p0[m+ 1]qr + (p1q + · · ·+pr−1q
r−1)[m]qr)

n−k xm

=
Ddes,fmaj
n,r (x, q,p)

(x; qr)n+1

(3.28)∑
m≥0

n∑
k=0

(−1)kqr(
k
2)
(
m+ 1

k

)
qr

((p0 + p1q + · · ·+ pr−1q
r−1)[m+ 1]qr)

n−k xm

=
Ddes∗,fmaj
n,r (x, q,p)

(x; qr)n+1
.

(3.29)

Setting pj → xjpj for each 0 ≤ j ≤ r−1 in Equations (3.26) and (3.29) yields the
following colored Euler–Mahonian identities for the pairs (ldes,maj) and (ldes, fmaj)
on colored derangements.

Corollary 3.2.4. For every positive integer n, we have

∑
m≥0

n∑
k=0

(−1)k
q(
k
2)
(
m+1
k

)
q
[m+ 1]n−kq

(p0 + p1x+ · · ·+ pr−1xr−1)k
xm

=
Dldes,maj
n,r (x, q,p)

(x; q)n+1(p0 + p1x+ · · ·+ pr−1xr−1)n
(3.30)

∑
m≥0

n∑
k=0

(−1)k
qr(

k
2)
(
m+1
k

)
qr

[m+ 1]n−kqr

(p0 + p1qx+ · · ·+ pr−1(qx)r−1)k
xm

=
Dldes,fmaj
n,r (x, q,p)

(x; qr)n+1(p0 + p1qx+ · · ·+ pr−1(qx)r−1)n
. (3.31)

Concluding this section, we turn our attention to the signed case r = 2. The
following corollary computes signed Euler–Mahonian identities on Dn,2 involving
the (k, `)-flag major index, the first of which refines a formula due to Chow [33,
Theorem 5]. Furthermore, it computes a formula for the joint distribution of the
(k, `)-flag major index and the statistics which keep track of the number of barred
and unbarred entries of a signed permutation over signed deragnements, which re-
fines another formula of Chow [33, Theorem 5].

Corollary 3.2.5. For a positive integer n, we have

Dfmajk,`
n,2 (q, p0, p1) = (p0 + p1q

`)n[n]qk !
n∑
i=0

(−1)i
qk(

i
2)

(p0 + p1q`)i[i]qk !
(3.32)
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and∑
m≥0

n∑
i=0

(−1)iqk(
i
2)
(
m+ 1

i

)
qk

(p0[m+ 1]qk + p1q
`[m]qk)n−i xm

=
Ddes,fmajk,`
n,2 (x, q, p0, p1)

(x; qk)n+1
(3.33)

∑
m≥0

n∑
i=0

(−1)iqk(
i
2)
(
m+ 1

i

)
qk

(p0 + p1q
`)n−i[m+ 1]n−i

qk
xm

=
Ddes∗,fmajk,`
n,2 (x, q, p0, p1)

(x; qk)n+1
. (3.34)

Proof. The proof follows by specializing Equation (3.23) for r = 2 as in Theo-
rem 2.4.1 and substituting in Corollary 2.4.2 for A = Dn,2.

3.3 Colored involutions and absolute involutions

Permutations in Sn which are equal to their own inverse are called involutions.
Let In be the set of all involutions in Sn. For a positive integer n, let

In(x, q, a) :=
∑
w∈In

xdes(w)qmaj(w)afix(w),

where fix(w) is the number of fixed points of w and a is an indeterminate. Also,
set In(x, q) := In(x, q, 1) and In(q) := In(1, q, 1). This polynomial was considered
by Désarménien and Foata [37, Section 6] and later by Gessel and Reutenauer [55,
Section 7], where they computed a generating function for In(x, q, p). In particular,
Désarménien and Foata proved [37, Equation (6.2)] (where (q; q)n is to be replaced
by (t; q)n+1)∑

n≥0

In(x, q, a)

(x; q)n+1
zn =

∑
m≥0

(az; q)−1
m+1

∏
0≤i<j≤m

(1− z2qi+j)−1 xm, (3.35)

where I0(x, q, a) := 1.

One can prove Equation (3.35) by taking the principal specialization of order m
of the quasisymmetric generating function for involutions according to fixed points
[55, Equation (7.1)]∑

n≥0

∑
w∈In

Fn,Des(w)(x) afix(w)zn =
∏
i≥1

(1− azxi)−1
∏

1≤i<j
(1− z2xixj)

−1 (3.36)

This is essentially the approach of Gessel and Reutenauer in the proof of [55,
Equation (7.2)]. The connecting link between the Désarménien–Foata and Gessel–
Reutenauer approaches is Equation (1.17).
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In particular, one has [89, Corollary 7.13.8 and Exercise 7.28]∑
λ

sλ(x) acolo(λ)z|λ| =
∏
i≥1

(1− azxi)−1
∏

1≤i<j
(1− z2xixj)

−1, (3.37)

where the sum runs through all partitions λ and

� colo(λ) is the number of columns of λ of odd length and

� |λ| is the size of λ, that is the sum of all of its parts.

Therefore Equation (3.36) follows from Equation (3.37), when you combine Equa-
tion (1.17) and the fact [89, Corollary 7.13.9] that the Robinson–Schensted corre-
spondence restricts to a des-preserving bijection between the set of involutions of
Sn and the set of all standard Young tableaux of size n.

An Euler–Mahonian identity on involutions involving the “hook-content for-
mula” for Schur functions can be derived in the following way. Recall from [64,
Example 1 of Section 3] the following notation2

(
n

λ

)
q

:=
∏
u∈λ

1− qn−c(u)

1− qh(u)
,

slightly altered to match our notation, where for a cell u ∈ λ, c(u) and h(u) are the
content and the hook length of u, respectively3. Then, Macdonald’s interpretation
of Stanley’s well celebrated “hook-content formula” [89, Theorem 7.21.2] becomes

psq,m(sλ(x)) = qb(λ)

(
m

λ′

)
q

, (3.38)

where b(λ) :=
∑

i≥1(i − 1)λi, for a partition λ = (λ1, λ2, . . . ) and λ′ denotes the
conjugate partition to λ.

The quasisymmetric generating function associated to In is known to satisfy

F (In; x) =
∑
λ`n

sλ(x). (3.39)

Applying the principal specialization of order m to this formula, substituting in
Equation (2.8) for A = In and using Equation (3.38) yields the following Euler–
Mahonian identity on In.

Proposition 3.3.1. For a positive integer n, we have∑
m≥0

∑
λ`n

qb(λ)

(
m+ 1

λ′

)
q

xm =
In(x, q)

(x; q)n+1
. (3.40)

2This notation is justified, as the author in [64, Example 1 of Section 3] mentions, because
letting λ = (k), the partition with one part of length k, yields

(
n
(k)

)
q

=
(
n
k

)
q
.

3We refer to [89, Section 7.21] for more details on these concepts.
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Now, recall from [89, Corollary 7.21.3] the the stable principal specialization of
the Schur function

psq(sλ(x)) = qb(λ)
∏
u∈λ

(1− qh(u))−1. (3.41)

Applying the stable principal specialization to Equation (3.39), substituting in
Equation (2.9) for A = In and using Equation (3.41) yields

In(q) =
∑
λ`n

qb(λ) [n]q!∏
u∈λ [h(u)]q

, (3.42)

a formula which bears connection with the well known Stanley’s q-hook length
formula [89, Corollary 7.21.5].

The purpose of this section is to discuss colored analogues of Equations (3.35),
(3.36), (3.40) and (3.42). We deal with two types of involutions in colored per-
mutation groups, the colored involutions and the absolute involutions. A col-
ored (resp. absolute) involution is an element w ∈ Sn,r, such that w−1 = w (resp.
w−1 = w)4. Let In,r (resp. Iabs

n,r ) be the set of all colored (resp. absolute) invo-
lutions in Sn,r. Absolute involutions do not coincide with colored involutions for
r ≥ 3. For example, the colored permutation 312013426351 ∈ S6,4 is an involu-
tion, but not an absolute involution and on the other hand the colored permutation
312011426353 ∈ S6,4 is an absolute involution, but not an involution.

Chow and Mansour [35, Section 4] studied colored involutions. In a similar
fashion, for wε ∈ Iabs

n,r we see that

� w ∈ In and

� if w(i) = j, then εw(i) = εj , computed modulo r

for some i, j ∈ [n]. Modifying the arguments of Chow and Mansour [35, Proposi-
tion 7] yields the following formulas

|Iabs
n,r | = rnn!

bn/2c∑
k=0

(1/2r)k

k!(n− 2k)!∑
n≥0

|Iabs
n,r |

xn

n!
= er(x

2/2+x),

where |Iabs
0,r | := 1 and the following recurrence formula for the number of absolute

involutions in Sn,r,
|Iabs
n+1,r| = r(|Iabs

n,r |+ n|Iabs
n−1,r|),

for every positive integer n ≥ 1, with initial condition |Iabs
1,r | = r.

A polynomial f(x) with real coefficients is called γ-positive if

f(x) =

bn/2c∑
i=0

γix
i(1 + x)n−2i,

4Recall that wε is defined as the colored permutation w−ε.
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for some n ∈ N and nonnegative reals γ0, γ1, . . . , γbn/2c. Chow and Mansour im-
plicitly proved [35, Proposition 8] that the generating polynomial of the excedance
statistic on colored involutions is γ-positive for every even color r. The number of
excedances of wε ∈ Sn,r, written exc(w), is defined to be the number of all indices
i ∈ [n], such that wi > i, or wi = i and εi > 0. Recall from [92, Theorem 15] that
the excedance statistic is Eulerian on colored permutations.

For every even color r, [35, Proposition 8] states that

∑
w∈In,r

xexc(w) =

bn/2c∑
i=0

γn,i x
i(1 + x)n−2i, (3.43)

where γn,i is the number of w ∈ In having i two-cycles multiplied by ri. Gamma-
positivity is an elementary property that implies symmetry and unimodality and ap-
pears often in combinatorics. For more information we refer the reader to Athanasia-
dis’ comprehensive survey [12].

In fact, one can further argue as in [35, Proposition 8] and prove the following

∑
w∈Iabsn,r

xexc(w) =

bn/2c∑
i=0

γn,i x
i(1 + (r − 1)x)n−2i, (3.44)

where γn,i is the same as in Equation (3.43). Equation (3.44) coincides with the
corresponding formulas of Chow and Mansour [35] for r ≤ 2.

Absolute involutions appeared in Adin, Postnikov and Roichman’s study [5] of
Gelfand models for colored permutation groups Sn,r. They are suitable for providing
a colored analogue of Désarménien and Foata’s Formula (3.35). In particular, the
colored Robinson–Schensted correspondence restricts to a des-preserving bijection
between Iabs

n,r and SYTn,r, the set of all standard Young r-partite tableaux of size
n. In addition, from its description (see, for example, [5, Section 5]), the number of
fixed points of color j of an absolute involution in Sn,r equals the number of odd
columns of the jth part of the P -tableau, which corresponds to w via the colored
Robinson–Schensted correspondence.

Let a = (a0, a1, . . . , ar−1) be a sequence of indeterminates. For a positive integer
n, we consider

F (Iabs
n,r ; X(r),a) :=

∑
w∈Iabsn,r

Fw(X(r)) afix(w),

the quasisymmetric generating function for absolute involutions according to fixed
points of various colors, where fix(w) = (fix0(w), fix1(w), . . . ,fixr−1(w)) and fixj(w)
is the number of fixed points of w ∈ Sn,r of color j. The following theorem provides
a colored anagolue of Equation (3.36) by computing the generating function of
F (Iabs

n,r ; X(r),a).

Theorem 3.3.2. We have∑
n≥0

F (Iabs
n,r ; X(r),a) zn =

r−1∏
t=0

∏
i≥1

(1− zatx(t)
i )−1

∏
1≤i<j

(1− z2x
(t)
i x

(t)
j )−1. (3.45)
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In particular, for a positive integer n we have

F (Iabs
n,r ; X(r),a) =

∑
λλλ`n

sλλλ(X(r)) acolo(λλλ), (3.46)

where colo(λλλ) = (colo(λ(0)), colo(λ(1)), . . . , colo(λ(r−1))) for a r-partite partition λλλ =
(λ(0), λ(1), . . . , λ(r−1)).

Proof. The discussion before the statement of the theorem implies that∑
n≥0

F (Iabs
n,r ; X(r),a) zn =

∑
n≥0

∑
λλλ`n

∑
QQQ∈SYT(λλλ)

FQQQ(X(r)) acolo(λλλ)zn.

Thus, by Equation (1.17) we have∑
n≥0

F (Iabs
n,r ; X(r),a) zn =

∑
λλλ

r−1∏
j=0

sλ(j)(x
(j)) a

colo(λ(j))
j z|λλλ |, (3.47)

where the sum runs through all r-partite partitions λλλ = (λ(0), . . . , λ(r−1)) and |λλλ | :=
|λ(0)|+ · · ·+ |λ(r−1)|. Now, Equation (3.46) follows by extracting the coefficient of
zn in Equation (3.47) and Equation (3.45) follows by expanding the right-hand side
of Equation (3.47) according to Equation (3.37) for every color.

We will now specialize Equations (3.45) and (3.46) and via Theorems 2.3.1, 2.3.4,
2.3.6 and 2.4.1 we will derive colored analogues of Désarménien and Foata’s Formula
(3.35) and Equations (3.40) and (3.42) respectively. For a positive integer n, let

Ieul,mah
n,r (x, q,p,a) :=

∑
π∈Iabsn,r

xeul(π)qmah(π)pn(w)afix(w)

Imah
n,r (q,p,a) := Ieul,mah

n,r (1, q,p,a)

where eul and mah is an Eulerian and a Mahonian statistic on colored permuta-
tions, respectively. Also, set Ieul,mah

0,r (x, q, p,p,a) := 1. We start by specializing
Equation (3.46).

Corollary 3.3.3. For a positive integer n, we have

Imaj
n,r (q,p,a) =

∑
λλλ`n

qb(λλλ)psize(λλλ)acolo(λλλ) [n]q!∏r−1
j=0

∏
u∈λ(j) [h(u)]q

(3.48)

and∑
m≥0

∑
λλλ

qb(λλλ)psize(λλλ)acolo(λλλ)

(
m+ 1

λ(0)′

)
q

r−1∏
j=0

(
m

λ(j)′

)
q

xm =
Ides,maj
n,r (x, q,p,a)

(x; q)n+1

(3.49)∑
m≥0

∑
λλλ

qb(λλλ)psize(λλλ)acolo(λλλ)
r−1∏
j=0

(
m+ 1

λ(j)′

)
q

xm =
Ides∗,maj
n,r (x, q,p,a)

(x; q)n+1
,

(3.50)

where the sums run through all r-partite partitions λλλ = (λ(0), . . . , λ(r−1)) of n,
b(λλλ) := b(λ(0)) + · · ·+ b(λ(r−1)) and size(λλλ) = (|λ(0)|, |λ(1)|, . . . , |λ(r−1)|).
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Proof. Specializing Equation (3.46), as in Theorem 2.3.1 yields

ps
(r)
q,p(F (Iabs

n,r ; X(r),a)) =
∑
λλλ

r−1∏
j=0

sλ(j)(1, pjq, pjq
2, . . . ) a

col(λ(j))
j .

But, because of the homogeneousness of Schur functions we have

sλ(j)(1, pjq, pjq
2, . . . ) = p

|λ(j)|
j psq(sλ(j)(x)) = p

|λ(j)|
j qb(λ(j))

∏
u∈λ(j)

(1− qh(u))−1,

where the last equality follows from Equation (3.41). Combining these equations
yields

ps
(r)
q,p(F (Iabs

n,r ; X(r),a)) =
∑
λλλ

qb(λλλ)psize(λλλ)
r−1∏
j=0

a
col(λ(j))
j

∏
u∈λ(j)

(1− qh(u))−1.

The proof of Equation (3.48) follows by substituting in Equation (2.18) for Iabs
n,r .

The proofs of the remaining two equations follow in a similar manner, but using
Equation (3.38) instead and therefore are omitted.

For r = 1, Equation (3.48),(3.72) (and (3.73)) become Equations (3.40) and (3.42),
respectively. Also, setting q → qr and pj → qjpj in the formulas of Corollary 3.3.3

yields analogous formulas for the polynomials I fmaj
n,r (q,p,a), Ides,fmaj

n,r (x, q,p,a) and

Ides∗,fmaj
n,r (x, q,p,a).

Corollary 3.3.4. For a positive integer n, we have

I fmaj
n,r (q,p,a) =

∑
λλλ`n

qr b(λλλ)+r(λλλ)psize(λλλ)acolo(λλλ) [n]qr !∏r−1
j=0

∏
u∈λ(j) [h(u)]qr

(3.51)

and

∑
m≥0

∑
λλλ

qr b(λλλ)+r(λλλ)psize(λλλ)acolo(λλλ)

(
m+ 1

λ(0)′

)
qr

r−1∏
j=0

(
m

λ(j)′

)
qr
xm =

Ides,fmaj
n,r (x, q,p,a)

(x; qr)n+1

(3.52)∑
m≥0

∑
λλλ

qr b(λλλ)+r(λλλ)psize(λλλ)acolo(λλλ)
r−1∏
j=0

(
m+ 1

λ(j)′

)
qr
xm =

Ides∗,fmaj
n,r (x, q,p,a)

(x; qr)n+1
,

(3.53)

where the sums run through all r-partite partitions λλλ = (λ(0), . . . , λ(r−1)) of n and
r(λλλ) :=

∑r−1
j=0 j|λ(j)|.

Remark 3.3.5. For a QQQ ∈ SYTn,r, letting σ = sDes(QQQ) in Equation (2.32) and
summing over all r-partite standard Young tableau of shape λλλ and size n yields

ps
(r)
q,p(F (SYT(λλλ); X(r))) =

∑
QQQ∈SYT(λλλ) q

maj(QQQ)pn(QQQ)

(q)n
, (3.54)
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where F (SYT(λλλ); X(r)),maj(QQQ) and n(QQQ) are defined analogously to colored per-
mutations. Now, substituting Equation (2.5) in Equation (3.54) yields the following
colored analogue of Stanley’s q-hook length formula [89, Corollary 7.21.5]∑

QQQ∈SYT(λλλ)

qmaj(QQQ)pn(QQQ) = qb(λλλ)psize(λλλ) [n]q!∏r−1
j=0

∏
u∈λ(j) [h(u)]q

. (3.55)

This formula refines one of Stembridge [93, Equation 5.6] (see also [7, Corollary 10.28].
Following this reasoning, one can prove Euler–Mahonian identities on (r-partite)
standard Young tableaux of a fixed shape.

Setting pj → xjpj for each 0 ≤ j ≤ r − 1 in Equations (3.53) and (3.73)
yields colored Euler–Mahonian identities for the pairs (ldes,maj) and (ldes, fmaj)
on absolute involutions.

Corollary 3.3.6. For a positive integer n, we have∑
m≥0

∑
λλλ

qb(λλλ)psize(λλλ)acolo(λλλ)
r−1∏
j=0

(
m+ 1

λ(j)′

)
q

xm+r(λλλ) =
I ldes,maj
n,r (x, q,p,a)

(x; q)n+1
,

(3.56)∑
m≥0

∑
λλλ

qr b(λλλ)+r(λλλ)psize(λλλ)acolo(λλλ)
r−1∏
j=0

(
m+ 1

λ(j)′

)
qr
xm+r(λλλ) =

Ides∗,fmaj
n,r (x, q,p,a)

(x; qr)n+1
,

(3.57)

where the sums run through all r-partite partitions λλλ = (λ(0), . . . , λ(r−1)) of n.

One could specialize Equation (3.46) as in Theorem 2.3.6, but the resulting
formula would be too complicated to write it in a nice form and we therefore omit
it. We continue by specializing Equation (3.45). For the next few corollaries, we
need to introduce one more piece of notation

(x; q)∞ :=
∏
i≥0

(1− xqi).

Corollary 3.3.7. We have∑
n≥0

Imaj
n,r (q,p,a)

(q)n
zn =

r−1∏
t=0

(zatpt; q)
−1
∞

∏
0≤i<j

(1− z2p2
t q
i+j)−1 (3.58)

and∑
n≥0

Ides,maj
n,r (x, q,p,a)

(x; q)n+1
zn =

∑
m≥0

(za0p0; q)−1
m+1

∏
0≤i<j≤m

(1− z2p2
0q
i+j)−1×

r−1∏
t=1

(zatpt; q)
−1
m

∏
0≤i<j≤m−1

(1− z2p2
t q
i+j)−1 xm

(3.59)∑
n≥0

Ides∗,maj
n,r (x, q,p,a)

(x; q)n+1
zn =

∑
m≥0

r−1∏
t=0

(zatpt; q)
−1
m+1

∏
0≤i<j≤m

(1− z2p2
t q
i+j)−1 xm.

(3.60)
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Proof. The proof follows by specializing Equation (3.45) as in Theorem 2.3.1 and
substituting in Corollary 2.3.2 for A = Iabs

n,r .

Corollary 3.3.8. We have

∑
n≥0

I fmaj
n,r (q,p,a)

(qr)n
zn =

r−1∏
t=0

(zatptq
t; qr)−1

∞
∏

0≤i<j
(1− z2p2

t q
r(i+j)+2t)−1 (3.61)

and∑
n≥0

Ides,fmaj
n,r (x, q,p,a)

(x; qr)n+1
zn =

∑
m≥0

(za0p0; qr)−1
m+1

∏
0≤i<j≤m

(1− z2p2
0q
r(i+j))−1×

r−1∏
t=1

(zatptq
t; qr)−1

m

∏
0≤i<j≤m−1

(1− z2p2
t q
r(i+j)+2t)−1 xm (3.62)

∑
n≥0

Ides∗,fmaj
n,r (x, q,p,a)

(x; qr)n+1
zn =

∑
m≥0

r−1∏
t=0

(zatptq
t; qr)−1

m+1

∏
0≤i<j≤m

(1− z2p2
t q
r(i+j)+2t)−1 xm. (3.63)

Proof. The proof follows from Corollary 3.3.7 by setting q → qr and pj → qjpj for
each 0 ≤ j ≤ r − 1.

Corollary 3.3.9. We have

∑
n≥0

[x]r I fdes,fmaj
n,r (x, q,p,a)

(x; qr)n+1
zn =

∑
m≥0

(za0p0; qr)−1
bm/rc

∏
0≤i<j≤bm/rc

(1− z2p2
0q
r(i+j))−1×

r−1∏
t=1

(zatptq
t; qr)−1

bm−1
r
c

∏
0≤i<j≤bm−1

r
c

(1− z2p2
t q
r(i+j)+2t)−1 xm. (3.64)

Proof. The proof follows by specializing Equation (3.45) as in Theorem 2.3.6 and
substituting in Equation (2.28) for A = Iabs

n,r .

Although formulas presented in Corollaries 3.3.7 to 3.3.9 look complicated and
not so easy to handle, one may consider appropriate specializations of Ieul,mah

n,r (x, q,
p,a) to study enumerative aspects concerning Euler–Mahonian statistics on absolute
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involutions. For example, letting q = p, a0 = a1 = · · · = ar−1 = 1 and pj = pj for
each 0 ≤ j ≤ r − 1, Equation (3.59) becomes

∑
n≥0

Ides
n,r (x, p)

(1− x)n+1
zn =

∑
m≥0

xm

(1− z)(1− z2)m(z; p)mr (z2; p2)
(m2 )
r

,

where
Ides
n,r (x, p) :=

∑
w∈Iabsn,r

xdes(w)pcsum(w).

This equation for r = 2 and p = 1 was recently considered in [69], where the author
used it to prove a linear recurrence for the coefficients of Ides

n,2 (x), which eventually
leads to its unimodality via an inductive argument (see [69, Sections 3 and 4]).

We continue by providing a colored version of a formula due to Athanasiadis [12,
Proposition 2.2.] (see also [57, Corollary 5.7 (b)]), which expresses the generating
polynomials of the distribution of the number of descents on In and In,2 in terms
of Eulerian polynomials An(x) and An,2(x), respectively.

The following result assumes familiarity with the cycle type of a colored permu-
tation, a colored version of the Frobenius characteristic map introduced by Poirier
[76] and the colored power sum basis of Sym(r). Although all of these notions are
defined in Section 5.1, we find it more suitable to include the following result here.
For w ∈ Sn,r, let cj(w) be the number of colored cycles of w of color j, for every
0 ≤ j ≤ r − 1. The following corollary reduces to [12, Proposition 2.22] for r ≤ 2
and p = 1.

Corollary 3.3.10. For a positive integer n, we have

Ides
n,r (x, p) =

1

rnn!

∑
w∈Sn,r

(1− x)n−c0(ww)Ades
c0(ww),r(x, p), (3.65)

where Ades
n,r(x, p) := Ades,mah

n,r (x, 1, p) for any mahonian statistic mah on colored per-
mutations5.

Proof. Substituting A = Iabs
n,r , q = 1 and pj = pj for each 0 ≤ j ≤ r − 1 in

Equation (2.19) yields

Ides
n,r (x, p)

(1− x)n+1
=
∑
m≥1

F (Iabs
n,r ; 1m, pm−1, . . . , (pr−1)m−1)xm−1, (3.66)

where (pj)s in the above notation means that x
(j)
1 = x

(j)
2 = · · · = x

(j)
s = pj and

x
(j)
s+1 = x

(j)
s+2 = · · · = 0 etc.. Applying Equation (3.46) for a0 = a1 = · · · = ar−1 = 1,

Equation (3.66) becomes

Ides
n,r (x, p)

(1− x)n+1
=
∑
m≥1

∑
sλ(0)(1

m)sλ(1)(p
m−1) · · · sλ(r−1)((pr−1)m−1)xm−1, (3.67)

5Recall this notation from Section 1.2.3
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where the second sum runs through all r-partite partitions λλλ = (λ(0), . . . , λ(r−1)) of
n. From the properties of the characteristic map, we know that

sλ(0)(1
m)sλ(1)(p

m−1) · · · sλ(r−1)((pr−1)m−1) = chr(χ
λλλ)(1m, pm−1, . . . , (pr−1)m−1)

and we can use Equation (5.1) to expand it in the colored power sum basis, as
follows

chr(χ
λλλ)(1m, pm−1, . . . ,(pr−1)m−1) =

1

rnn!

∑
w∈Sn,r

χλλλ(w)pct(w−1)(1
m, pm−1, . . . , (pr−1)m−1),

where χλλλ is the irreducible Sn,r-character associated with the r-partite partition
λλλ ` n. But,

pct(w−1)(1
m, pm−1, . . . , (pr−1)m−1)

=

r−1∏
j=0

(m+ (pζj + p2ζ2j + · · ·+ pr−1ζ(r−1)j)(m− 1))cj(w−1)

= ([r]p(m− 1) + 1)c0(w−1)
r−1∏
j=1

(m− (m− 1))cj(w−1)

= ([r]p(m− 1) + 1)c0(w),

because

pζj + p2ζ2j + · · ·+ pr−1ζ(r−1)j =
1− prζjr

1− pζj
− 1 = −1,

for every 1 ≤ j ≤ r − 1 and c0(w−1) = c0(w). Combining these calculations,
substituting in Equation (3.67) and changing the order of summation yields

Ides
n,r (x, p)

(1− x)n+1
=

1

rnn!

∑
w∈Sn,r

(∑
λλλ`n

χλλλ(w)

) ∑
m≥0

([r]pm+ 1)c0(w) xm

 . (3.68)

A special case of a well known result due to Frobenius and Schur (see, for example,
[89, Exercise 7.69 (c)] and references therein) is that the sum of all irreducible
Sn-characters computed in the conjugacy class corresponding to the cycle type of
w ∈ Sn is equal to the number of square roots of w in Sn. Adin, Postnikov and
Roichman [5, Theorem 3.4] extended this result to colored permutation groups by
proving the following ∑

λλλ`n
χλλλ(w) = |{u ∈ Sn,r : uu = w}|, (3.69)

for every w ∈ Sn,r. Therefore, the proof follows by substituting Equation (3.69) in
Equation (3.68) and using Equation (3.10).
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Remark 3.3.11. Continuing the arguments of Remark 3.3.5 one can prove a formula
for the polynomials ∑

QQQ∈SYT(λλλ)

xdes(QQQ)qcsum(QQQ)

similar to that of Equation (3.65). In particular, we have∑
QQQ∈SYT(λλλ)

xdes(QQQ)qcsum(QQQ) =
1

rnn!

∑
w∈Sn,r

χλλλ(w)Ac0(w),r(x, p)(1− x)n−c0(w) (3.70)

for every r-partite partition λλλ of n.

For the remainder of this section, we limit our discussion to the signed case r = 2.
The next few corollaries compute formulas similar to those of Corollaries 3.3.3, 3.3.7
and 3.3.8 for signed involutions, involving the (k, `)-flag major index. The proofs
of the following corollaries are entirely similar to that of Corollaries 3.3.3 and 3.3.7
and are therefore omitted.

Corollary 3.3.12. For a positive integer n, we have

I fmajk,`
n,2 (q,p,a) =

∑
(λ,µ)`n

qk b(λ,µ)+`|µ|psize(λ,µ)acolo(λ,µ) [n]qk !∏
u∈λ
v∈µ

[h(u)]qk [h(v)]qk

(3.71)
and∑
m≥0

∑
(λ,µ)`n

qk b(λ,µ)+`|µ|psize(λ,µ)acolo(λ,µ)

(
m+ 1

λ′

)
qk

(
m

µ′

)
qk
xm

=
Ides,fmajk,`
n,2 (x, q,p,a)

(x; qk)n+1

(3.72)∑
m≥0

∑
(λ,µ)`n

qk b(λ,µ)+`|µ|psize(λ,µ)acolo(λ,µ)

(
m+ 1

λ′

)
qk

(
m+ 1

µ′

)
qk
xm

=
Ides∗,fmajk,`
n,2 (x, q, p, p0, p1)

(x; qk)n+1
.

(3.73)

Corollary 3.3.13. We have

∑
n≥0

I fmajk,`
n,r (q,p,a)

(qk)n
zn = (za0p0; qk)−1

∞ (zp1a1q
`p; qk)−1

∞ ×∏
0≤i<j

(1− z2p2
0q
k(i+j))−1(1− z2p2

1q
k(i+j)+2`)−1 (3.74)
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and∑
n≥0

Ides,fmajk`
n,r (x, q,p,a)

(x; qk)n+1
zn =

∑
m≥0

(za0p0; qk)−1
m+1(za1p1q

`; qk)−1
m

∏
0≤i<j≤m

(1− z2p2
0q
k(i+j))−1×

∏
0≤i<j≤m−1

(1− z2p2
1q
k(i+j)+2`)−1 xm (3.75)

∑
n≥0

Ides∗,fmajk`
n,r (x, q,p,a)

(x; qk)n+1
zn =

∑
m≥0

(za0p0; qk)−1
m+1(za1p1q

`; qk)−1
m+1×∏

0≤i<j≤m
(1− z2p2

0q
k(i+j))−1(1− z2p2

1)2qk(i+j)+2`)−1 xm.

(3.76)

3.4 Multivariate colored permutation statistics

In what follows, the generating polynomials of permutation statistics are set to
equal 1 for n = 0. For a colored permutation statistic stat and a colored permutation
w, we write istat(w) := stat(w−1) and istat(w) := stat(w−1). A pair of statistics
is called bimahonian if it is equidistributed with (maj, imaj). A celebrated result,
due to Foata and Schützenberger [46, Theorem 1], states that the pair (maj, inv)
is bimahonian on Sn. Gessel [51, Theorem 8.5] computed the following generating
function for the bimahonian statistic (inv,maj)

∑
n≥0

∑
w∈Sn q

inv(w)pmaj(w)

(q)n(p)n
zn =

1

(z; q, p)∞,∞
, (3.77)

where
(z; q, p)∞,∞ :=

∏
i≥1

∏
j≥1

(1− zqi−1pj−1).

Equation (3.77) also holds for the bimahonian pair (maj, imaj). This appeared
implicitly in Gordon’s work [58] and made explicit by Roselle [79]. Because of that,
Equation (3.77) for the bimahonian pair (maj, imaj) is often called Roselle identity.
Garsia and Gessel [49] studied bieulerian-bimahonian distributions, meaning the
four-variate distribution (des, ides,maj, imaj) and proved the following generating
function∑

n≥0

∑
w∈Sn x

des(w)yides(w)qmaj(w)pimaj(w)

(x; q)n+1(y; p)n+1
zn =

∑
m1≥0

∑
m2≥0

xm1ym2

(z; q, p)m1+1,m2+1
,

(3.78)
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where

(z; q, p)k,l :=

k∏
i=1

l∏
j=1

(1− zqi−1pj−1),

for every all integers k, l.

Equations (3.77) and (3.78) can be proved by taking the stable principal spe-
cialization and the principal specialization of order m of the following identity [89,
Equation (7.114) and Equation (7.44)]∑

n≥0

∑
w∈Sn

Fn,Des(w)(x)Fn,Des(w−1)(y) zn =
∏
i≥1

∏
j≥1

(1− zxiyj)−1, (3.79)

and using Equations (2.8) and (2.9) for A = Sn, respectively. This is essentially the
approach of [89, Corollary 7.23.9] (see also [37]). This section develops a colored ana-
logue of this approach and provides colored analogues of Equations (3.77) and (3.78)
for bimahonian and bieulerian-bimahonian distributions on colored permutations.

For every 0 ≤ j ≤ r−1, let y(j) = (y
(j)
1 , y

(j)
2 , . . . ) be another sequence of commut-

ing indeterminates and let Y(r) := (y
(0)
i , y

(1)
i , . . . , y

(r−1)
i )i≥1. The following lemma,

essentially due to Poirier [76, Lemma 4], is a colored analogue of Equation (3.79).

Lemma 3.4.1. We have

∑
n≥0

∑
w∈Sn,r

Fw(X(r))Fw−1(Y(r)) zn =
r−1∏
t=0

∏
i≥1

∏
j≥1

(1− zx(t)
i y

(t)
j )−1. (3.80)

Proof. Recall from [76, Lemma 4] that

∑
n≥0

∑
λλλ`n

sλλλ(X(r))sλλλ(Y(r)) zn =
r−1∏
t=0

∏
i≥1

∏
j≥1

(1− zx(t)
i y

(t)
j )−1, (3.81)

The proof follows by expanding the product sλλλ(X(r))sλλλ(Y(r)) in the left-hand side of
Equation (3.81) according to Equation (2.5) and then applying the colored Robinson–
Schensted correspondence.

For a positive integer n, let

Aeul,ieul,mah,imah
n,r (x, y, q, p, a, b) :=

∑
w∈Sn,r

xeul(w)yieul(w)qmah(w)pimah(w)acsum(w)bicsum(w)

Amah,imah
n,r (q, p, a, b) := Aeul,ieul,mah,imah

n,r (1, 1, q, p, a, b),

where eul,mah are an Eulerian and a Mahonian statistic on colored permutations,
respectively and a, b are indeterminates. For ease of notational complexity we will
deal with the color sum statistic instead of the statistic which counts the number
of entries of certain color of a permutation. Therefore in specializations that fol-
low we are referring to those versions involving csum instead of (n1, n2, . . . ,nr−1).
The following corollary specializes Equation (3.80) as in Theorem 2.3.1 and obtains
formulas for the generating functions for the distributions of the following tuples
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� (maj, imaj, csum, icsum)

� (des, ides,maj, imaj, csum, icsum)

� (des∗, ides∗,maj, imaj, csum, icsum).

Biagioli and Zeng [24, Theorem 7.1] computed the generating function for the sec-
ond tuple. In this paper the authors use the length order and by Reiner [77, Corol-
lary 7.3], where he considers i ∈ [n] to be a descent of w ∈ Sn,r, if `S(ws−1

i ) =
`S(w)− 1, where s1, s2, . . . , sn−1 and sn := s0, as defined in Section 1.2. For r = 2,
Equation (3.83) below coincides with Biagioli and Zeng’s formula.

Corollary 3.4.2. We have

∑
n≥0

Amaj,imaj
n,r (q, p, a, b)

(q)n(p)n
zn =

r−1∏
t=0

1

(z(ab)t; q, p)∞,∞
, (3.82)

and

∑
n≥0

Ades,ides,maj,imaj
n,r (x, y, q, p, a, b)

(x; q)n+1(y; p)n+1
zn =

∑
m1,m2≥0

xm1ym2

(z; q, p)m1+1,m2+1
∏r−1
t=1 (z(ab)t; q, p)m1,m2

(3.83)∑
n≥0

Ades∗,ides∗,maj,imaj
n,r (x, y, q, p, a, b)

(x; q)n+1(y; p)n+1
zn =

∑
m1,m2≥0

xm1ym2∏r−1
t=0 (z(ab)t; q, p)m1+1,m2+1

.

(3.84)

Proof. The proof follows by combining Equation (3.80) and Equations (2.11) to (2.13).

Setting q → qr, p→ pr and a→ aqr, b→ bpr in Corollary 3.4.2 yields formulas
for the generating functions for the distributions of the following tuples

� (fmaj, ifmaj, csum, icsum)

� (des, ides, fmaj, ifmaj, csum, icsum)

� (des∗, ides∗, fmaj, ifmaj, csum, icsum).

Generating functions for the distribution of first tuple have been proved by Foata
and Han [43, Equation (4.3)] for r = 2, where the authors use the integer order,
by Biagioli and Zeng [24, Proposition 8.5], where the authors use the length order
and by Biagioli and Caselli [22, Equation (21) for p = s = 1], where the authors use
the color order. The latter also proved [22, Proposition 6.2] a generating function
for the distribution of the second tuple. For r = 2, Equation (3.85) below coincides
with Biagioli–Zeng’s formula.
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Corollary 3.4.3. We have

∑
n≥0

Afmaj,ifmaj
n,r (q, p, a, b)

(qr)n(pr)n
zn =

r−1∏
t=0

1

(z(qpab)t; qr, pr)∞,∞
, (3.85)

and

∑
n≥0

Ades,ides,fmaj,ifmaj
n,r (x, y, q, p, a, b)

(x; qr)n+1(y; pr)n+1
zn =

∑
m1,m2≥0

xm1ym2

(z; qr, pr)m1+1,m2+1
∏r−1
t=1 (z(qpab)t; qr, pr)m1,m2

(3.86)∑
n≥0

Ades∗,ides∗,fmaj,ifmaj
n,r (x, y, q, p, a, b)

(x; qr)n+1(y; pr)n+1
zn =

∑
m1,m2≥0

xm1ym2∏r−1
t=0 (z(qpab)t; qr, pr)m1+1,m2+1

.

(3.87)

The following corollary computes the generating function for the distribution of
(fdes, ifdes, fmaj, ifmaj, csum, icsum). Its proof is analogous to the proof of Corol-
lary 3.4.2 and is therefore omitted. For a similar formula for r = 2 see [43, Theo-
rem 1.1], where the authors use the integer order.

Corollary 3.4.4. We have

∑
n≥0

[r]x[r]y A
fdes,ifdes,fmaj,ifmaj
n,r (x, y, q, p, a, b)

(xr; qr)n+1(yr; pr)n+1
zn =

∑
m1,m2≥0

xm1ym2

(z; qr, pr)bm1
r
c+1,bm2

r
c+1

r−1∏
t=1

(z(qpab)t; qr, pr)bm1−1
r
c+1,bm2−1

r
c+1

. (3.88)

For the next corollary we limit our discussion to the signed case r = 2. It
computes the generating functions for the distributions of the following tuples

� (fmajk,`, ifmajk,`, neg, ineg)

� (des, ides, fmajk,`, ifmajk,`,neg, ineg)

� (des∗, ides∗, fmajk,`, fmajk,`, neg, ineg).

for positive integers k, k′ and nonnegative integers `, `′.

Corollary 3.4.5. We have

∑
n≥0

A
fmajk,`,ifmajk′,`′
n,2 (q, p, a, b)

(qk)n(pk′)n
zn =

1

(z; qk, pk′)∞,∞(zq`p`′ ; qk, pk′)∞,∞
(3.89)
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and

∑
n≥0

A
des,ides,fmajk,`,ifmajk′,`′
n,2 (x, y, q, p, a, b)

(x; qk)n+1(y; pk′)n+1
zn =

∑
m1,m2≥0

xm1ym2

(z; qk, pk′)m1+1,m2+1(zabq`p`′ ; qk, pk′)m1,m2

(3.90)

∑
n≥0

A
des∗,ides∗,fmajk,`,ifmajk′,`′
n,2 (x, y, q, p, a, b)

(x; qk)n+1(y; pk′)n+1
zn =

∑
m1,m2≥0

xm1ym2

(z; qk, pk′)m1+1,m2+1(zabq`p`′ ; qk, pk′)m1+1,m2+1
(3.91)

Proof. The proof follows by combining Equation (3.80) and Equations (2.33) to (2.35).

Remark 3.4.6. Assigning different values to k, k′, `, `′ in Corollary 3.4.5 yield formu-
las for the distributions of the following tuples

� (maj, ifmaj, neg, ineg)

� (fmaj, imaj, neg, ineg)

� (des, ides,maj, ifmaj,neg, ineg)

� (des, ides, fmaj, imaj,neg, ineg)

� (des∗, ides∗,maj, ifmaj,neg, ineg)

� (des∗, ides∗, fmaj, imaj,neg, ineg)

among others, which may be of interest.



Chapter 4
A colored shuffling theorem and
shuffle-compatibility

This chapter reviews Hsiao–Petersen’s theory of colored P -partitions and proves
a colored analogue of Stanley’s shuffling theorem. Furthermore, it proves that the
colored descent set is shuffle-compatible and provides further examples of shuffle-
compatible colored permutation statistics.

4.1 P -partitions, quasisymmetric functions and shuffle-
compatibility

As we mentioned in the introduction, quasisymmetric functions first appeared
as generating functions of P -partitions in Stanley’s work [87]. We review basic
concepts of this theory related to fundamental quasisymmetric functions. We also
recall a connection with shuffle-compatibility and Stanley’s shuffling theorem. For a
thorough treatment on P -partitions we refer to [90, Section 3.15], [89, Section 7.19]
and [74, Chapter 3].

Let (P,<P ) be a naturally labeled poset with n elements. A P -partition is a
function f : P → Z>0 such that

(I) i <P j implies f(i) ≥ f(j)

(II) i <P j and i >Z j implies f(i) > f(j),

for all i, j ∈ P . Let A(P ) be the set of all P -partitions and consider the generating
function

Γ(P ; x) :=
∑

f∈A(P )

∏
i∈P

xf(i).

This is a (homogeneous) quasisymmetric function of degree n.

61
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Example 4.1.1. If P is the poset

4

1 3

2

then

Γ(P ; x) =
∑

f(1)<f(2)≥f(3)≥f(4)

xf(1)xf(2)xf(3)xf(4) ∈ QSym4(x).

If P is a permutation w ∈ Sn, viewed as the chain w1 <P w2 <P · · · <P wn,
then

A(P ) = {f : P → Z>0 : f(w1) ≥ f(w2) ≥ · · · ≥ f(wn)

and i ∈ Des(w) ⇒ f(wi) > f(wi+1)}

and therefore Γ(P ; x) = Fn,Des(w)(x). Also, notice that if P is an antichain with
n elements, then Γ(P ; x) = h1(x)n. The fundamental lemma of P -partitions [89,
Theorem 7.19.4] states that

Γ(P ; x) =
∑

w∈L(P )

Fn,Des(w)(x),

where L(P )1 is the set of all linear extensions of P . In our working example, we
have L(P ) = {2134, 2314, 2341} and therefore

Γ(P ; x) = F4,{1}(x) + F4,{2}(x) + F4,{4}(x).

Given two disjoint permutations u ∈ Sn and v ∈ Sm, a shuffle of u and v is a
permutation of length n + m, in which both u and v appear as subsequences. We
write u� v for the set of all shuffles of u and v. The multiplication in QSym(x) in
terms of the fundamental basis amounts to shuffling permutations. Specifically, we
have

Fn,Des(u)(x)Fm,Des(v)(x) =
∑

w∈u�v
Fn+m,Des(w)(x).

This is a consequence of the fact that the set of linear extensions of the disjoint union
of two chains is the set of shuffles of those chains. In general, the set A(P + Q)
of (P + Q)-partitions of the disjoint union of two posets P and Q with n and m
elements is in one-to-one correspondence with the cartesian product A(P ) ×A(Q)
and therefore

Γ(P +Q; x) = Γ(P ; x)Γ(Q; x).

The discussion of the previous paragraph leads to the following remarkable fact,
observed by Stanley [90, Exercise 161], about the descent set statistic and shuffles:

1It is often called the Jordan–Hölder set of P (see [90, Section 3.15]).
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for two disjoint permutations u and v, the multiset {Des(w) : w ∈ u� v} depends
only on Des(u),Des(v) and the lengths of u and v. Recently, Gessel and Zhuang
[56] initiated a systematic study of shuffle-compatible permutation statistics. A
permutation statistic stat is called shuffle-compatible if for any disjoint permutations
u and v, the multiset {stat(w) : w ∈ u� v} depends only on stat(u), stat(v) and
the lengths of u and v.

To each shuffle-compatible statistic stat, we can associate a C-algebra in the
following way. We say that permutations u and v are stat-equivalent if they have
the same length and stat(u) = stat(v). Let [u]stat be the stat-equivalence class of
u. Let Astat be the complex vector space whose basis is the set of stat-equivalence
classes of permutations. This vector space becomes a C-algebra with multiplication
given by

[u]stat[v]stat =
∑

w∈u�v
[w]stat,

which is well defined because stat is shuffle-compatible. This is called the shuffle
algebra of stat. As noticed by Gessel and Zhuang [56, Corollary 4.2], the shuffle-
compatibility of the descent set implies that the shuffle algebra ADes of Des is
isomorphic to QSym as a graded complex algebra via

[w]stat 7→ F|w|,Des(w)(x)

where |w| is the length of w.

More examples of shuffle compatible statistics include the major index, the de-
scent number, the peak set and the peak number, the left peak number and the pair
(des,maj). These are all descent statistics, in the sense that they depend only on
the descent composition (see [56, Section 2.2]). Given a permutation w ∈ Sn, we
recall their definitions:

� The comajor index , written comaj(w), of w is defined by

comaj(w) :=
∑

i∈Des(w)

(n− i).

� The peak set , written Pk(w), of w is defined by

Pk(w) := {i ∈ [2, n− 1] : wi−1 < wi > wi+1}

and the peak number of w is defined as pk(w) := |Pk(w)|.
� The left peak set , written LPk(w), of w is defined by2

LPk(w) := {i ∈ [n− 1] : wi−1 < wi > wi+1},

where w0 := 0 and the left peak number is defined as lpk(w) := |LPk(w)|.

We urge the reader to recall [56, Theorems 4.5-4.10], where the authors describe
the shuffle algebras associated to des, (des, comaj),Pk, pk,LPk and lpk.

2In other words it consists of all peaks of w plus 1 whenever it is a descent of w.
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Figure 4.1: The permutation w = 87154623 ∈ S8 has Pk(w) = {4, 6} and LPk(w) =
{1, 4, 6}, both determined by the descent composition co(w) = (1, 1, 2, 2, 2).

Lastly, we recall the celebrated Stanley’s shuffling theorem. It computes the
distribution of the major index over shuffles of disjoint permutations with a given
number of descents in terms of q-binomial coefficients.

Theorem 4.1.2. (Stanley [87, Proposition 12.6 and Equation (24)]) For any
disjoint permutations u and v of length n and m, respectively, and any integer
0 ≤ k ≤ n,∑

w∈u�v
des(w)=k

qmaj(w) = qmaj(u)+maj(v)+(k−des(u))(k−des(v)) ×

(
n− des(u) + des(v)

k − des(u)

)
q

(
m− des(v) + des(u)

k − des(v)

)
q

. (4.1)

In particular, ∑
w∈u�v

qmaj(w) = qmaj(u)+maj(v)

(
n+m

n

)
q

. (4.2)

4.2 Colored P -partitions and colored quasisymmetric
functions

Hsiao and Petersen [62] developed a theory of colored P -partitions in which
colored quasisymmetric functions appear naturally as generating functions of those.
We recall their construction.

Let (P,<p) be a finite poset of cardinality n. A colored labeling of P is an
injection ω : P → Ωn,r such that exactly one element of {i0, i1, . . . , ir−1} appears
in the image of ω for every i ∈ [n]. A poset equipped with a colored labeling will
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be called a colored poset . For the rest of this chapter we assume that posets are
equipped with a colored labeling, unless otherwise stated. For example, a colored
labeling of an n-element chain is just a colored permutation of length n in window
notation3.

Let P(r) := Z>0 × Zr be the set of colored integers. We regard the elements of
P(r) as colored integers iα, for i ∈ Z>0 and α ∈ Zr. We assume that P(r) is equipped
with the left lexicographic order, written <llex.

Definition 4.2.1. (cf. [62, Definition 3.3]) A colored P -partition is a function
f : P → P(r) such that

(I) i <P j implies f(i) ≥llex f(j)

(II) i <P j and i >c j implies f(i) >llex f(j)

(III) the color of i, determined by the colored labeling of P , and the color of f(i)
is the same and we denote it by ε(i),

for all i, j of P .

Let A(r)(P ) be the set of all colored P -partitions and consider the colored qua-
sisymmetric generating function

Γ(P ; X(r)) :=
∑

f∈A(r)(P )

∏
i∈P

x
ε(i)
f(i).

This is a homogeneous element of QSym
(r)
n .

Example 4.2.2. For n = 4 and r = 2, if P is the poset

41

10 31

20

then 20 <P 10 and 20 >c 10, 20 <P 31 and 20 >c 31, and 31 <P 41 and 31 <c 41 and
therefore

Γ(P ; x(0),x(1)) =
∑

f(10)<llexf(20)>llexf(31)≥llexf(41)

x
(0)
f(10)

x
(0)
f(20)

x
(1)
f(31)

x
(1)
f(41)

.

Any colored permutation w = wε ∈ Sn,r can be viewed as the n-element chain

wε11 <w w
ε2
2 <w · · · <w wεnn

3One reconstructs the whole permutation of Ωn,r via the rule (1.4).
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with the obvious colored labelling and the set of colored w-partitions can be shown
to equal

A(r)(w) = {f : w → P
(r) : f(wε11 ) ≥ f(wε22 ) ≥ · · · ≥ f(wεnn )

and i ∈ Des∗<c(w
ε) ⇒ f(wεii ) > f(w

εi+1

i+1 )}.

Therefore, in view of Equation (2.3), we have

Γ(w; X(r)) = Fwε(X
(r)). (4.3)

The fundamental lemma of colored P -partitions implies that [62, Corollary 3.6]

Γ(P ; X(r)) = F (L(r)(P ); X(r)) =
∑

w∈L(r)(P )

Γ(w; X(r))

where L(r)(P ) is the set of linear extensions of P , viewed as a subset of Sn,r.

Example 4.2.3. The set of linear extensions of the poset P in Example 4.2.2 is

L(2)(P ) = {20103141, 20311041, 20314110}

and therefore
Γ(P ) = F(10,10,21) + F(10,11,10,11) + F(10,21,10).

Now, consider two finite, colored posets P,Q of cardinality n and m, respectively.
Hsiao and Petersen [62, Section 3.1] in order to introduce the Hopf algebra of colored
posets defined a poset P tr Q reminiscent of the disjoint sum of usual (uncolored)
posets as follows. If as subsets of colored integers P and Q have any elements of the
same underlying integer, then replace Q by another colored poset with m elements
that is label-equivalent4 to Q and whose elements have different underlying integers
from those of P . The poset P tr Q is just the disjoint sum P +Q. In the case that
P and Q have distinct colored labelings, then P tr Q is just their disjoint sum and
we will simply write P +Q. We can define P1 tr P2 tr · · · tr Pk for a finite number
of colored posets P1, P2, . . . , Pk in a similar fashion.

Hsiao and Petersen [62, Lemma 3.7] prove that the set of r-colored (P tr Q)-
partitions is in one-to-one correspondence with the cartesian product of A(r)(P ) and
A(r)(Q). This observation implies the following useful formula5

Γ(P tr Q; X(r)) = Γ(P ; X(r))Γ(Q; X(r)). (4.4)

If P and Q are two disjoint6 chains u, v of length n and m, respectively, then the
set of colored (u+ v)-partitions depends only on sDes(u) and sDes(v) and L(r)(u+
v) = u � v. Here, u � v denotes the set of all r-colored permutations of length

4Two posets are label-equivalent if there exists a color-preserving poset isomorphism which
respects the left lexicographic order (for the precise definition we refer to [62, Section 3.1]).

5This formula holds for any finite number of disjoint posets.
6In the sense that they have distinct labelings.
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n + m in which both u and v appear as subsequences. For example, for u = 1220

and v = 31, we have

L(3)


12

20

31

 =



31

20,

12

20

31,

12

20

12

31


= {122031, 123120, 311220}.

Applying Equation (4.4) in this case leads to a formula for computing the product
in QSym(r) in terms of the fundamental basis which involves shuffles of colored
permutations.

Theorem 4.2.4. (Hsiao–Petersen [62, Equation (3.4)]) Let cτσ,% be the number of
colored permutations w ∈ u� v such that sDes(w) = τ , where u and v are disjoint
colored permutations with sDes(u) = σ and sDes(v) = %. Then

Fσ(X(r))F%(X
(r)) =

∑
τ∈Σ(n,r)

cτσ,%Fτ (X(r)). (4.5)

4.3 Colored shuffling theorem

For a finite, colored poset P with n elements, we define

Aeul,mah
P (x, q,p) :=

∑
w∈L(r)(P )

xeul(w)qmah(w)pn(w)

Amah
P (q,p) := Aeul,mah

P (1, q,p)

where eul and mah are an Eulerian and a Mahonian statistic on colored permutations
and n(w) is defined as in Section 2.3.

Suppose P is an antichain with n elements. Each color vector ε ∈ Znr determines
a colored labeling on P . We write Pε for the one corresponding to ε. The discussion
at the end of the previous section implies that

L(r)(Pε) = 1ε1 � 2ε2 � · · ·� nεn ,

and therefore by Equation (4.4) we have

Γ(Pε; X
(r)) = h1(x(ε1))h2(x(ε2)) · · ·hn(x(εn)). (4.6)

On the other hand, summing over all ε ∈ Znr the left-hand side of Equation (4.6)
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becomes F (Sn,r; X
(r)) and therefore

F (Sn,r; X
(r)) =

∑
ε∈Znr

F (L(r)(Pε); X
(r))

=
∑

1≤i≤n
0≤εi≤r−1

h1(x(ε1))h2(x(ε2)) · · ·hn(x(εn))

=
n∏
i=1

(
h1(x(0)) + h1(x(1)) + · · ·+ h1(x(r−1))

)
=
(
h1(x(0)) + h1(x(1)) + · · ·+ h1(x(r−1))

)n
,

in agreement with Equation (3.1). We write n=j(ε),n≤j(ε), n>j(ε) and n6=j(ε) for
the number of 1 ≤ i ≤ n for which εi = j, εi ≤ j, εi > j and εi 6= j, respectively, for
all 0 ≤ j ≤ r − 1.

Theorem 4.3.1. For every ε = (ε1, ε2, . . . , εn) ∈ Zr, we have

Amaj
Pε

(x, q,p) = pε1 · · · pεn [n]q!

and ∑
m≥0

[m+ 1]n=0(ε)
q [m]

n 6=0(ε)
q

n∏
i=1

pεi x
m =

Ades,maj
Pε

(x, q,p)

(x; q)n+1

In addition, assuming the notation of Corollary 3.1.6 we have

∑
m≥0

[Q(m) + 1]
n≤R(m)(ε)
qr [Q(m)]

n>R(m)(ε)
qr

n∏
i=1

pεiq
εi xm =

[r]xA
fdes,fmaj
Pε

(x, q,p)

(xr; qr)n+1
.

Proof. The proof follows by specializing Equation (4.6) as in Theorems 2.3.1 and 2.3.6
and substituting in Equations (2.18), (2.19) and (2.28), respectively, forA = L(r)(Pε).
For example, we compute∑
m≥1

ps
(r)
q,p,m(Γ(Pε))x

m−1 =
∑
m≥1

n∏
i=1

pεi(1 + q + · · ·+ qm−2 + qm−1χ(εi = 0))xm−1

=
∑
m≥1

[m]n=0(ε)
q [m− 1]

n6=0(ε)
q

n∏
i=1

pεi x
m−1.

Substituting this to Equation (2.19) yields the second formula.

Remark 4.3.2. Notice that

Aeul,mah
n,r (x, q,p) =

∑
ε∈Znr

Aeul,mah
Pε

(x, q,p)

Amah
n,r (q,p) =

∑
ε∈Znr

Amah
Pε (q,p)

where eul and mah is an Eulerian and a Mahonian statistic on colored permutations.
Therefore summing over all ε ∈ Znr in both sides of the equations that appear in
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Theorem 4.3.1 yields alternative proofs of Equations (3.2), (3.3) and (3.11). For
example, we compute∑

0≤εi≤r−1
1≤i≤n

[m+ 1]n=0(ε)
q [m]

n 6=0(ε)
q

n∏
i=1

pεi

=
n∑
k=0

(
n

k

)
(p0[m+ 1]q)

k ((p1 + · · ·+ pr−1)[m]q)
n−k

= (p0[m+ 1]q + (p1 + · · ·+ pr−1)[m]q)
n ,

which is in agreement with the left-hand side of Equation (3.3).

The following theorem generalizes the first formula of Theorem 4.3.1 to any
poset. It also serves as a colored analogue of the second part of Stanely’s shuffling
theorem (cf. [87, Equation (24)]).

Theorem 4.3.3. If P and Q are colored posets of cardinality n and m, respectively,
then

Amaj
PtrQ(q,p) =

(
n+m

n

)
q

Amaj
P (q,p)Amaj

Q (q,p) (4.7)

Afmaj
PtrQ(q,p) =

(
n+m

n

)
qr
Afmaj
P (q,p)Afmaj

Q (q,p) (4.8)

In particular, for any disjoint r-colored permutations u and v of length n and m,
respectively, we have∑

w∈u�v
qmaj(w)pn(w) =

(
n+m

n

)
q

qmaj(u)+maj(v) pn(u)+n(v) (4.9)

∑
w∈u�v

qfmaj(w)pn(w) =

(
n+m

n

)
qr
qfmaj(u)+fmaj(v) pn(u)+n(v), (4.10)

where

pn(u)+n(v) :=
n∏
i=1

p
ni(u)+ni(v)
i .

Proof. Specializing Equation (4.4) as in Theorems 2.3.1 and 2.3.4 and substituting
in Equations (2.18) and (2.24) yields Equations (4.7) and (4.8), respectively. Equa-
tions (4.9) and (4.10) are immediate consequences of Equations (4.7) and (4.8),
respectively.

For a mahonian statistic mah on colored permutations, we define

Ades,mah
P (x, q,p) :=

n∑
k=0

Amah
P,k (q,p)xk,

where
Amah
P,k (q,p) :=

∑
w∈L(r)(P )
des(w)=k

qmah(w)pn(w).
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The next theorem provides a colored analogue of the first part of Stanely’s shuffling
theorem (cf. [87, Proposition 12.6]).

Theorem 4.3.4. If P and Q are colored posets of cardinality n and m, respectively,
then

Amaj
PtrQ(q,p)

=
n∑
i=0

m∑
j=0

q(k−i)(k−j)
(
n+ j − i
n− i

)
q

(
n+ i− j
n− j

)
q

Amaj
P,i (q,p)Amaj

Q,j (q,p) (4.11)

Afmaj
PtrQ(q,p)

=

n∑
i=0

m∑
j=0

qr(k−i)(k−j)
(
n+ j − i
n− i

)
qr

(
n+ i− j
n− j

)
qr
Afmaj
P,i (q,p)Afmaj

Q,j (q,p)

(4.12)

In particular, for any disjoint r-colored permutations u and v of length n and m,
respectively, we have∑

w∈u�v
des(w)=k

qmaj(w)pn(w) = qmaj(u)+maj(v)+(k−des(u))(k−des(v))pn(u)+n(v) ×

(
n− des(u) + des(v)

k − des(u)

)
q

(
m− des(v) + des(u)

k − des(v)

)
q

(4.13)∑
w∈u�v

des(w)=k

qfmaj(w)pn(w) = qfmaj(u)+fmaj(v)+r(k−des(u))(k−des(v))pn(u)+n(v) ×

(
n− des(u) + des(v)

k − des(u)

)
qr

(
m− des(v) + des(u)

k − des(v)

)
qr
.

(4.14)

Proof. Equations (4.13) and (4.14) are immediate consequences of Equations (4.11)
and (4.12), respectively and it suffices to prove Equation (4.11). The proof follows
the exact same steps as Stanley’s proof of [87, Proposition 12.6]. We reconstruct
the argument.

We introduce the following notation

U rs (P ; q,p) := ps
(r)
q,p,s+1(Γ(P ; X(r))).

Equation (2.19) for A = L(r)(P ) becomes

∑
s≥0

U rs (P ; q,p)xs =
Ades,maj
P (x, q,p)

(x; q)n+1
. (4.15)
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Recall from [90, Equation (1.87)] the following idendities7

(x; q)n+1 =
n+1∑
k=0

(−1)kq(
k
2)
(
n+ 1

k

)
q

xm (4.16)

1

(x; q)n+1
=
∑
s≥0

(
n+m

n

)
q

xs. (4.17)

On the one hand, rewriting Equation (4.15) as

Ades,maj
P (x, q,p) = (x; q)n+1

∑
s≥0

U rs (P ; q,p)xs

 ,

substituting Equation (4.16) and extracting the coefficient of xk yields

Amaj
P,k (q,p) =

k∑
i=0

(−1)iq(
i
2)
(
n+ 1

i

)
q

U rk−i(P ; q,p). (4.18)

On the other hand, substituting Equation (4.17) in Equation (4.15) and extracting
the coefficient of xm yields

U rs (P ; q,p) =
s∑

k=0

(
n+ k

n

)
q

Amaj
P,s−k(P ). (4.19)

Next, applying Equation (4.18) for the poset P tr Q of cardinality n + m and
substituting Equation (4.19) yields

Amaj
PtrQ,k(q,p) =

k∑
i=0

(−1)iq(
i
2)
(
n+m+ 1

i

)
q

U rk−i(P tr Q; q,p)

=
k∑
i=0

(−1)iq(
i
2)
(
n+m+ 1

i

)
q

U rk−i(P ; q,p)U rk−i(Q; q,p)

=
k∑
i=0

(−1)iq(
i
2)
(
n+m+ 1

i

)
q

×k−i∑
j=0

(
n+ j

n

)
q

Amaj
P,k−i−j(q,p)

k−i∑
j=0

(
m+ j

m

)
q

Amaj
Q,k−i−j(q,p)

 ,

(4.20)

where the second equality follows from the fact that the specialization ps
(r)
q,p,m is an

algebra homomorphism. Now, as Stanley points out the coefficient of

Amaj
P,t (q,p)Amaj

Q,s (q,p)

7Equation (4.16) for x→ −x is often called the q-binomial theorem.
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in the far right-hand side of Equation (4.20) is equal to

q(k−t)(k−s)
(
n+ s− t
n− t

)
q

(
n+ t− s
n− s

)
q

and the proof follows.

In view of the bijective proof of Stanley’s shuffling theorem that exist in the
literature [59, 85] we propose the following problem.

Problem 4.3.5. Find bijective proofs of Theorems 4.3.3 and 4.3.4.

4.4 Shuffle-compatible colored permutation statistics

We say that a colored permutation statistic stat is a colored descent statistic if
it depends only on the colored descent composition of sDes. Examples of colored
descent statistics include8

sDes, Des, des, maj, fmaj, (des,maj), (fdes, fmaj), csum

as well as the colored peak composition, introduced by Bergeron and Hohlweg [21],
which will be defined later in this section. We will now describe the shuffle algebras
associated to some of these statistics following the arguments of Gessel and Zhuang
[56].

Theorem 4.2.4 implies that QSym(r) is isomorphic to the shuffle algebra for
the colored descent set with the fundamental basis corresponding to the basis of
sDes-equivalence classes.

Theorem 4.4.1. The colored descent set sDes is shuffle compatible and the linear
map on AsDes defined by

[w]sDes 7→ Fw

is a C-algebra isomorphism from AsDes to QSym(r).

Theorem 4.4.2. (a) The shuffle algebra of maj is isomorphic to the shuffle al-
gebra of the uncolored major index as described in [56, Theorem 3.1].

(b) The linear map on Afmaj defined by

[w]fmaj 7→
qfmaj(w)

[|w|]qr !
x|w|

is a C-algebra isomorphism from Afmaj to the span of{
qj

[n]qr !
xn : n ≥ 0, 0 ≤ j ≤ r

(
n

2

)
+ n(r − 1)

}
,

a subalgebra of C[[q]][x]. The n-th homogeneous component of Afmaj has di-
mension r

(
n
2

)
+ n(r − 1) + 1.

8We assume that they are computed using the color order, although it does not really depend
on the total order of Ωn,r.
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Proof. The proof follows the exact steps of the proof of [56, Theorem 3.1] but
one needs to apply Equation (4.10) for p0 = p1 = · · · = pr−1 = 1 instead of
Stanley’s shuffling theorem. The possible values for the flag major index for r-
colored permutations of length n range from 0 to r

(
n
2

)
+ n(r − 1), the latter being

attained for nr−1 · · · 2r−11r−1.

Following [56], we denote by C[[x∗, q]][t] the algebra of polynomials in t whose
coefficients are formal power series in x and q, where multiplication is ordinary
multiplication in the variables t and q, but is the Hadamard product in x. More
precisely, the Hadamard product ∗ on formal power series in x is given by∑

n≥0

anx
n

 ∗
∑
n≥0

bnx
n

 =
∑
n≥0

anbnx
n.

In addition, we write C[q, t]N for the algebra of functions N→ C[q, t].

Theorem 4.4.3. (a) The linear map on A(des,maj) defined by

[w](des,maj) 7→ qmaj(w)

(
m− des(w) + |w| − 1

|w|

)
q

t|w|

is a C-algebra isomorphism from A(des,maj) to the span of

{1}
⋃{

qk
(
m− j + n− 1

n

)
q

tn : n ≥ 1, 0 ≤ j ≤ n,

(
j

2

)
≤ k ≤ nj −

(
j + 1

2

)}
,

a subalgebra of C[q, t]N9.

(b) The linear map on A(des,maj) defined by

[w](des,maj) 7→


xdes(w)+1qmaj(w)

(x; q)|w|+1
t|w|, if |w| ≥ 1

1

1− x
, if |w| = 0

is a C-algebra isomorphism from A(des,maj) to the span of{
1

1− x

}⋃{
xj+1qk

(x; q)n+1
tn : n ≥ 1, 0 ≤ j ≤ n

(
j

2

)
≤ k ≤ nj −

(
j + 1

2

)}
,

a subalgebra of C[[x∗, q]][t].
9Functions N→ C[q, x] are understood in the variable m.
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(c) The n-th homogeneous component of A(des,maj) has dimension
(
n+1

3

)
+ n+ 1.

The proof is essentially a trivial generalization to the colored case of Gessel and
Zhuang’s proof of [56, Theorem 4.3]. The nontrivial part is to replace the principal

specialization of order m with the specialization ps
(r)
q,p,m for p0 = p1 = · · · = pr−1 =

1. We record a criterion for the shuffle-compatibility of a colored descent statistic,
which is a colored version of [56, Theorem 4.3].

Lemma 4.4.4. A colored descent statistic stat is shuffle-compatible if and only if
there exists a C-algebra homomorphism ϕstat : QSym(r) → A, where A is a C-algebra
with basis {uα} indexed by stat-equivalence classes α of r-colored compositions10,
such that ϕstat(Fγ) = uα whenever γ belongs in the class α. In this case, the linear
map on Astat defined by

[w]stat 7→ uα

where co(w) belongs in the class α is a C-algebra isomorphism from Astat to A.

We are ready to prove Theorem 4.4.3.

Proof of Theorem 4.4.3. We first prove (a). Our goal is to apply Lemma 4.4.4 for
A being the subalgebra of C[q, t]N spanned by

{1}
⋃{

qk
(
m− j + n− 1

n

)
q

tn : n ≥ 1, 0 ≤ j ≤ n

(
j

2

)
≤ k ≤ nj −

(
j + 1

2

)}
.

For a positive integer m and an r-colored quasisymmetric function f we define

Φ
(m)
(des,maj)(f) = ps(r)

m,q(f) tdeg(f),

where ps
(r)
m,q is just ps

(r)
m,q,p when p0 = p1 = · · · = pr−1 = 1 and deg(f) denotes the

degree of f . Also, let Φ
(0)
(des,maj)(f) be the constant term in f . Since Φ

(m)
(des,maj) :

QSym(r) → C[q, t] is a homomorphism, the map ϕ(des,maj) : QSym(r) → C[q, t]N that
takes a colored quasisymmetric function f to the function

m 7→ Φ
(m)
(des,maj)(f),

is an algebra homomorphism.

The proof of Equation (2.12) and Remark 2.3.7 imply that

ϕ(des,maj)(Fγ(X(r)))(m) = qsum(Des(γ))

(
m− |Des(γ)|+ n− 1

n

)
q

tn

10A colored descent statistic stat induces an equivalence relation on colored compositions, since
colored permutations with the same colored descent composition are necessarily stat-equivalent.
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for every r-colored composition γ of n and all m ≥ 1 and ϕ(des,maj)(F∅(X(r)))(0) = 1.
Furthermore, similarly to the classical case, we have∑
m≥0

(
m− |Des(γ)|+ n− 1

n

)
q

xm =
∑
m≥0

(
m+ n

n

)
q

xm+|Des(γ)|+1 =
x|Des(γ)|+1

(x; q)n+1

(4.21)
for every r-colored composition γ of n and therefore the functions

m 7→ qk
(
m− j + n− 1

n

)
q

tm

are linearly independent. The proof follows from Lemma 4.4.4 and the fact that (cf.
[56, Proposition 2.4])

� for any w ∈ Sn,r with des(w) = j, we have11(
j

2

)
≤ maj(w) ≤ nj −

(
j + 1

2

)
,

� and if j ∈ [0, n− 1] and
(
j
2

)
≤ k ≤ nj −

(
j+1

2

)
, then there exists w ∈ Sn,r such

that des(w) = j and maj(w) = k.

To prove (b), we notice that the map C[q, t]N → C[q, t][[x∗]] defined by

f 7→
∑
m≥0

f(m)xm

is an isomorphism and by Equation (4.21), the images of the basis elements in (a)
are those given in (b), which belong to C[[x∗, q]][t].

The dimension of the n-th homogeneous component of A(des,maj) is

n∑
j=0

((
nj −

(
j + 1

2

))
−
(
j

2

)
+ 1

)
=

n∑
j=0

(nj − j2 + 1) =

(
n+ 1

3

)
+ n+ 1,

which settles (c).

Theorem 4.4.5. (a) The linear map on Ades defined by

[w]des 7→
(
m− des(w) + |w| − 1

|w|

)
t|w|

is a C-algebra isomorphism from Ades to the span of

{1}
⋃{(

m− j + n− 1

n

)
tn : n ≥ 1, 0 ≤ j ≤ n

}
,

a subalgebra of C[m, t].12.

11Among all r-colored permutations with j descents, the smallest possible value of the major
index is attained when the descent set is [0, j − 1].

12Polynomial functions in characteristic zero may be indentified with polynomials.
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(b) Ades is isomorphic to the span of

{1} ∪ {(r(m− 1) + 1)j tn : n ≥ 1, 1 ≤ j ≤ n+ 1},

a subalgebra of C[m, t].

(c) The linear map on Ades defined by

[w]des 7→


xdes(w)+1

(1− x)|w|+1
t|w|, if |w| ≥ 1

1

1− x
, if |w| = 0

is a C-algebra isomorphism from Ades to the span of{
1

1− x

}⋃{
xj+1

(1− x)n+1
tn : n ≥ 1 0 ≤ j ≤ n

}
,

a subalgebra of C[[x∗]][t].
(d) The n-th homogeneous component of Ades has dimension n+ 1.

As with the proof of Theorem 4.4.3, the proof of Theorem 4.4.5 is essentially
a trivial generalization to the colored case of Gessel and Zhuang’s proof of [56,
Theorem 4.6]. The nontrivial part is the specialization. We omit the proof, but
notice that it uses a colored version of [56, Theorem 3.3] and Theorem 4.4.5. One
can prove a similar description for the shuffle algebra of the flag descent number.

Stembridge [95] studied a subalgebra of QSym using a variant of P -partitions,
called enriched P -partitions. A composition of n such that all but its last part
must greater than 1 is called peak composition. These compositions appear as the
compositions associated to the peak set of some permutation. For example, for w =
87154623 ∈ S8 we have Pk(w) = {4, 6} and the corresponding peak composition
is co(Pk(w)) = (4, 2, 2). The number of peak compositions of n equals the n-th
Fibonacci number (see, for example, [62, Section 2.5]). Starting from a composition
α of n, one can obtain a peak composition α

∧
of n by replacing consecutive 1s with

their sum added to the next part to the right:

(. . . , αi︸︷︷︸
>1

, 1, 1, . . . , 1︸ ︷︷ ︸
m

, αi+m+1︸ ︷︷ ︸
>1

, . . . ) 7→ (. . . , αi, αi+m+1 +m, . . . ).

In our running example, we have co(w) = (1, 1, 2, 2, 2) and therefore co
∧

(w) =
(4, 2, 2), in agreement with our previous computation.

For α ∈ Comp(n), let

Kα(x) =
∑
α�β∗

2`(β)Mβ(x),

where β∗ is the refinement of β obtained by replacing every part βi ≥ 2 with two
parts (1, βi − 1) for all i > 1. Let Πn be the subalgebra of QSymn spanned by the
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set of all Kα(x) for a peak composition α of n. Stembridge [95] proved that the
map QSym→ Π defined by

Fα(x) 7→ Kα̂(x)

is a surjective algebra homomorphism, where Π := C⊕Π1⊕Π2⊕· · · . This is called
the algebra of peak functions and each Kα(x) indexed by a peak composition α is
called a peak function.

Peak functions arise as generating functions of enriched P -partitions. The theory
of P -partitions provides a rule for multiplying peak functions which involves shuffles
of permutations. In particular, for two disjoint permutations u and v of length n
and m, respectively, we have

Kn,Pk(u)(x)Km,Pk(v)(x) =
∑

w∈u�v
Kn+m,Pk(w)(x), (4.22)

where Kn,Pk(u)(x) := Kco(Pk(u))(x). Gessel and Zhuang [56, Theorem 4.7] noticed
that Equation (4.22) implies that the peak set Pk is shuffle-compatible and that the
linear map on APk defined by

[w]Pk 7→ K|w|,Pk(w)(x)

is a C-algebra isomorphism from APk to Π.

Begeron and Hohlweg [21] introduced a generalization of Stembridge’s peak al-
gebra, introducing the notion of colored peak composition13. Our goal for the re-
mainder of this section is to derive a colored analogue of Gessel and Zhuang’s result
for the shuffle compatibility of the colored peak composition.

Following [21, Section 2] and [62, Section 3.6], the rainbow decomposition of an
r-colored composition γ of n is the unique expression

γ = γ
ε(1)
(1) γ

ε(2)
(2) · · · γ

ε(k)
(k) ,

of γ as the concatenation of compositions γ(i), such that all the parts of γ(i) have
the same color ε(i) and no two consecutive γ(i) have the same color. For example,
for n = 12 and r = 6 we have

(34, 13, 11, 31, 20, 20) = (34)(13)(11, 31)(20, 20).

An r-colored peak composition is an r-colored composition such that each part
of its rainbow decomposition, when forgetting the color, is a peak composition. For
example, the 6-colored composition we considered in the previous example is not a
colored peak composition, because (1, 3) is not a peak composition. Colored peak
compositions arise as peak compositions of colored permutations in the following
way. For wε ∈ Sn,r, we write14

w = w
ε(1)
(1) w

ε(2)
(2) · · ·w

ε(k)
(k) ,

13Petersen studied a subalgebra of Chow’s type B quasisymmetric functions, which is isomorphic
to the shuffle algebra of the left peak set. For more information we refer to [56, Section 4.4] and
references therein.

14This is essentially the rainbow decomposition of a colored permutation.
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where each w
ε(i)
(i) is an r-colored permutation in which each letter has the same color

ε(i) and no two consecutive words have the same color, that is ε(i) 6= ε(i+1). We
define the peak composition of wε, written co

∧
(wε), as the concatenation of the peak

compositions of each w(i) with color ε(i). For example, the 6-colored permutation

w = 548494︸ ︷︷ ︸
w4

(1)

13︸︷︷︸
w3

(2)

6141101121︸ ︷︷ ︸
w1

(3)

207030110︸ ︷︷ ︸
w0

(4)

has peak composition
co
∧

(w) = (34)(13)(41)(20, 20).

Starting from a colored composition one can obtain a colored peak composition by
applying the operation ̂ to every part of its rainbow decomposition. For example,

(34, 13, 11, 31, 20, 20)
̂7−→ (34)(13)(41)(20, 20).

For γ = γ
ε(1)
(1) γ

ε(2)
(2) · · · γ

ε(k)
(k) ∈ Comp(n, r), let

Kγ(X(r)) =
∑

γ
ε(i)
(i)
�β∗

ε(i)

(i)

2`(β(1))+`(β(2))+···+`(β(k))M
β
ε(1)
(1)

β
ε(2)
(2)
···β

ε(k)
(k)

(X(r)).

Let Π
(r)
n be the subalgebra of QSym

(r)
n spanned by the set of all Kγ(X(r)) for an

r-colored peak composition γ of n. Bergeron and Hohlweg [21, Theorem 5.3] proved
that the map QSym(r) → Π(r) defined by

Fγ(X(r)) 7→ Kγ̂(X(r))

is a surjective algebra homomorphism, where Π(r) := C⊕Π
(r)
1 ⊕Π

(r)
2 ⊕ · · · . This is

called the algebra of colored peak functions and each Kγ(X(r)), indexed by a colored
peak composition γ, is called a colored peak function.

Hsiao and Petersen [62, Section 3.7] developed a variant of their colored P -
partitions, called colored enriched P -partitions, in which colored peak functions
arise as generating functions in a similar fashion to the uncolored case. The theory
of colored enriched P -partitions provides a rule [62, Equation 3.13] for multiplying
colored peak functions which involves shuffles of colored permutations. In particular,
for two disjoint r-colored permutations u and v of length n and m, we have

KsPk(u)(X
(r))KsPk(v)(X

(r)) =
∑

w∈u�v
KsPk(w)(X

(r)) ∈ Π
(r)
n+m. (4.23)

where Kn,sPk(u)(X
(r)) := Kco(sPk(u))(X

(r)) and sPk(u) is the r-colored subset of
[n] corresponding to the peak composition of u, called the colored peak set of u.
Equation (4.23) implies the following theorem.

Theorem 4.4.6. The colored peak set sPk is shuffle-compatible. In addition, the
linear map on AsPk defined by

[w]sPk 7→ KsPk(X(r))

is a C-algebra isomorphism from AsPk to Π(r).



Chapter 5
Descent representations and
quasisymmetric functions

5.1 Combinatorial representation theory of colored per-
mutation groups

The (complex) character theory of colored permutation groups was developed by
Wilhelm Specht [84]. For a complete account of it we refer to [19, Section 4.2], [60,
Section 4.5] and [93, Section 4]. Irreducible complex Sn,r-characters are indexed
by r-partite partitions of n. Let R(Sn,r) be the Z-module generated by irreducible
Sn,r-characters and let

R(S(r)) = Z⊕R(S1,r)⊕R(S2,r)⊕ · · · .

As in the uncolored case, the Z-module R(S(r)) has a ring structure induced by
the induction product. The induction product f ◦ g of an Si,r-character and an
Sj,r-character g is defined by

f ◦ g := (f ⊗ g) ↑Si+j,rSi,r×Sj,r ,

where Si,r ×Sj,r
∼= Zr oSi+j is viewed as a subgroup of Si+j,r. The ring R(S(r))

is closely connected to Sym(r) via a colored version of the Frobenius characteristic
map. We will describe Poirier’s version of the colored characteristic map [76, Sec-
tion 2], which is a variant of Macdonald’s [64, Appendix B]1 (see, for example, [60,
Chapter 4] and [19, Section 4.2]). For this we need to introduce some notation.

As we discussed in Section 1.4.2, conjugacy classes in Sn,r are in one-to-one
correspondence with r-partite partitions of n. We now describe the cycle type of
a colored permutation. Starting with a colored permutation, first form the cycle
decomposition of the underlying permutation and then provide the entries with their

1Stembridge [94, Section 5] considered yet another variation of Macdonald’s map in the case
r = 2.
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original color, forming colored cycles. Then, define the color of a colored cycle to
be the sum of colors of all its entries computed modulo r. Now, the cycle type
of w ∈ Sn,r, written ct(w), is the r-partite partition of n, whose j-th part is the
integer partition formed by the lengths of the colored cycles of w having color j, for
every 0 ≤ j ≤ r − 1. For example,

w = 602544311653 = (16 60 53)︸ ︷︷ ︸
1-colored cycle

(31 44)︸ ︷︷ ︸
5-colored cycle

(25)︸︷︷︸
5-colored cycle

∈ S6,8

has cycle type (∅, (3),∅,∅, (2, 1),∅,∅). It is well known that colored permutations
are conjugate if and only if they have the same cycle type (see, for example, [76,
Proposition 1]).

Fix ζ a primitive r-th root of unity. For a nonnegative integer k and any 0 ≤
j ≤ r − 1, let

p
(j)
k (X(r)) := pk(x

(0)) + ζjpk(x
(1)) + · · ·+ ζj(r−1)pk(x

(r−1)) ∈ Sym(r) .

For example, for r = 2, we have ζ = −1 and therefore2

p
(0)
k (x(0),x(1)) = pk(x

(0)) + pk(x
(1))

p
(1)
k (x(0),x(1)) = pk(x

(0))− pk(x(1)).

Also, for an integer partition λ = (λ1, λ2, . . . ) ` n and any 0 ≤ j ≤ r − 1, let

p
(j)
λ (X(r)) := p

(j)
λ1

(X(r))p
(j)
λ2

(X(r)) · · · ∈ Sym(r)
n .

To an r-partite partition λλλ = (λ(0), λ(1), . . . , λ(r−1)) of n we associate the following

element of Sym
(r)
n

pλλλ(X(r)) := p
(0)

λ(0)
(X(r))p

(1)

λ(1)
(X(r)) · · · p(r−1)

λ(r−1)(X
(r))

which we call the colored power sum symmetric function. The set {pλλλ : λλλ ` n}
forms yet another basis for Sym

(r)
n .

The colored Frobenius characteristic map chr : R(S(r))→ Sym(r) defined by

chr(χ)(X(r)) :=
1

rnn!

∑
w∈Sn,r

χ(w)pct(w−1)(X
(r)) (5.1)

is a ring isomorphism3 with the property that [76, Section 2]

chr(χ
λλλ)(X(r)) = sλλλ(X(r)),

where χλλλ is the irreducible Sn,r-character associated to the r-partite partition λλλ =
(λ(0), λ(1), . . . , λ(r−1)) of n.

2They are denoted by p+k and p−k respectively in [1, Section 2.3].
3As in the uncolored case, we view Sym(r) as a Z-algebra for which p

(j)
n , for all n ≥ 0, 0 ≤ j ≤ r−1

are algebraically independent generators (see Section 2.1). In addition, the elements sλλλ form a basis
of the Z-module Sym(r) (see the discussion in [19, page 1501]).
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We are in position now to prove Lemma 3.1.1, as we promised at the beginning
of Chapter 3.

Proof of Lemma 3.1.1. The Frobenius formula [15, Theorem 6.1] for Sn,r states

pµµµ(X(r)) =
∑
λλλ`n

χλλλ(µµµ)sλλλ(X(r)), (5.2)

where χλλλ(µµµ) is the value of χλλλ at the elements of Sn,r of cycle type µµµ ` n (see
[89, Equation (7.76)] for the r = 1 case and [1, Equation (2.6)] for the r = 2 case).
Notice that the conjugacy class of the identity element in Sn,r corresponds to the
r-partite partition of n, whose part of color 0 is (1n) and all the other parts are the
empty partitions, written (1n,∅r−1). Therefore, we have

p(1n,∅r−1)(X
(r)) = p

(0)
(1n)(X

(r)) =
(
p

(0)
1 (X(r))

)n
=
(
p1(x(0)) + · · ·+ p1(x(r−1))

)n
,

which is exactly the right-hand side of Equation (3.1). Furthermore, χλλλ(1n,∅r−1)
equals the dimension of χλλλ, which is known to equal the number of r-partite stan-
dard Young tableaux of shape λλλ (see, for example, [5, Section 2]). Therefore, Equa-
tion (5.2) for µµµ = (1n,∅r−1) becomes

p(1n,∅r−1)(X
(r)) =

∑
λλλ`n

∑
PPP ,QQQ∈SYT(λλλ)

FQQQ(X(r)),

using the expansion (2.5). This in turn is exactly the left-hand side of Equation (3.1)
by the colored Robinson–Schensted correspondence and its properties. The proof
follows by combining the two calculations.

There are 2r one-dimensional Sn,r-characters (see, for example, [22, Section 4]),
which are of the form

χ±,j(w
ε) = (±1)inv(w)ζj csum(wε)

where inv(w) := |{1 ≤ i < j ≤ n : w(i) > w(j)}| is the inversion number of w for
every 0 ≤ j ≤ r − 1 and wε ∈ Sn,r. The character4 1n,j := χ+,j corresponds to the
irreducible Sn,r-character corresponding to χ∅,...,(n),...,∅, where the nonempty part
occurs in the jth color.

For w ∈ Sn,r, recall that cj(w) denotes the number of j-colored cycles, for all
0 ≤ j ≤ r − 1. The color sum of w is also given by

csum(w) =
r−1∑
j=0

j cj(w).

Therefore, 1n,j acts on the conjugacy class K(λλλ) of Sn,r corresponding to λλλ = (λ(0),
λ(1), . . . , λ(r−1)) as follows

1n,j(λλλ) = ζj(`(λ
(1))+2`(λ(2))+···+(r−1)`(λ(r−1))). (5.3)

4For r = 2, the Bn-character χ+,1 corresponding to the bipartition (∅, (n)) is sometimes called
the parity character (see, for example, [50, Section II] and [94, Section 1], where it is denoted by
δ).
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We will now examine what is the effect of tensoring some Sn,r-character with 1n,j

on the level of elements of Sym(r) via the colored characteristic map. But first, let
us recall some facts about tensor products (see [48] and [60, Section 4.1]).

Representation Theory Digression. Let G be a finite group. Given two finite, com-
plex G-representations V and U , G acts on their tensor product V ⊗ U via

g · v ⊗ u := (g · v, g · u).

This is called the diagonal action of G on V ⊗ U . The resulting G-representation,
denoted also by V ⊗U , is sometimes called the inner tensor product (or Kronecker
product) of V and U . The character χV⊗U of V ⊗ U is given by the product χV χU

of the characters χV and χU of V and U , respectively. Sometimes, to emphasize
this fact it is convinient to write χV⊗U := χV ⊗ χU .

Now, let G and G′ be finite groups and let V (resp. V ′) be a finite, complex G
(resp. G′)-representation. The direct product G × G′ acts on the tensor product
V ⊗ V ′ via

(g, g′) · (v, v′) := (g · v, g′ · v′).

The resulting G × G′-representation, denoted by V � U , is sometimes called the
outer tensor product of V and U . The (pointwise) product φ× ψ ∈ CF(G×G′) of
two characters φ of G and ψ of G′, given by

(φ× ψ)(g, g′) = φ(g)ψ(g′),

where CF(G × G′) is the space of (complex) class functions of G × G′ is also a
character corresponding to some outer tensor product just described. In general,
if V and V ′ are irreducible G and G′-characters respectively, then V � V ′ is an
irreducible G×G′-character and every irreducible G×G′ arises in this way (see, for
example, [48, Exercise 2.36]).

For a color j ∈ Zr, we define an operator shiftj on colored partitions and elements
of C[[X(r)]] as follows

shiftj

(
λ(0), λ(1), . . . , λ(r−1)

)
:= (λ(j), λ(j+1), . . . , λ(j−1))

shiftj

(
f(x(0),x(1), . . . ,x(r−1))

)
:= f(x(j),x(j+1), . . . ,x(j−1)),

for each r-partite partition (λ(0), λ(1), . . . , λ(r−1)) and f ∈ C[[X(r)]], where the ex-
ponents are computed modulo r.

Lemma 5.1.1. For every partition λ, we have shiftj(p
(0)
λ ) = p

(0)
λ and

shiftj(p
(i)
λ ) = ζj(r−i)`(λ)p

(i)
λ

for every 0 ≤ j ≤ r − 1 and 1 ≤ i ≤ r − 1.
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Proof. The first equality is obvious by the definition of p
(0)
λ . For every 1 ≤ i ≤ r− 1

and λ = (λ1, λ2, . . . ) we have

ζj(r−i)`(λ)p
(i)
λ = ζj(r−i)`(λ)

`(λ)∏
k=1

(
pλk(x(0)) + ζipλk(x(1)) + · · ·+ ζ(r−1)ipλk(x(r−1))

)

=

`(λ)∏
k=1

(
ζj(r−i)pλk(x(0)) + ζj(r−i)+ipλk(x(1)) + · · ·

+ ζj(r−i)+(r−1)ipλk(x(r−1))
)
.

Now, since j(r − i) + ji = jr ≡ 0 (mod r), the far right-hand side above becomes

p
(i)
λ (x(j),x(j+1), . . . ,x(j−1))

and the proof follows.

Lemma 5.1.2. (cf. [50, Proposition II.1] and [76, Lemma 21]) For every finite,
complex Sn,r-character χ we have

chr(χ⊗ 1n,j) = shiftj(chr(χ)).

In particular,

chr(1n,j)(X
(r)) = hn(x(j)),

for every 0 ≤ j ≤ r − 1.

Proof. If a colored permutation has cycle type (λ(0), λ(1), . . . , λ(r−1)), then its in-
verse has cycle type (λ(0), λ(r−1), . . . , λ(1)) (see [75, Proposition 7.8]). Therefore, by
Equation (5.1) we have

chr(χ⊗ 1n,j) =
1

rnn!

∑
λλλ`n
|K(λλλ)|χ(λλλ)1n,j(λλλ)p

(0)

λ(0)
p

(1)

λ(r−1) · · · p
(r−1)

λ(1)

=
1

rnn!

∑
λλλ`n
|K(λλλ)|χ(λλλ)p

(0)

λ(0)

(
ζj(r−1)`(λ(r−1))p

(1)

λ(r−1)

)
· · ·
(
ζj`(λ

(1))p
(r−1)

λ(1)

)
=

1

rnn!

∑
λλλ`n
|K(λλλ)|χ(λλλ) shiftj(p

(0)

λ(0)
) shiftj(p

(1)

λ(r−1))
) · · · shiftj(p

(r−1)

λ(1)
)

=
1

rnn!

∑
λλλ`n
|K(λλλ)|χ(λλλ) shiftj

(
p

(0)

λ(0)
p

(1)

λ(r−1) · · · p
(r−1)

λ(1)

)
= shiftj(chr(χ)),

where the third equality follows from Lemma 5.1.1. The second implication follows
from the first for χ = 1n,0 = 1n the trivial Sn,r-character and the fact that

chr(1n)(X(r)) = hn(x(0)).
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5.2 Descent representations and products of Schur-posi-
tive sets

The set of elements of a Coxeter group having a fixed descent set carries a natural
representation of the group, called the descent representation. Descent representa-
tions first appeared in Solomon’s work [81] on Weyl groups as alternating sums of
permutation representations. This concept was extended by Bagno and Biagioli [15]
to complex reflection groups. Their construction of descent representations involves
the coinvariant algebra as the representation space and builds upon work by Adin,
Brenti and Roichman [3] who treated the case of Weyl groups of type A and B.

There is another description for descent representations by Gessel [52] using
ribbons. Lemma 1.6.2 asserts that the quasisymmetric generating function of an
inverse descent class of the symmetric group equals the corresponding ribbon Schur
function. Thus, the Sn-characters of descent representations for the symmetric
group correspond to Foulkes characters. Recall the discussion of Section 1.6 and in
particular Lemma 1.6.2.

Closely related to descent representations and quasisymmetric functions is an-
other remarkable discovery by Solomon [82], the so-called Solomon’s descent algebra.
In particular, he proved (in the more general setting of Coxeter groups) that the set ∑

w∈Dn,S

w : S ⊆ [n− 1]


spans a subalgebra, written Soln, of the group algebra CSn of the symmetric group
of dimension 2n−1. Gessel [52, Section 4] showed that the comultiplication5 ∆ on
QSym induced by the map

f(x) 7→ f(xy),

where xy is the product of the sequences x and y of commutating indeterminates
ordered lexicographically

xi1yj1 <lex xi2yj2 ⇔

{
i1 < i2, or

i1 = i2, and j1 < j2

acts as follows on the fundamental basis

∆(Fγ) =
∑
α,β

cγα,β Fα ⊗ Fβ

for every integer composition γ, where cγα,β is the number of pairs (u, v) of permu-
tations such that co(u) = α, co(v) = β and uv = w, where w is a permutation with
co(w) = γ. Therefore, Solomon’s descent algebra Sol := C ⊕ Sol1⊕Sol2⊕ · · · is
isomorphic to the graded dual QSym◦ of the algebra of quasisymmetric functions.

Remark 5.2.1. The interaction of all these structures; Sym,R(S) (partitions), QSym,
Sol (compositions), Π (peak compositions), and shuffle algebras is fascinating. For

5For the notion of comultiplication and graded dual, we refer to [60].
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more information we refer to [60, 62, 72] and references therein. The following
diagram illustrates the relations between them.

APk ADes

Π QSym QSym◦ Sol Π◦

Sym Sym R(S)

∼= ∼=
dual ∼=

dual ∼=
as rings

Elizalde and Roichman [39, Proposition 5.3] observed that the fact that Soln
forms an algebra implies that the multiset and set products of inverse decent classes
in Sn are Schur-positive. The (multiset-)product of two subsets A,B ⊆ Sn, written
AB, is defined to be the multiset of all permutations of the form uv for u ∈ A
and v ∈ B. They actually proved a significant strengthening about products of
Schur-positive sets and inverse descent classes, in which Foulkes characters come
into play.

Theorem 5.2.2. (Elizalde–Roichman [39, Theorem 5.12], Bloom [27, Theorem 3.3])
Let A ⊆ Sn be a fine multiset for the Sn-character χ with corresponding Sn-

representation ρ. For every S ⊆ [n− 1], the following hold.

� The product AR−1
n,S is a fine multiset for the Sn-character (χ ↓Sco(S)

) ↑Sn.

� The product AD−1
n,S is a fine multiset for the Sn-character χ ⊗ φn,S of the

(internal) tensor product representation of ρ and the Foulkes representation
corresponding to S.

� The distribution of the descent set over AD−1
n,S and over D−1

n,S A is the same.
In particular,

F (AD−1
n,S ; x) = F (D−1

n,S A; x).

This result, as the authors in [39] illustrate, provides a general method for con-
structing Schur-positive sets and multisets. Adin, Athanasiadis, Elizalde and Roich-
man [1] extended the theory of fine sets and fine characters to the hyperoctahedral
group. They managed to provide signed analogues for several interesting Schur-
positive sets and their corresponding characters (see, for example, the discussion
in [1, Section 1]), except for the case of inverse signed descent classes where the
authors do not provide the corresponding characters.

Motivated by this, later in the chapter, we prove that inverse colored descent
classes corresponding to colored sets are Schur-positive for the characters of descent
representations of Sn,r, studied by Bagno and Biagioli [15]. Our proof involves a
colored analogue of Gessel’s approach to descent representations. More precisely, we
introduce a notion of colored ribbons and associate the image of descent represen-
tations of Sn,r via the characteristic map to Schur functions in Sym(r) indexed by
colored ribbons. We also provide a colored analogue of Theorem 5.2.2, which could
potentially lead to many instances of Schur-positive subsets of colored permutations.
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5.3 Schur-positivity of colored quasisymmetric functions

A (multi)set A endowed with a colored descent map sDes : A → Σ(n, r) is called
Schur-positive if

F (A; X(r)) :=
∑
a∈A

mA(a)FsDes(a)(X
(r))

is a Schur-positive element of Sym(r), meaning

F (A; X(r)) =
∑
λλλ`n

cλλλsλλλ(X(r))

for some nonnegative integers cλλλ. By Equation (2.5), we have

sλλλ = F (SYT(λλλ)) =
∑

σ∈Σ(n,r)

|{QQQ ∈ SYT(λλλ) : sDes(QQQ) = σ}|Fσ

for all r-partite partitions λλλ of n. Comparing with the definition of F (A; X(r)) we
get

mA(a) |{a ∈ A : sDes(a) = σ}| =
∑
λλλ`n

cλλλ |{QQQ ∈ SYT(λλλ) : sDes(QQQ) = σ}| (5.4)

for all σ ∈ Σ(n, r). Equation (5.4) is equivalent to the existence of a (multi)set
partition A = A1 t A2 t · · · t Am and sDes-preserving bijections A → SYT(λλλi),
for some r-partite partitions λλλi of n, for all 1 ≤ i ≤ m. Since the distribution of
sDes over SYT(λλλ) and KPPP is the same, for some PPP ∈ SYT(λλλ) (recall the discussion
towards the end of Section 1.4) we have the following criterion for Schur-positivity.

Theorem 5.3.1. A (multi)set A endowed with a colored descent map sDes : A →
Σ(n, r) is Schur-positive if and only if there exists a (multi)set partition A = A1 t
A2 t · · · t Am and sDes-preserving bijections

Ai −→ KPPP i

for PPP i ∈ SYT(λλλi) and r-partite partitions λλλi of n, for all 1 ≤ i ≤ m.

Adin et al. [1] developed an abstract framework to capture this phenomenon
in the case r = 2, providing a signed analogue of Adin and Roichman’s theory
of fine sets [8]. We review (a small portion of) their work, stated for general r.
Let σ = (S

∧
, ε) ∈ Σ(n, r) and γδ ∈ Comp(n, r). The r-colored set σ is called γδ-

unimodal if S is γ-unimodal, that is if S is unimodal with respect to the underlying
composition of γδ.

Definition 5.3.2. (cf. [1, Definition 3.4]) The weight weightγδ(σ) of σ = (S
∧
, ε) ∈

Σ(n, r) with respect to γδ = (γδ11 , γ
δ2
2 , . . . , γ

δk
k ) ∈ Comp(n, r) is defined as follows:

� weightγδ(σ) := 0, if either σ is not γδ-unimodal or for some index 1 ≤ i ≤ k
the color vector ε̃ of σ is not constant on Bi(γ)6.

6This is the ith block of γ of cardinality γi (recall the discussion in Section 1.6).
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� Otherwise we set

weightγδ(σ) := ζ
∑r−1
j=0 j nj(γ

δ;σ)(−1)|S S(γ)|, (5.5)

where nj(γ
δ;σ) denotes the number of indices 1 ≤ i ≤ k for which the elements

of Bi(γ) are assigned the color j by both the color vectors ε̃ and δ̃ of σ and
γδ, respectively.

Definition 5.3.3. (cf. [1, Definition 3.5]) Let χ be an Sn,r-character. A collection
A, endowed with a colored descent map sDes : A → Σ(n, r), is said to be fine set
for χ if

χ(γ) =
∑
a∈A

mA(a) weightγ(sDes(a))

for every colored composition γ of n.

The following lemma states that the set of standard Young r-partite tableaux
of shape λλλ ` n endowed with the colored descent map defined in Definition 1.4.3 is
a fine set for the irreducible Sn,rcharacter χλλλ. It is essentially [1, Theorem 4.1] for
general r.

Lemma 5.3.4. For all r-partite partitions λλλ = (λ(0), λ(1), . . . , λ(r−1)) and µµµ of n
and every r-colored composition γ of n whose ith colored component is a permutation
of λ(i),

χλλλ(µ) =
∑

QQQ∈SYT(λλλ)

weightγ(sDes(QQQ)). (5.6)

Proof. The proof is essentially a trivial generalization of the proof of [1, Theorem 4.1]
for r ≥ 3. We derive a formula for the left-hand side and a formula for the right-
hand side of Equation (5.6) and show that they are equal. To compute χλλλ(µµµ) for
µµµ = (µ(0), µ(1), . . . , µ(r−1)) we expand the left-hand side of Equation (5.2) as

p
(0)

µ(0)
(X(r))p

(1)

µ(1)
(X(r)) · · · p(r−1)

µ(r−1)(X
(r))

=

`(µ(0))∏
i=1

(
p
µ
(0)
i

(x(0)) + p
µ
(0)
i

(x(1)) + · · ·+ p
µ
(0)
i

(x(r−1))
)
×

`(µ(1))∏
i=1

(
p
µ
(1)
i

(x(0)) + ζp
µ
(1)
i

(x(1)) + · · ·+ ζr−1p
µ
(1)
i

(x(r−1))
)
×

...

`(µ(r−1))∏
i=1

(
p
µ
(r−1)
i

(x(0)) + ζr−1p
µ
(r−1)
i

(x(1)) + · · ·

+ (ζr−1)
r−1

p
µ
(r−1)
i

(x(r−1))
)

=
∑

ε(j)∈Z`(µ
(j))

r

ζ
∑r−1
j=0 j|{1≤i≤`(µ

(j)):ε
(j)
i =j}|×

pν(0)(x
(0))pν(1)(x

(1)) · · · pν(r−1)(x(r−1)),
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where ν(j) is the composition consisting of the parts µ
(0)
k of µ(0) with ε

(0)
k = j,

followed by those parts µ
(1)
k of µ(1) with ε

(1)
k = j, etc. until the parts µ

(r−1)
k of µ(r−1)

with ε
(r−1)
k = j, for each 0 ≤ j ≤ r − 1. Now, expressing each pν(j)(x

(j)) in the
Schur-basis of Sym(x(j)) and comparing to Equation (5.2) yields

χλλλ(ν)

=
∑

ε(j)∈Z`(µ
(j))

r

ζ
∑r−1
j=0 j|{1≤i≤`(µ

(j)):ε
(j)
i =j}|χλ

(0)
(ν(0))χλ

(1)
(ν(1)) · · ·χλ(r−1)

(ν(r−1)).

(5.7)

We now derive a formula for the right-hand side of Equation (5.6). Given color

vectors ε(j) = (ε
(j)
i , . . . , ε

(j)

`(µ(j))
) ∈ Z`(µ

(j))
r for all 0 ≤ j ≤ r − 1, we write γε

(0),...,ε(r−1)

for the r-colored composition, whose underlying composition is that of γ and whose
parts are colored according to the colors of the parts of µ(j) assigned by ε(j). Next,

denote by γε
(0),...,ε(r−1)

j the composition obtained from γε
(0),...,ε(r−1)

by removing all
parts of colors other than i and forgetting the colors. The blocks of γ partition the
set [n], i.e.

[n] = B1(γ) t B2(γ) t · · · t B`(γ)(γ).

We denote by Rε
(0),...,ε(r−1)

j the union of those segments which correspond to parts

of γε
(0),...,ε(r−1)

j , for all 0 ≤ j ≤ r − 1. Comparing Definitions 1.4.3 and 5.3.2 the
right-hand side of Equation (5.6) equals

∑
ε(j)∈Z`(µ

(j))
r

ζ
∑r−1
j=0 j|{1≤i≤`(µ

(j)):ε
(j)
i =j}|

∑
Q(0)

(−1)|Des(Q(0)) S(γε
(0),...,ε(r−1)

0 )|

 × · · ·
 ∑
Q(r−1)

(−1)|Des(Q(r−1)) S(γε
(r−1)...,ε(r−1)

r−1 )|

 ,

where the jth sum ranges over all standard Young tableaux Q(j) of shape λλλ(j) and

content Rε
(0),...,ε(r−1)

j with γε
(0),...,ε(r−1)

j -unimodal descent set. By [1, Theorem 2.4]
this becomes∑

ε(j)∈Z`(µ
(j))

r

ζ
∑r−1
j=0 j|{1≤i≤`(µ

(j)):ε
(j)
i =j}|χλ

(0)
(γε

(0),...,ε(r−1)

0 ) · · ·χλ(r−1)
(γε

(0),...,ε(r−1)

r−1 )

and since the values χ(α) of an irreducible Sn-character do not depend on the
ordering of the parts of a composition α of n, comparing with Equation (5.7) yields
Equation (5.6) and the proof follows

The proof of the following theorem is essentially the same as the proof of [1,
Theorem 3.6], but using Lemma 5.3.4 instead, and is therefore omitted.
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Theorem 5.3.5. Let χ be an Sn,r-character and A be a collection of combinatorial
objects endowed with a colored descent map sDes : A → Σ(n, r). If

chr(χ)(X(r)) = F (A; X(r))

then A is a fine multiset for χ.

We will say that a (multi)set A, endowed with a colored descent map sDes :
A → Σ(n, r) is Schur-positive for the Sn,r-character χ if A is Schur-positive and

chr(χ)(X(r)) = F (A; X(r)).

Examples of Schur-positive sets of colored permutations with their corresponding
character include

� standard Young r-partite tableaux or Knuth classes of r-colored permutations
and irreducible Sn,r-characters (see Lemma 5.3.4)

� absolute involutions of Sn,r and the characters of Gelfand model of Sn,r (see
[1, Section 5] and [5]

� conjugacy classes on Sn,r and the colored analogue of the Lie character (see
[1, Section 7] and [76, Section 4])

� colored permutations of fixed flag inversion number7 or flag major index and
the characters of the Sn,r-action on the homogeneous components of the coin-
variant algebra of Sn,r (as a complex reflection group) (see [15], [1, Section 6]).

5.4 Colored ribbons, colored compositions and colored
sets

Definition 5.4.1. An r-colored ribbon with n cells is a direct sum Z = Z1 ⊕ Z2 ⊕
· · · ⊕Zk of ribbons with a total number of n cells each summand of which has been
assigned a color from Zr with the property that consecutive summands cannot have
the same color. Summands of Z are called parts. We will denote colored ribbons as
pairs (Z, ε), where ε : [k]→ Zr is a color map.

For example, there exist two 2-colored ribbons with 1 cell

( , (+)) , ( ,−)

and six 2-colored ribbons with 2 cells

( , (+)) , ( , (−)) ,(
, (+,−)

)
,
(

, (−,+)
)
,(

, (+)
)
,

(
, (−)

)
.

7The flag inversion number of wε ∈ Sn,r is defined as finv(wε) := r inv(w) + csum(wε) and was
introduced by Foata–Han [44] for r = 2 and Fire [42] for general r. It is equidistributed with the
flag major index over Sn,r.
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Proposition 5.4.2. The set of r-colored ribbons with n cells is in one-to-one cor-
respondence with Comp(n, r) and therefore with Σ(n, r).

Proof. For an r-colored composition of n with rainbow decomposition

γ = γ
ε(1)
(1) γ

ε(2)
(2) · · · γ

ε(k)
(k)

we define
Zγ := Zγ(1) ⊕Zγ(2) ⊕ · · · ⊕ Zγ(k) ,

where each summand Zγ(i) , for all 1 ≤ i ≤ k, has been assigned the color ε(i). For

example, for n = 9, r = 2 and γ = (20)(11, 21)(30, 10) we have

Zγ = Z(2)⊕Z(1,2)⊕Z(3,1) =

with colors 0, 1 and 0. The map γ 7→ Zγ is the desired bijection.

If (Z, ε) is a colored ribbon with k parts, then the colored descent set of a
standard Young tableau Q ∈ SYT(Z) is defined to be the pair sDes(Q) = (S

∧
, δ) ∈

Σ(n, r) where

� δ is the restriction to S
∧

of the map δ̃ : [n]→ Zr defined as δ̃(i) = ε̃(j), where
1 ≤ j ≤ k is the color of the part of Z in which i appears in Q, and

� i ∈ S, if δi 6= δi+1, or else if δi = δi+1 and i ∈ Des(Q).

Example 5.4.3. Let Z = (Z(2)⊕Z(1,2)⊕Z(3,1), (0, 1, 0)) be the 2-colored ribbon
with 9 cells and 3 parts considered in the proof of Proposition 5.4.2. If

Q =

3
2 5 8

1 7
9

4 6

then δ̃ = (1, 0, 0, 0, 0, 0, 1, 0, 1) and

sDes(Q) = {11, 30, 50, 60, 71, 80, 91}.

For σ = (S
∧
, ε) ∈ Σ(n, r), let

Dσ := {w ∈ Sn,r : sDes(w) = σ}
D−1
σ := {w ∈ Sn,r : sDes(w−1) = σ}

D
−1
σ := {w ∈ Sn,r : sDes(w−1) = σ}

be the colored descent class, the inverse colored descent class and the conjugate-
inverse colored descent class respectively, corresponding to σ. Also, define σ as the
r-colored subset of [n] with underlying set S

∧
and color map −ε.
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Lemma 5.4.4. For all σ ∈ Σ(n, r),

D−1
σ = D

−1
σ (5.8)

D
−1
σ = D−1

σ . (5.9)

Proof. We will prove Equation (5.9). Equation (5.8) can be proved in a similar way.

Let σ = (S
∧
, ε). Notice that if wδ ∈ D

−1
σ , that is

sDes(wδ
−1

) = σ,

then by Observation 1.2.1 we have ε = w−1(δ), since a colored permutation and its
colored descent set have the same color vector. But, this is equivalent to

sDes(wε−1) = σ

and therefore wδ ∈ D−1
σ .

The following observation exploits the connection between tableaux of colored
ribbon shape and (conjugate-inverse) colored descent classes and therefore consti-
tutes a colored analogue to Lemma 1.3.1.

Proposition 5.4.5. For every σ ∈ Σ(n, r), there exists a bijection from the set
SYT(Zσ) to the colored descent class Dσ such that

sDes(Q) = sDes(w−1),

where w is the r-colored permutation associated to the tableau Q ∈ SYT(Zσ). In

particular, the distribution of the sDes is the same over D
−1
σ and SYT(Zσ).

Proof. Given a tableau Q ∈ SYT(Zσ), we define an r-colored permutation wε ∈ Sn,r

as in the case r = 1 (see, for example, the proof of [7, Proposition 10.12]) by reading
the cell entries of Q in the northeast direction, starting from the southwestern corner
and assigning each cell entry a color from Zr according to the color of each cell, which
is determined by the color vector of σ. It follows directly from the definition that
the colored descent set of w equals σ and therefore wε ∈ Dσ. This process can be
reversed in a unique way and therefore resulting in a bijection.

For the second assertion, suppose sDes(Q) = (T
∧
, δ). By the definition of sDes(Q),

for all i ∈ [n], δ̃(i) records the color of the part of Z in which i appears in Q. Since
wε is the reading word of Q, this means δ̃ = w−1(ε), which by Observation 1.2.1
is exactly the color vector of sDes(wε

−1
). To conclude the proof notice that if

εw−1
i

= εw−1
i+1

and w−1
i > w−1

i+1, then i+ 1 appears to the left of i in w and therefore

i+ 1 appears in a lower cell than i does in Q which implies i ∈ T .

Example 5.4.6. To illustrate Proposition 5.4.5 let n = 10, r = 3 and consider

σ = {32, 40, 61, 82, 92, 101} 7−→ co(σ) = (3)2 (1)0 (2)1 (2, 1)2 (1)1
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and therefore

Zσ = .

If, for example,

Q =

3
4

5 8
6 10

9
1 2 7

∈ SYT(Zσ)

then the corresponding reading word is

w = 12 22 72 90 61 101 52 82 42 31 ∈ Dσ .

Now, one computes

w−1 = 12 22 101 92 72 51 32 82 40 61

sDes(w−1) = {22, 31, 42, 52, 61, 82, 90, 101}

as well as
sDes(Q) = sDes(w−1).

5.5 Colored ribbons and descent representations for col-
ored permutation groups

Recall that any product of (skew) Schur functions is a (skew) Schur function
(see the discussion on page 339 of [89]). In particular, notice that for skew shapes
λ1, λ2, . . . , λk, we have

sλ1⊕λ2⊕···⊕λk = sλ1sλ2 · · · sλk .

Each r-colored ribbon (Z, ε) with n cells defines an element of Sym
(r)
n , which is

the product of ribbon Schur functions in x(0),x(1), . . . , and x(r−1). In particular, if
Z = Z1 ⊕ Z2 ⊕ · · · ⊕ Zk, let

s(Z,ε)(X
(r)) := sZ1(x(ε1))sZ2(x(ε2)) · · · sZk(x(εk)).

Definition 5.5.1. For an r-colored subset σ of [n], the (unique) Sn,r-character χσ
defined by

chr(χσ)(X(r)) = sZco(σ)
(X(r)) (5.10)

is called the descent character of Sn,r corresponding to σ. The corresponding Sn,r-
representation, written φσ, is called the descent representation of Sn,r corresponding
to σ. We define the descent character (resp. representation) corresponding to an
r-colored composition in a similar way and denote by rσ(X(r)) the right-hand side
of Equation (5.10).
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Remark 5.5.2. Given σ ∈ Σ(n, r), notice that for each tableau Q ∈ SYT(Zσ), there

exists a standard Young r-partite tableauQQQ ∈ SYT(Z
(0)
σ ,Z

(1)
σ , . . . ,Z

(r−1)
σ ) (uniquely)

obtained in the obvious way, where Z
(j)
σ is the direct sum of ribbons of color j, for

all 0 ≤ j ≤ r − 1 appearing in Zσ (in order of appearance), with the property
that sDes(Q) = sDes(QQQ). For example, the standard Young 3-partite tableau which
corresponds to the tableau Q of Example 5.4.6 is

QQQ =

(
9 ,

3
6 10

,
4

5 8
1 2 7

)
and

sDes(QQQ) = {22, 31, 42, 52, 61, 82, 90, 101},

which coincides with sDes(Q). Having in mind the construction of irreducible Sn,r-
representations as presented, for example, in [93, Section 4] or [50, Section II], [94,
Section 5] for r = 2, one can see that descent representations of Definition 5.5.1 are
actually extensions of Specht modules of skew shape from the symmetric group to
the r-colored permutation group.

The following colored analogue of Lemma 1.6.2 proves that conjugate-inverse
colored descent classes are Schur-positive sets for the descent characters of colored
permutation groups and therefore contributes one more item to the list at the end
of Section 5.3. The fact that inverse colored descent classes are Schur-positive (and
in particular fine sets) was proved in [1, Poposition 5.5(i)]. The new result is that
they correspond to descent characters of colored permutation groups, the lack of
which was part of our motivation.

Theorem 5.5.3. For all σ ∈ Σ(n, r),

F (D−1
σ ; X(r)) = F (D

−1
σ ; X(r)) = F (SYT(Zσ); X(r)) = rσ(X(r)). (5.11)

In particular, conjugate-inverse colored descent classes are Schur-positive for the
descent characters of Sn,r and

rσ(X(r)) =
∑
λλλ`n

cλλλ(σ)sλλλ(X(r)), (5.12)

where cλλλ(σ) counts the number of standard Young r-partite tableaux QQQ ∈ SYT(λλλ)
such that sDes(QQQ) = σ.

Proof. The first equality of Equation (5.11) follows from Lemma 5.4.4. The second
equality follows directly from Proposition 5.4.5. Remark 5.5.2 together with Equa-
tion (2.5) yields the second equality of Equation (5.11). For the second assertion,
notice that the colored Robinson–Schensted correspondence implies that

F (D
−1
σ ; X(r)) =

∑
λλλ`n

∑
PPP ,QQQ∈ SYT(λλλ)

sDes(PPP )=σ

FsDes(QQQ)(X
(r))

which expands to the right-hand side of Equation (5.12) by Equation (2.5).



5.5 Colored ribbons and descent representations 94

The expansion in Equation (5.12) coincides with [15, Theorem 10.5] for the
case of colored permutation groups and emphasizes the connection with Bagno and
Biagioli’s descent representations for complex reflection groups. For a different
notion of type B descent representations we refer to [76, Section 5].

Example 5.5.4. We verify Theorem 5.5.3 in a specific example by computing8

F (D−1
σ ; x(0),x(1)) and rσ(x(0),x(1)) for σ = {10, 21, 30} ∈ Σ(3, 2). On the one hand,

we have
D−1
σ = {102130, 103021, 211030, 213010, 301021, 302110}

and therefore

F (D−1
σ ; x(0),x(1)) = F{1,2,3}(x

(0),x(1)) + F{2,3}(x
(0),x(1)) + F{1,3}(x

(0),x(1))

+ F{1,2,3}(x
(0),x(1)) + F{1,2,3}(x

(0),x(1)) + F{1,2,3}(x
(0),x(1))

= s(2)(x
(0))s(1)(x

(1)) + s(1,1)(x
(0))s(1)(x

(1)).

On the other hand, we have

Zσ =

with color vector (0, 1, 0) and therefore

rσ(x(0),x(1)) = s(1)(x
(0))s(1)(x

(1))s(1)(x
(0))

=
(
s(2)(x

(0)) + s(1)(x
(0))
)
s(1)(x

(1))

= s(2)(x
(0))s(1)(x

(1)) + s(1,1)(x
(0))s(1)(x

(1)).

The corresponding standard Young bitableaux of shape ((2), (1)) and ((1, 1), (1))
with colored descent set σ are

( 1 3 , 2 ) ,
(

1
3
, 2

)
,

respectively.

Definition 5.5.5. For an r-colored composition γε = (γε11 , γ
ε2
2 , . . . , γ

εk
k ) of n, let

1γε := 1γ1,ε1 × 1γ2,ε2 × · · · × 1γk,εk

be the character of the outer tensor product representation

1γ1,ε1 � 1γ2,ε2 � · · ·� 1γk,εk

of Sγ,r := Sγ1,r × Sγ2,r × · · · × Sγk,r. For an r-colored subset σ of [n] we write
1σ := 1co(σ).

Since the characteristic map chr is a ring homomorphism, it is easy to compute
the image of 1γε . In particular, we have

chr(1γε ↑
Sn,r
Sγ,r

)(X(r)) = chr(1γ1,ε1)(X(r)) chr(1γ2,ε2)(X(r)) · · · chr(1γk,εk)(X(r))

= hγ1(x(ε1))hγ2(x(ε2)) · · ·hγk(x(εk)), (5.13)

8In the case r = 2 notice that w = w for all signed permutations w ∈ Bn.
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where the second equality follows from Lemma 5.1.1.

The following theorem provides a formula9 for the descent characters as the
alternating sums of inductions of the characters introduced in Definition 5.5.5, thus
providing a colored analogue of Equation (1.20). It will play a central role later, in
the proof of Theorem 5.6.5.

Theorem 5.5.6. For all r-colored compositions γ of n

χγ =
∑
β� γ

(−1)`(γ)−`(β)
1β ↑

Sn,r
Sβ,r

. (5.14)

Proof. Since the characteristic map is an isomorphism it suffices to prove

rγ(X(r)) =
∑
β� γ

(−1)`(γ)−`(β) chr(1β ↑
Sn,r
Sβ,r

)(X(r)), (5.15)

for all r-colored compositions γ of n. Let γε be an r-colored composition of n with
rainbow decomposition

γε = γ
ε(1)
(1) γ

ε(2)
(2) · · · γ

ε(k)
(k) .

Expanding each term of the right-hand side of Equation (5.10) according to Equa-
tion (1.20) yields

rγ(X(r)) =
k∏
i=1

rγ(i)(x
(ε(i)))

=
k∏
i=1

∑
β(i)� γ(i)

(−1)`(γ(i))−`(β(i)) hβ(i)(x
(ε(i)))

=
∑

1≤i≤k
β(i)� γ(i)

(−1)`(γ)−`(β(1))−···−`(β(k))hβ(1)(x
(ε(1))) · · ·hβ(k)(x

(ε(k))), (5.16)

since the length of γ is the sum of all lengths of γ(i). Now, if we let β := β(1)β(2) · · ·β(k)

and assign to each β(i) the color ε(i), then

� `(β) = `(β(1)) + `(β(2)) + · · ·+ `(β(k)), and

� conditions β(i) � γ(i), for each 1 ≤ i ≤ k are precisely equivalent to β � γ.

By this observation and Equation (5.13), Equation (5.16) becomes Equation (5.15)
and the proof follows.

5.6 Products of Schur-positive sets

Mantaci and Reutenauer [67] introduced a subalgebra of the group algebra CSn,r

of Sn,r which arises naturally when working with colored descent sets and contains
Solomon’s descent algebra of type Bn for r = 2. We recall its statement, following
the exposition of [72, Section 3].

9It was communicated to the author by Athanasiadis [13] for r = 2.
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Theorem 5.6.1. (Mantaci–Reutenauer [67, Section 3]) For an r-colored subset σ
of [n], let

dσ :=
∑
w∈Dσ

w.

For any σ, τ ∈ Σ(n, r), we have

dσ dτ =
∑

%∈Σ(n,r)

c̃%σ,τ d%, (5.17)

where the multiplication takes place in CSn,r and c%σ,τ counts pairs (u, v) ∈ Sn,r ×
Sn,r such that sDes(u) = σ, sDes(v) = τ and sDes(uv) = %. In particular, the
set {dσ : σ ∈ Σ(n, r)} spans a subalgebra, written MRn, of CSn,r of dimension10

r(r + 1)n−1 called the Mantaci–Reutenauer algebra.

It follows from the work of Baumann–Hohlweg [19], Bergeron–Hohlweg [21]

and Petersen [72] that QSym
(r)
n can be given a structure of a coalgebra in a sim-

ilar way to the uncolored case such that the Mantaci–Reutenauer algebra MR :=
C⊕MR1⊕MR2⊕ · · · is isomorphic to the graded dual QSym(r)◦ of the algebra of
colored quasisymmetric functions. In addition, Bergeron and Hohlweg [21, Theo-
rem 2.12 and Theorem 5.3] prove that the set

∑
w∈Sn,r
co
∧

(w)=γ

w : γ is a colored peak composition of n


spans a subalgebra of MRn which is isomorphic to the graded dual Π

(r)
n

◦
of the

algebra of colored peak functions.

Remark 5.6.2. The following diagram illustrates the relations between the colored
analogues of the structures which appear in 5.2.1: Sym(r),R(S(r)) (r-partite parti-
tions), Sym(r),MR (r-colored compositions), Π(r) (colored peak compositions) and
shuffle algebras of sDes and sPk.

AsPk AsDes

Π(r) QSym(r) QSym(r)◦ MR Π(r)◦

Sym(r) Sym(r) R(S(r))

∼= ∼=

dual ∼=

dual ∼=
as rings

The (multiset-)product of two subsets A,B ⊆ Sn,r, written AB, is defined to
be the multiset of all r-colored permutations of the form uv for u ∈ A and v ∈ B.
Similarly to the uncolored case, the fact that MRn forms an algebra implies that
products of (conjugate-)inverse colored descent classes are Schur-positive.

10This is the number of r-colored subsets of [n].
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Proposition 5.6.3. Products of (conjugate-)inverse colored descent classes are
Schur-positive.

Example 5.6.4. We verify Proposition 5.6.3 for n = 3, r = 2 and σ = {11, 20, 30}, τ =
{11, 30}. On the one hand, we have

D−1
σ = {113020, 301120, 302011}

D−1
τ = {112030, 201130, 203011}

and therefore

D−1
σ D−1

τ = {103020, 301020, 302010, 311120, 113120, 112031, 312011,

203111, 201131}
= D−1

{20,30} ∪D−1
{10,20,30} ∪D−1

{11,20,31} .

On the other hand, we have

Dσ = {113020, 213010, 312010}
Dτ = {112030, 211030, 311020}

and therefore

Dτ Dσ = {103020, 213011, 312011, 203010, 113021, 311121, 302010,

112031, 211031}
= D{20,30} ∪D{10,20,30} ∪D{11,20,31} .

For all σ ∈ Σ(n, r), let

R
−1
σ := {w ∈ Sn,r : sDes(w−1) � σ} =

⋃
τ ≺σ

D
−1
τ .

The following theorem is a strengthening of Proposition 5.6.3. It provides a method
of constructing Schur-positive sets of colored permutations from known ones by tak-
ing the product with some (conjugate-)inverse colored descent class. It is essentially
a colored analogue of Theorem 5.2.2.

Theorem 5.6.5. Let A ⊆ Sn,r be a Schur-positive multiset for the Sn,r-character
χ. For all σ ∈ Σ(n, r) the following hold.

(1) The product AR
−1
σ is Schur-positive for the character (χ ↓Sσ,r ⊗ 1σ) ↑Sn,r .

(2) The product AD
−1
σ is Schur-positive for the character χ ⊗ χσ of the inner

tensor product of the Sn,r-representation with character χ and the descent
representation of Sn,r corresponding to σ.

Before proceeding to prove Theorem 5.6.5, we take a look at the special case σ =
{nj}, for all 0 ≤ j ≤ r − 1. We will use the following consequence of Lemma 5.1.1.
We remark that Lemma 5.6.6, below, holds also for Knuth classes.
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Lemma 5.6.6. For all r-partite partitions λλλ of n and all 0 ≤ j ≤ r − 1,

F (SYT(shift−j(λλλ)); X(r)) = chr(χ
λλλ ⊗ 1n,j)(X(r)) (5.18)

and
F (SYT(shift−j(λλλ)); X(r)) =

∑
QQQ∈SYT(λλλ)

Fshiftj(sDes(QQQ))(X
(r)). (5.19)

Proof. Let λλλ = (λ(0), λ(1), . . . , λ(r−1)) be an r-partite partition of n. Since

chr(χ
λλλ)(X(r)) = sλλλ(X(r)),

Lemma 5.1.1 implies that

chr(χ
λλλ ⊗ 1n,j)(X(r)) = shiftj

(
sλλλ(X(r))

)
= sλ(0)(x

(j))sλ(1)(x
(j+1)) · · · sλ(r−1)(x(j−1))

= sλ(−j)(x
(0))sλ(−j+1)(x(1)) · · · sλ(−j+r−1)(x(r−1))

= sshift−j(λλλ)(X
(r))

= F (SYT(shift−j(λλλ)); X(r)),

where the last equality follows from Equation (2.5) and the proof of Equation (5.18)
follows. For the proof of Equation (5.19), notice that every element of SYT(shift−j(λλλ))
is of the form (

Q(−j), Q(−j+1), . . . , Q(−j+r−1)
)

for some QQQ = (Q(0), . . . , Q(r−1)) ∈ SYT(λλλ) and that

sDes
(
Q(−j), Q(−j+1), . . . , Q(−j+r−1)

)
= shiftj(sDes(QQQ)).

Theorem 5.6.7. Let 0 ≤ j ≤ r − 1. If A ⊆ Sn,r is a Schur-positive multiset for

the Sn,r-character χ, then AD
−1
{nj} is Schur-positive for the Sn,r-character χ⊗1n,j.

Proof. Since A is Schur-positive for χ, by Theorem 5.3.1 there exists a multiset
partition A = A1 t A2 t · · · t Am and sDes-preserving bijections Ai → SYT(λλλi)

for some r-partite partition λλλi of n. Now, D
−1
{nj} consists only of 1j2j · · ·nj and

multiplying each Ai by D
−1
{nj} amounts to shifting all colors inside λλλi by −j. In

particular, we have

F (AiD
−1
{nj}; X

(r)) =
∑

QQQ∈SYT(λλλi)

Fshiftj(sDes(QQQ))(X
(r))

= F (SYT(shift−j(λλλ
i)); X(r))

= chr(χ
λλλi ⊗ 1n,j)(X

(r)), (5.20)
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where the second and third equalities follow from Equations (5.19) and (5.18), re-
spectively. Taking the sum over all i in Equation (5.20) yields

F (AD
−1
{nj}) =

∑
i

chr(χ
λλλi ⊗ 1n,j) = chr

((∑
i

χλλλ
i

)
⊗ 1n,j

)
= chr(χ⊗ 1n,j)

and the proof follows.

Most of the remaining of this section is devoted to the proof of Theorem 5.6.5.
The strategy for the proof is essentially the same as Elizalde and Roichman’s in
[39, Section 5] for the unsigned case. We start by noticing that (1) implies (2) in
Theorem 5.6.5.

Proof that (1) implies (2) in Theorem 5.6.5. Suppose that AR
−1
σ is a Schur-positive

multiset for the Sn,r-character (χ ↓Sσ,r ⊗ 1σ) ↑Sn,r . By definition, we have

F (AR
−1
σ ; X(r)) =

∑
τ �σ

F (AD
−1
τ ; X(r))

and therefore by the principle of inclusion–exclusion we get

F (AD
−1
σ ; X(r)) =

∑
τ �σ

(−1)|σ|−|τ |F (AR
−1
τ ; X(r)) ∈ Sym(r), (5.21)

where |σ| denotes the cardinality of the underlying set of σ.

By the following observation in the representation theory of finite groups (see,
for example, [97, Corollary 4.3.8]) we know that

(χ ↓Sτ,r ⊗ 1τ ) ↑Sn,r = χ⊗ 1τ ↑Sn,r

for all r-colored subsets τ of [n]. Taking the (alternating) sum over all τ � σ on
both sides yields

∑
τ �σ

(−1)|σ|−|τ |(χ ↓Sτ,r ⊗ 1τ ) ↑Sn,r= χ⊗

∑
τ �σ

(−1)|σ|−|τ |1τ ↑Sn,r
 = χ⊗ χσ,

(5.22)
where the last equality follows from Equation (5.14). Finally, taking the character-
istic map on the far left-hand side and the far right-hand side of Equation (5.22)
and comparing with Equation (5.21), we conclude

F (AD−1
σ ; X(r)) = chr(χ⊗ χσ)(X(r)),

as required.

We will review the strategy of Elizalde–Roichman’s proof in a specific example,
before proceeding to the colored version. Consider the set of derangements in S3

D3 = {231, 312}.
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We have
F (D3; x) = F(2,1)(x) + F(1,2)(x) = ch(χ(2,1)).

A key observation is that for all S = {s1 < s2 < · · · < sk} ⊆ [n− 1],

R−1
n,S = (1, 2, . . . , s1)� (s1 + 1, s1 + 2, . . . , s2)� · · ·� (sk + 1, sk + 2, . . . , n)

(see, for example, [4, Observation 2.1]). Thus, we have

R−1
3,S =


123 = {123}, if S = ∅
1� 23 = {123, 213, 231}, if S = {1}
12� 3 = {123, 132, 312}, if S = {2}
1� 2� 3 = S3, if S = {1, 2}.

Theorem 5.2.2 asserts that

D3 R−1
3,S =


D3, if S = ∅
(2� 31) ∪ (3� 21), if S = {1}
(23� 1) ∪ (31� 2), if S = {2}
(2� 3� 1) ∪ (3� 1� 2), if S = {1, 2}

(5.23)

is fine multiset for the Sn-character

χ(2,1) ↓SS↑
S3 =


χ(2,1) ↓S∅↑S3= χ(2,1), if S = ∅
χ(2,1) ↓S(1,2)

↑S3 , if S = {1}
χ(2,1) ↓S(2,1)

↑S3 , if S = {2}
χ(2,1) ↓S(1,1,1)

↑S3 , if S = {1, 2}.

The proof proceeds as follows: The set D3 can be partitioned (see [39, Propo-
sition 5.9]) in such a way that each block is in Des-preserving bijection with a
Cartesian product of Knuth classes11 determined by S

D3 −→


K[3](2, 1) ∪K[3](1, 2), if S = ∅(
K[1](1)×K[2,3](1, 1)

)
∪
(
K[1](1)×K[2,3](2)

)
, if S = {1}(

K[2](2)×K{3}(1)
)
∪
(
K[2](1, 1)×K{3}(1)

)
, if S = {2}(

K[1](1)×K{2}(1)×K{3}(1)
)2
, if S = {1, 2}.

(5.24)

and each one of these is fine for the SS-character

χ(2,1) ↓SS =


χ(2,1) ↓S∅= χ(2,1), if S = ∅
χ(2,1) ↓S(1,2)

, if S = {1}
χ(2,1) ↓S(2,1)

, if S = {2}
χ(2,1) ↓S(1,1,1)

, if S = {1, 2}.

11Here, abusing notation, we write K[a,b](λ) for KP , where P ∈ SYT(λ) with content [a, b].
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Because the descent set is shuffle compatible, (5.24) implies that the distribution of
Des is the same over (5.23) and over

K[3](2, 1) ∪K[3](1, 2), if S = ∅(
K[1](1)�K[2,3](1, 1)

)
∪
(
K[1](1)�K[2,3](2)

)
, if S = {1}(

K[2](2)�K{3}(1)
)
∪
(
K[2](1, 1)�K{3}(1)

)
, if S = {2}(

K[1](1)�K{2}(1)�K{3}(1)
)2
, if S = {1, 2}.

(5.25)

Now, because shuffles of Knuth classes correspond to induction of characters (see
[39, Lemma 5.6]) the sets in (5.25) are fine for the S3-characters

χ(2,1), if S = ∅(
χ(1) � χ(1,1)

)
↑S3 +

(
χ(1) � χ(2)

)
↑S3 , if S = {1}(

χ(2) � χ(1)
)
↑S3 +

(
χ(1,1) � χ(1)

)
↑S3 , if S = {2}

2
(
χ(1) � χ(1) � χ(1)

)
↑S3 , if S = {1, 2}.

Analysing χ(2,1) ↓SS as a sum of irreducible SS-characters via the decomposition
(5.24) and keeping in mind that Knuth classes correspond to irreducible characters
yields

χ(2,1) ↓SS =


χ(2,1), if S = ∅(
χ(1) � χ(1,1)

)
+
(
χ(1) � χ(2)

)
, if S = {1}(

χ(2) � χ(1)
)

+
(
χ(1,1) � χ(1)

)
, if S = {2}

2
(
χ(1) � χ(1) � χ(1)

)
, if S = {1, 2}

and the proof follows by basic properties of induction.

We turn our attention now to the colored case, by proving a couple of technical
lemmas which will be used in the proof of Theorem 5.6.5. We begin with the
following, a signed version of which can be found in [4, Lemma 4.1].

Lemma 5.6.8. For all σ = (S
∧

= {s1 < s2 < · · · < sk < sk+1 := n}, ε) ∈ Σ(n, r)

R
−1
σ =

(
1ε(s1), · · · , sε(s1)

1

)
�

(
(s1 + 1)ε(s2), · · · , sε(s2)

2

)
�

· · ·�
(

(sk + 1)ε(sk+1), · · · , sε(sk+1)
k+1

)
.

(5.26)

In particular, if σ is a minimal element of Σ(n, r) then the left-hand side of Equa-

tion (5.26) becomes D
−1
σ .

Proof. Given an r-colored permutation wδ, we can describe sDes(wε
−1

) in the fol-
lowing way: We read numbers 1, 2, . . . , n in the window notation of wδ in their
natural order until either

� their color, which is determined by δ, changes

� or we reach the end of wδ
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and then, we start at the beginning. To each i ∈ [n] we assign the color δw−1
i

. The

set of all last entries of each run together with its assigned color forms the conjugate-
inverse colored descent set of wε (see, also, the discussion in [90, Page 37] for the
unsigned case). Using this observation one can determine Equation (5.26).

Example 5.6.9. For example, for w = 314150601222 ∈ S6,4 with color vector
(1, 1, 0, 0, 2, 2) we have the following runs

1222, 3141, 5060

and therefore sDes(w−1) = {22, 41, 60}. In addition, w−1 = 5262161213040 which
coincides with our computation. This is an example of an element in

R
−1
{22,31,41,60} = 1222

� 31
� 41

� 5060.

Lemma 5.6.10. Let γε = (γε11 , γ
ε2
2 , . . . , γ

εk
k ) be an r-colored composition of n and by

abuse of notation consider the Knuth classes KBi(γ)(λλλ
i) for some r-partite partitions

λλλi of γi, for all 1 ≤ i ≤ k. The set

KB1(γ)(λλλ
1)� · · ·�KBk(γ)(λλλ

k)

is Schur-positive for the Sn,r-character(
χλλλ

1

� · · ·� χλλλ
k
)
↑Sn,rSγε,r

.

Proof. It suffices to prove it for the case k = 2. In this case, we have to prove that
the set K[k](λλλ

1)�K[k+1,n](λλλ
2), for all r-partite partitions λλλ1 and λλλ2 of k and n− k,

respectively, is Schur-positive for the Sn,r-character
(
χλλλ

1
� χλλλ

2
)
↑Sn,rS(k,n−k),r

. On the

one hand, by the properties of the characteristic map , see that

chr

((
χλλλ

1

� χλλλ
2
)
↑Sn,rS(k,n−k),r

)
= sλλλ1sλλλ2 = sλλλ1⊕λλλ2 ,

where the direct sum of two r-partite partitions λλλ1 and λλλ2 is defined to be the r-
partite partition whose j-colored part is the direct sums of the j-colored parts of λλλ1

and λλλ2. On the other hand, we also know that

F (K[k](λλλ
1); X(r))F (K[k](λλλ

2); X(r)) = sλλλ1⊕λλλ2(X(r))

and therefore by Equation (2.5) it suffices to prove

F (K[k](λλλ
1)�K[k+1,n](λλλ

2); X(r)) = F (SYT(λλλ1⊕λλλ2); X(r)). (5.27)

This essentially a colored version of [39, Theorem 2.5].

We describe an sDes-preserving bijection

ϕ : K[k](λλλ
1)�K[k+1,n](λλλ

2) −→ SYT(λλλ1⊕λλλ2)
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as follows. For a colored permutation wδ ∈ K[k](λλλ
1)�K[k+1,n](λλλ

2) there exist unique

u ∈ K[k](λλλ
1) and v ∈ K[k+1,n](λλλ

2) such that wδ ∈ u� v. Let

{w−1
i : 1 ≤ i ≤ k} = {a1 < a2 < · · · < ak}

{w−1
i : k + 1 ≤ i ≤ n} = {b1 < b2 < · · · < bn−k}

be the list of positions of the letters of u (resp. v) in wδ. Now, consider the r-partite
tableau QQQ(u) ⊕QQQ(v) whose j-colored part is the direct sum of the j-colored parts
of the recording tableau of u and v via the colored Robinson–Schensted correspon-
dence. Let ϕ(wδ) be the standard r-partite tableau of shape λλλ1⊕λλλ2 obtained from
QQQ(u)⊕QQQ(v) by replacing each letter i by ai if i ≤ k and by bi−k if i > k. Then one
sees that sDes(wδ) = sDes(ϕ(wε)) and the proof follows.

Example 5.6.11. We will illustrate the correspondence ϕ described in the proof of
Lemma 5.6.10 with a specific example. Consider the Knuth classes corresponding
to

PPP 1 =
(

1 3 4
5

, ∅ , 2

)
∈ SYT ((3, 1),∅, (1))

PPP 2 = ( 6 8 , 7 , 9 ) ∈ SYT ((2), (1), (1)) .

Let u = 1030502240 ∈ KPPP 1 , v = 71609280 ∈ KPPP 2 and consider the shuffle

w = 716010305022928040 ∈ KPPP 1�KPPP 2 .

We compute

{w−1
i : 1 ≤ i ≤ k} = {3 < 4 < 5 < 6 < 9}

{w−1
i : k + 1 ≤ i ≤ n} = {1 < 2 < 7 < 8}

and

QQQ(u)⊕QQQ(v) =

(
7 9

1 2 3
5

,
6

∅ ,
8

4

)
∈ SYT (((3, 1),∅, (1))⊕ ((2), (1), (1))) .

Therefore, we have

ϕ(w) =

(
2 8

3 4 5
9

,
1

∅ ,
7

6

)
and thus

sDes(w) = sDes(ϕ(w)) = {11, 20, 50, 72, 80, 90}

as expected.

We are now in position to give the proof of Theorem 5.6.5.

Proof of Theorem 5.6.5 (1). Let

σ =
(
S
∧

= {s1 < s2 < · · · < sk < sk+1 := n}, ε
)
∈ Σ(n, r).
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There exists a multiset partition A = A1 t A2 t · · · t Am and sDes-preserving
bijections

Ai −→ K[s1](λλλ
i
1)×K[s1+1,s2](λλλ

i
2)× · · · ×K[sk+1,sk+1](λλλ

i
k)

for some r-partite partitions λλλij of sj+1 − sj , for all 0 ≤ j ≤ k. (cf. Theorem 5.3.1).
Notice that in terms of Sn,r-character this implies that the decomposition of χ ↓Sσ,r
into irreducible Sσ,r-characters is

χ ↓Sσ,r =
∑
i

χλλλ
i
1 � · · ·� χλλλ

i
k . (5.28)

Lemma 5.6.8 implies that AR
−1
σ consists of all elements of(

w
δ1+ε(s1)
1 , · · · , wδs1+ε(s1)

s1

)
� · · ·�

(
w
δsk+1+ε(sk+1)

sk+1 , · · · , w
δsk+1

+ε(sk+1)
sk+1

)
for all wδ ∈ A. Since

� multiplying each Ai by R
−1
σ amounts to shifting all colors inside λλλi by −ε(si),

and

� sDes is shuffle-compatible (see Theorem 4.4.1)

we get that the distribution of sDes is the same over AiR
−1
σ and

K[s1](shift−ε(s1)(λλλ
1))�K[s1+1,s2](shift−ε(s2)(λλλ

2))�· · ·�K[sk+1,sk+1](shift−ε(sk+1)(λλλ
k)).

By Lemma 5.6.10 and Equation (5.18), the latter is Schur-positive for the Sn,r-
character ((

χλλλ
i
1 ⊗ 1s1,ε(s1)

)
� · · ·�

(
χλλλ

i
k ⊗ 1sk+1−sk,ε(sk+1)

))
↑Sn,rSσ,r

.

Therefore AR
−1
σ is Schur-positive for the Sn,r-character∑

i

((
χλλλ

i
1 ⊗ 1s1,ε(s1)

)
� · · ·�

(
χλλλ

i
k ⊗ 1sk+1−sk,ε(sk+1)

))
↑Sn,rSσ,r

=

(∑
i

(
χλλλ

i
1 ⊗ 1s1,ε(s1)

)
� · · ·�

(
χλλλ

i
k ⊗ 1sk+1−sk,ε(sk+1)

))
↑Sn,rSσ,r

=

(∑
i

(
χλλλ

i
1 � · · ·� χλλλ

i
k

)
⊗
(
1s1,ε(s1) � · · ·� 1sk+1−sk,ε(sk+1)

))
↑Sn,rSσ,r

=

((∑
i

χλλλ
i
1 � · · ·� χλλλ

i
k

)
⊗ 1σ

)
↑Sn,rSσ,r

=
(
χ ↓Sσ,r ⊗1σ

)
↑Sn,rSσ,r

,

where the last equality follows by Equation (5.28) and the proof is concluded.
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Comparing Equation (5.21) and Equation (5.15) yields

F (R
−1
σ ; X(r)) = chr

(
1σ ↑Sn,r

)
(X(r)), (5.29)

for all σ ∈ Σ(n, r), which can be easily computed via Equation (5.13). This enables
us to compute a refined distribution of the (flag) major index over conjugate-inverse
colored descent classes. Garsia and Gessel [49, Theorem 3.1] computed the distri-
bution of the major index over inverse descent classes of Sn and Adin, Brenti and
Roichman [4, Theorem 3.3] computed the distribution of the flag major index over
inverse descent classes of type B. We remark that the authors in [4] use a notion of
descent of a signed permutation which arises when one views the hyperoctahedral
group a Coxeter group of type Bn.

For nonnegative integers α1, α2, . . . , αk such that α1 + α2 + · · · + αk = n, we
define the q-multinomial coefficient to be(

n

α1, α2, . . . , αk

)
q

:=
[n]q!

[α1]q![α2]q! · · · [αk]q!
.

For k = 2 we get the usual q-binomial coefficient, defined in Section 3.2. For
S = {s1 < s2 < · · · < sk} ⊆ [n− 1], let(

n

∆S

)
q

:=

(
n

s1, s2 − s1, . . . , n− sk

)
q

.

Theorem 5.6.12. For every r-colored subset σ = (S
∧

= {s1 < s2 < · · · < sk <
sk+1 = n}, ε),

∑
w∈R

−1
σ

qmaj(w)pn(w) =

(
n

∆S

)
q

k∏
i=0

p
si+1−si
ε(si)

∑
w∈R

−1
σ

qfmaj(w)pn(w) =

(
n

∆S

)
qr
q
∑k
i=0(si+1−si)ε(si)

k∏
i=0

p
si+1−si
ε(si)

,

where s0 := 0.

Proof. In view of Equation (5.13), the proof follows by specializing Equation (5.29)

as in Corollaries 2.3.2 and 2.3.5 for A = R
−1
σ and using the formulas

ps
(r)
q,p(hn(x(j))) =

pnj
(q)n

ψ
(r)
q,p(hn(x(j))) =

qnjpnj
(qr)n

.

Remark 5.6.13. An alternative proof of Theorem 5.6.12 can be given as follows.
Consider the r-colored poset P which is the disjoint union of the chains

(si + 1)ε(si+1) <P (si + 2)ε(si+1) <P · · · <P (si+1)ε(si+1),
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for all 0 ≤ i ≤ k. Lemma 5.6.8 implies that

F (R
−1
σ ; X(r)) = Γ(P ; X(r)) =

k∏
i=0

hsi+1−si(x
(ε(si))),

where the second equality follows from Equation (4.4) and the proof follows in the
same way as above.

We finish by this chapter by posing the following conjecture.

Conjecture 5.6.14. For a Schur-positive multiset A ⊆ Sn,r and every r-colored
subset σ ∈ Σ(n, r), the distribution of the colored descent set over AD−1

σ and over
D−1
σ A is the same. In particular,

F (AD−1
σ ; X(r)) = F (D−1

σ A; X(r)).



Keep thy mind in hell and despair not.

Saint Silouan the Athonite



List of Symbols

Notation Description

[a, b] the integer interval {a, a+ 1, . . . , b}
An(x, q) n-th q-Eulerian polynomial
An(x) n-th Eulerian polynomial
A(P ) set of P -partitions

A(r)(P ) set of r-colored P -partitions
Astat shuffle algebra of stat
Bn hyperoctahedral group of order 2nn!
Bi(α) ith block of a composition α
C complex numbers
C[[x]] algebra of formal power series in x over C
ch Frobenius characteristic map
cj(w) number of j-colored cycles of w
ct cycle type of a colored permutation
Comp(n) set of all compositions of n
Comp(n, r) set of all r-colored compositions of n
co (colored) composition corresponding to a (colored)

set
colo(λ) number of columns of λ of odd length
comaj comajor index
csum color sum statistic
Dn set of all derangements of Sn

Dn,r set of all r-colored derangements of Sn,r

Des descent set
Des∗ descent set without 0 and n
des descent number
Dn,S descent class corresponding to S

D−1
n,S inverse descent class corresponding to S

Dσ colored descent class corresponding to σ
D−1
σ inverse colored descent class corresponding to σ

D
−1
σ conjugate-inverse colored descent class corre-

sponding to σ
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Notation Description

eλ elementary symmetric function associated to λ
eul Eulerian statistic
exc number of excedances
fdes flag descent number
Fn,S fundamental quasisymmetric function correspond-

ing to S
Fσ fundamental colored quasisymmetric function cor-

responding to σ
fix number of fixed points

fixj number of j-colored fixed points
Fwε FsDes(w)

FQQQ FsDes(QQQ)

F (A; x) quasisymmetric generating function of A
hλ complete homogeneous symmetric function associ-

ated to λ
In set of all involutions of Sn

In,r set of all r-colored involutions of Sn,r

Iabs
n,r set of all absolute involutions of Sn,r

inv number of inversions
KP Knuth class corresponding to P
Kα peak quasisymmetric function associated to α
ldes length descent number
lmaj length flag major index
LPk left peak set
lpk left peak number
`S length function with respect to S
`(λ) length of λ
L(P ) set of linear extensions of P
mah Mahonian statistic
maj major index
Mα monomial quasisymmetric function corresponding

to α
Mγε monomial colored quasisymmetric function corre-

sponding to γε

mλ monomial symmetric function associated to λ
MR Mantaci-Reutenauer algebra
N nonnegative integers
[n]q 1 + q + · · ·+ qn−1

[n] {1, 2, . . . , n}
nj(w

ε) number of 1 ≤ i ≤ n such that εi = j(
n
k

)
q

q-binomial coefficient(
n

α1,α2,...,αk

)
q

q-multinomial coefficient

p (p0, p1, . . . , pr−1); a sequence of indeterminates
p indeterminate
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Notation Description

P(r) Z>0 × Zr
Pk peak set
pk peak number
psq stable principal specialization

psq,m principal specialization of order m

QSym algebra of quasisymmetric functions

QSym(r) algebra of colored quasisymmetric functions
q indeterminate
(q)n (1− q)(1− q2) · · · (1− qn)
R(Sn) Z-module generated by irreducible Sn-characters
R(Sn,r) Z-module generated by irreducible Sn,r-characters
Rn,S union of descent classes corresponding to T ⊆ S
R−1
n,S union of inverse descent classes corresponding to

T ⊆ S
R
−1
σ union of conjugate-inverse colored descent classes

corresponding to τ � σ
rα ribbon Schur function associated to α
rn,S ribbon Schur function associated to S
|S| cardinality of S

Ŝ S ∪ {n}
sum(S) sum of all elements of S
sλ Schur function associated to λ
sDes colored descent set
Sα Young subgroup corresponding to α
Sn symmetric group of [n]
Sn,r r-colored permutation group of order rnn!
sPk colored peak set
Sol Solomon’s descent algebra of type A
Sym algebra of symmetric functions

Sym(r) Sym⊗r

SYT(λ) set of all standard Young tableaux of shape λ
SYT(λλλ) set of all standard Young r-partite tableaux of

shape λλλ
SSYT(λ) set of all semistandard Young tableaux of shape λ
SYTn set of all standard Young tableaux of size n
SYTn,r set of all standard Young r-partite tableaux of size

n
shiftj shift operator; shifts all colors by j positions to

the left
w−1 inverse of a (colored) permutation w
wε colored permutation with underlying permutation

w and color vector ε
wε colored permutation with underlying permutation

w and color vector −ε



Notation Description

x sequence (x1, x2, . . . ) of commuting indetermi-
nates

x(j) sequence (x
(j)
1 , x

(j)
2 , . . . ) of commuting indetermi-

nates

X(r) (x
(0)
i , x

(1)
i , . . . , x

(r−1)
i )i≥1

(x; q)n (1− x)(1− xq) · · · (1− xqn)
(x; q)∞

∏
i≥0(1− xqi)

Z integers
Zr additive cyclic group of order r
Zr oSn wreath product of Sn and Zr

Zα (colored) ribbon corresponding to the (colored)
composition α

α̂ peak composition corresponding to α
ε̃ color vector of ε
ζ a primitive r-th root of unity
λ integer partition
λλλ r-partite partition
|λ| size of λ
Π algebra of peak functions
Σ(n, r) set of all r-colored subsets of [n]
χλ irreducible Sn-character corresponding to λ

χλλλ irreducible Sn,r-character corresponding to λλλ
χσ descent Sn,r-character corresponding to σ
Ωn set of all barred integers of [n]
Ωn,r set of all r-colored integers of [n]
1n,j one-dimensional Sn,r-character corresponding to

the r-partite partition having (n) as j-colored part
and all other parts are empty

<c color order on Ωn,r

<` length order on Ωn,r

<St Steingŕımsson’s order on Ωn,r

<llex left lexicographic order on [n]× Zr
` integer partition or r-partite partition
↓ restriction of representations
↑ induction of representations
◦ induction product
� integer composition
� shuffle
⊕ direct sum
t disjoint union
⊗ inner (or Kronecker) tensor product
� outer tensor product
:= equals by definition
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Lothar. Comb. 77 (2018), B77i, 64 pp. (electronic).
arXiv:1711.05983

[13] C.A. Athanasiadis, personal communication (2020).

[14] E. Bagno, Euler–Mahonian parameters on colored permutation groups, Sémin.
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