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Abstract. We investigate the vertex-connectivity of the graphfahono-

tone paths on @-polytope P with respect to a generic functionél The

third author has conjectured that this graph is alw@ys- 1)-connected.

We resolve this conjecture positively for simple polytopes and show that the
graph is2-connected for any-polytope withd > 3. However, we disprove

the conjecture in general by exhibiting counterexamples for daeht in
which the graph has a vertex of degree two.

We also re-examine the Baues problem for cellular strings on polytopes,
solved by Billera, Kapranov and Sturmfels. Our analysis shows that their
positive result is a direct consequence of shellability of polytopes and is
therefore less related to convexity than is at first apparent.

1. Introduction

Let P be ad-dimensional polytope iiR? and f be a linear functional on

R? which is generic with respect tB, in the sense thaf is nonconstant

on every edge of’. An f-monotone path on P is a sequence of vertices
(vo,v1,...,vy) Of P such thaty andv,, are the unique vertices at which

f achieves its minimum and maximum values®@ynrespectivelyp; 1 and

v; lie on an edge ofP for eachi and f(vg) < f(vi) < -+ < f(vm).
Monotone paths have been studied in the context of the Hirsch Conjecture
[17, Sect. 3.3][10], have recently appeared in a directed version of Steinitz’s
Theorem [12], and appear in the study of fractional power series solutions
to systems of polynomial equations [11,9].

Third author partially supported by a Sloan Foundation Fellowship.



316 C.A. Athanasiadis et al.

c (bl,c, az)

(bl.al.c,az) (bl,c,bz,e;)

(bl,al,az) (bl,bz,az)

f(b) f(a) f(9 f(b) fay  f P

@ (b)

Fig. 1 (a) A 3-dimensional polytope”? and a generic linear functiongl. (b) The graph
G(P, f) of f-monotone paths oR

The set of allf-monotone paths o forms the vertex set for a natural
graph structure, which we now describe. E@etlimensional face” of P
is a polytope in its own right, in fact a polygon, and has exactly fwo
monotone paths, sayr andv%. We say that twgf-monotone paths and
~" on P differ by apolygon flip acrosd" if they agree on vertices not lying
on F' but differ in thaty restricted to the facé’ follows the pathy, while
~/ restricted toF follows .. Thegraph G (P, f) of f-monotone paths on
P is the graph whose vertices are tfienonotone paths o# and whose
edges join pairs of-monotone paths which differ by a polygon flip across
some2-face of P. An example is shown in Fig. 1.

The question of connectivity of the gragh(P, f) arises naturally in
the work of Billera and Sturmfels [4] and Billera, Kapranov and Sturmfels
[3] on thegeneralized Baues probleBaues’ original problem concerned
the homotopy theory of iterated loop spaces, where specific examples of
G(P, f) formed thel-skeleton of a cellular model for these spaces [13,2,
3]; see [14] for a survey of the generalized Baues problem. The vertices and
edges inZ(P, f) index the elements in the bottom two ranks of pleset of
cellular strings onP. This poset gives rise naturally to a topological space
(see Sect. 5), which was shown to have the homotopy type(adf-a2)-
dimensional sphere in [3]. It can be deduced from this (see [14, Sect. 3, p.
20]) that the grapld=(P, f) is connected. Furthermore, there is a subset of
the vertex set ofz( P, f) which is geometrically distinguished, namely the
subset off-monotone paths which aoeherent(see [4, p. 544], [3, p. 552],
[14, p. 12] for definitions). Under mild genericity assumptionsmand
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f, the induced subgraph 6f( P, f) on these vertices is thieskeleton of a

(d — 1)-dimensional polytope, called theonotone path polytopevhose
existence is a special case of the general thediiperf polytope$4]. Recall

that Balinski's Theorem [17, Sect. 3.5] states that thskeleton of ad-
dimensional polytope ig-connected, meaning that any subgraph obtained

by removing a set of at most — 1 vertices and their incident edges is
connected and contains at least two vertices. As a consequence, the subgraph
of coherentf-monotone paths oR is (d — 1)-connected.

The preceding results led the third author to conjecture [14, Conjecture
15] that the entire grap@i( P, f) is always(d — 1)-connected. In Sect. 3 we
exhibit counterexamples which disprove this conjecturelfor 4. Specif-
ically, for eachd > 3 we exhibit ad-polytope P, linear functionalf and
f-monotone path on P such thaty has degree two in the gragh( P, f).

Onthe other hand, Sects. 2 and 4 contain proofs of the following positive
results. Recall that d-polytope P is simpleif each vertex is incident to
exactlyd edges ofP.

Theorem 1.1. If P is a simpled-polytope andf is a generic linear func-
tional on P then the graplG(P, f) is (d — 1)-connected.

Theorem 1.2. If P is anyd-polytope withd > 3 and f is a generic linear
functional onP then the graphG (P, f) is 2-connected.

In Sect. 5 we re-examine the role played by convexity in the positive
answer to the Baues problem for cellular strings, given by Billera, Kapranov
and Sturmfels [3]. Specifically, we show that for every shelling of a regular
CW -sphereX, there is an associated Baues problem for cellular strings on
the sphereX™* which is the polar dual ok and that the shelling ok leads
to a positive answer to this problem. This gives a common generalization
for the results of [3] and of Bjrner [5].

2. G(P, f) is (d — 1)-connected for simpled-polytopes

The goal of this section is to prove Theorem 1.1, namely that for a generic
functional f on a simpled-polytope P, the graphG(P, f) is (d — 1)-
connected.

We prove this in a slightly more general form. LEtbe a finite,2-
dimensional regulaf’ ¥ -complex (see [7, Sect. 4.7], [6] for definitions and
background on regular'W-complexes). Let; be thel-skeleton ofP and
O be an acyclic orientation af. In the motivating special casé, is the
2-skeleton of a simplé-polytope andD is the acyclic orientation induced
by a generic linear functiongl. Motivated by this special case, we further
assume the following:
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(i) the entire graphG has a unique sourcg,,;, and sinkuv,,., with re-
spect toO, as does its restriction to evepyface of P (such acyclic
orientations? are calledacial in Sect. 5),

(iiy the degree ob,,;, in G is at least,

(iii) any two faces of P intersect in a unigue common face of each; in
particular, thel-skeleton ofP is a graph with no multiple edges and
different2-faces can share at most one edge, and

(iv) any two directed edges @ having common initial vertex: span a
2-face whosd -skeleton has soureewith respect ta0.

We refer to the2-faces of P as thepolygonsof P. Let G(P, O) be the
graph on the node set of all directed pathg-idrom v,,,;,, t0 V0., With
adjacency defined by the flips across the polygon3.dfo avoid confusion,
in this section we will reserve the termodefor the nodes of the graph
G(P,0) and the ternvertexfor vertices of the grapltz. The following
theorem is the main result of this section.

Theorem 2.1. If P andO are as before then the gragh(P, O) is (d — 1)-
connected.

Given two nodesy, vy, of G(P, ), we first construct a pathy; * o
in G(P,O) from 7, to v, as follows. Letu(~1,v2) be the first vertex of
either path from whichy; and~s leave through distinct edges ande,,
respectively. We proceed by induction on the positioru6f;,y2) with
respect to the partial order on the verticessohduced byO. Let F' be the
polygon of P spanned by; ande,, v be the unique sink of the boundary of
F andp be a directed path i&¥ from v t0 v,,,4,.. We choose as the part of
~v1 from v 10 v,,q4 If v is avertex ofy;. Fori = 1,2 we Iet%F be the pathin
G which follows~; and~s up tou(y1,v2), then follows the boundary df
throughe; up towv, and finally follows the patip up tov,,,.. The pathsy!’
and~{" differ by a flip acrosg". Sinceu(v;, v!') is higher thani(y1,v2) in
the partial order induced ¥ for i = 1, 2, we can define inductiveby; x v,
to be the path irG( P, ©) whose successive nodes are the oneg 6f{",
followed by those ofyl” x v,. Note that each node ef * v, is a path inG;
whose initial edge is that of; or ,.

Lemma 2.2. If v,~; and~] are nodes of7(P, O) with pairwise distinct
initial edges then the pathgx v, and~ x +} in G(P, O) are node-disjoint,
except for their initial nodey.

Proof. Let e;, ¢} be the initial edges of;,~; and~,~} be nodes on the
pathsy « v; and~ * 1 other tharry, respectively. To prove that #
we show thaky # €, whereey andel, are the first edges ofs, 74 which
are not edges of, respectively. Indeed, by constructionof ~1, there is
an alternating sequence), F, €1, Fy, . . ., F,, ¢.) of edges; of G through
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verticesy; of v and polygongr; of P such thaky = eq, ¢, = es and that
F; contains; 1, ¢;, as well all of the vertices and edgesoying between
v;—1 andv;. Similarly, there is an analogous sequence with initial edge
and terminal edge),. By our assumption (iii) orP, the two sequences are
uniquely determined by ande,, or v andel,, respectively. Since; # e/,
we should also have, # €. O

We now prove Theorem 2.1.

Proof of Theorem 2.1Let I" be a subset of the node set@{P, O) with at
mostd — 2 elements. We will show tha¥ (P, O) — I" is connected. Lef

be the set of initial edges of the elementd t@nd letA be the set of nodes
of G(P, O) with initial edge not inE. Note that the induced subgraph of
G(P,0) on A is connected since if;, v, are in4, so is every node of the
pathyy * 7o.

It thus suffices to show that any patmot in I” with initial edgee € F
can be connected (P, O) — I" to some element al\. Letk be the number
of elements off” with initial edgee. Sincel" has at mostl — 2 elements
and because of the assumption (ii) Bnthere are at leagt + 1 edges of
G throughuv,,;, not in E. Hence we may choose elementsof A, for
1 <1 < k+1, with pairwise distinct initial edges. By Lemma 2.2, the paths
~*~; arek + 1 node-disjoint paths it ( P, O), except for their initial node,
which connecty to paths inA. At least one of them avoids atl elements
of I" with initial edgee, and hence connectsto A in G(P,0) — I, as
desired. a

The following corollary is an immediate consequence of Theorem 2.1
and generalizes Theorem 1.1.

Corollary 2.3. If P is a simple polytopef is a generic linear functional
on P andwv is a vertex ofP with f-outdegreej then the graph of partial
f-monotone paths o® from v to v.,,4, and polygon flips among them is
(j — 1)-connected.

3. A monotone path on ad-polytope with only 2 flips

The goal of this section is to prove the following theorem.

Theorem 3.1. For eachd > 3 there is ad-polytopeP, linear functional
f and f-monotone path on P such thaty has degree two in the graph
G(P, f).

Proof. To constructP, start with a(d — 2)-simplex inR¢~2, Form the

(d — 1)-polytope which is the prism over this simplex, that is, its Cartesian
product with the line segmerjt-1, 1], and then letP be thed-polytope
which is the pyramid over this prism.
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Fig. 2 The functionalf (x) = ax1 + Szq4—1 should be chosen so that the level get 0
looks as shown

To be somewhat more explicit, choose real numbers t, < --- <

tq—1 symmetrically about, i.e. sothat;_; = —t;. Thenfori=1,...,d—1
let

a; = (ti, t7,27 ) tiliQa 1a 0)7

bz - (tu t227 . 7t;;i_27 _la 0)7

c =(0, 0,...,0, 0,1)

and letP be the convex hull ofay, ..., aq-1,b1,...,b4—1,c}.
Our requirement on the functionAlis that it is generic and that it orders
the vertices so that

f(b1) < f(b2),..., f(ba—2),
flar) < f(e) < f(ba-1), f(az), ..., flas—2) < flag-1).

One can achieve this by choosing Arf the form f(x) = az1 + Bz4-1

for some real constants 5. To see that such a choice is possible, note that
the projection of the vertices, b;, c onto the(z1, z4—1)-plane will look as

in Fig. 2 and one need only choose the constans$ so that the level set

f = 0 is as the line depicted there atfdincreases to the northeast. For
example, the polytope and functional shown in Fig. 1(a) are thedas8

of our construction.

With P and f as described, thg-monotone pathy is the sequence of
vertices(by, a1, ¢, bg—1,aq-1). It is straightforward to check that the only
two polygon flips applicable tey are across the triangul&@rface having
verticeshy, a1, ¢ and its symmetric partner having vertice$,;_1,aq_1. In
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checking that these are the only flips, one uses the fact thatfdees ofP
can be listed as

triangles{a;, a;j, ai }1<icj<k<d—1
{bi, bj, b }i<icjck<d—1
{c,ai,a5h1<icj<a—1
{c,bibjti<icj<a—1
{c,aisbiti<i<d—1,
quadrangles{'ai, aj, bi, bj}1§i<j§d—1-

This completes the proof. a

We conclude this section with a series of remarks about the counterex-
ample just constructed.

Remark 3.2. Ford = 4, the example constructed in the proof of Theorem
3.1 of ad-polytope with a monotone path having fewer than 1 flips is
minimal in several senses:

— It has minimum dimensiod = 4, by Theorem 1.2.

— Itachieves the minimum number of vertices possible, whi¢hlisdeed,
a4-polytope with five vertices is&simplex and all it§-monotone paths
have exactly three flips, while I is a4-polytope with six vertices, then
a quick enumeration dbale diagramgsee, e.g., [17, Sect. 6.5]) shows
that there are only four possibilities for the combinatorial typ&oFor
each of these four types, one can check by computer that no matter how
f orders the vertices, evefymonotone path o has at least three flips.

— Itachieves the minimum number of edges possible, whith.isndeed,
every vertex in at-polytope has degree at leastand thus every-
polytope with at leasT vertices has at Ieaé;l = 14 edges. However,
equality occurs only when the polytope is simple, and by Theorem 1.1
there are no simplé-polytopes yielding such examples.

For generall, the example constructed in the proof of Theorem 3.1 is a
d-polytope with2d — 1 vertices. This raises the following question.

Question 3.3.Foragiven dimensiod > 5, what is the minimum number of
vertices required to constructdapolytope and generic functionglhaving
an f-monotone path with fewer thah— 1 flips? What about two flips? Is
either of these two numbers less thah— 17?

Remark 3.4. In light of Theorem 1.1, it would be interesting to investi-
gate the question of connectivity 6f( P, f) within other natural classes of
polytopes.

For example, one might ask whether there exist monotone paths on sim-
plicial polytopes having few polygon flips. Starting with the counterexample
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in Theorem 3.1 forl = 4, one can produce a simplicial counterexample by
pulling (see [7, p. 410]) the verticdg andas of P in either order, and
using the same functiongl and f-monotone pathy. We do not know if
this technique can be used to produce simplicial counterexamples in higher
dimensions.

A class of particular interest with regard to monotone paths is that of
zonotopes; see [7, Sect. 2.2]. It is possible to construtizanotopeZ
with 6 zones and a vertexsuch that the vertex figure ¢f atv is a prism
over a2-simplex, as in thel = 4 case of our polytopal counterexamgte
Furthermore, it is also possible to choose a functigrehd anf-monotone
path onZ having only two flips. However, the analogous construction for
d = 5 fails to give any paths with fewer than four flips. These observations
suggest the following questions.

Question 3.5.If Z is ad-zonotope and > 5, is G(Z, f) always(d — 1)-
connected? IZ is ad-zonotope with at least zones, iSG(Z, f) always
(d — 1)-connected?

4. Proof of Theorem 1.2

The goal of this section is to prove Theorem 1.2, which states that the graph
G(P, f) is 2-connected forl > 3. We use ideas analogous to those in the
first proof of homotopy-sphericity of the poset of cellular stringggiven

in [3, Theorem 1.2]. We construct the grapii P, f) as a certain inverse
limit in the category of graphs and simplicial maps. This construction is
an iteration of a simpler “pullback” construction, which will be shown to
behave sufficiently well with respect to connectivity aldonnectivity.

Let v, andu,,q, be the vertices oP at which f achieves its minimum
and maximum orP, respectively, and

f(vmm) =< << Cpm-1 < Cp = f(vmaac)

be the set of values gf taken at the vertices d?. The fiberP; := f~1(c;)
isa(d—1)-polytope forl < i < m — 1. We denote by~; thel-skeleton of
P;. Similarly, for eachd < ¢ < m — 1 we denote by’; ;11 the 1-skeleton
of the fiberP; ;1 := f~1(c) for some value: with ¢; < ¢ < ¢;41. The
facial structure of?; ;, 1, and hence the graggh; ;. 1, are independent of the
choice ofc; see Fig. 3.

Since every vertex or edge i) ;1 degenerates to some vertex or edge of
P; asc approaches;, there is amap; : G; ;41 — G; for eachi. Similarly,
there is a mapy; : Gi—1,;, — G;. Thus one obtains a diagram of graphs and
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Fig. 3 The fibersP; ;1 over intermediate values ¢f

maps as follows:

Am—1 Bmfl

@ B o B
G071 —1> G1 (—1 GLQ —2> G2 (—2 s Gm,1 — Gm,mfl-

(1)

If we consider graphs asdimensional simplicial complexes, then the
maps in (1) are abimplicial, meaning that they send vertices to vertices and
edges to either edges or vertices. We defingrtherse limitG of a diagram
of graphs and simplicial maps, such as (1), to be a graph whose vertices and
edges are certain orderedtuples

F=(Fo1,Fia,....Fn-1m),

whereF; ;. is a vertex or an edge @f; ;; for eachi, F;_;; and F; ;1
have the same image i&; under the mapsy; and j;, respectively, and
moreover, this image is an edge@f if both F;_; ; and F; ;11 are edges.
We call F' avertexof G if each F; ;1 is a vertex of the graply; ;1 and
anedgeof G if the set of indices for which F; ;; is an edge of; ;1
forms a sequence of consecutive integers. The vétiaikG is defined to be
incidentto the edgel” = (Fy, Fi 9, ..., Fyyy ) if Fiipn € Fy, for
eachi. One can check that each edge-bhas exactly two vertices incident
to it, so thatGG indeed defines a graph with no loops or multiple edges, that
is, al-dimensional simplicial complex.

Eachf-monotone path on P corresponds to a vertex in the inverse limit
G, namely the verteX’ = (Fy 1, F12, ..., Fin—1,m) for which F; ;11 is the
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intersection of the fibeP; ;1 of f with the union of the edges & which~y
traverses. This correspondence is in fact a bijection. Similarly, a polygon flip
between twagf-monotone paths;, v- corresponds to an edge Gf namely

the edge Fy 1, Fi 5, - .., Fy,_y ,,) forwhich I ;. is the intersection of the
fiber P; ;11 of f with the union of the edges d? which the paths traverse
and the2-face where the flip occurs. Hence we can deduce the following

proposition.

Proposition 4.1. (cf. [3, Lemma 1.3])f diagram(1) comes from the family
of graphs{Gi, Gi,i+1} of fibers of f on P, then the inverse limit7 is
isomorphic to the graplé( P, f) of f-monotone paths of. a

A special case of the inverse limit construction, called the pullback, oc-
curs whenm = 2. In this case we have a diagram of simplicial maps of

graphsA&CﬁB whose inverse limi; has the following simpler descrip-
tion. Vertices ofG are ordered pair&s, b), wherea, b are vertices ofd, B,
respectively, and(a) = 3(b). The verticega, b) and(d’, ') are connected
by an edge irG if either

— a=d and{b,b'} is an edge of3 or

— b=10"and{a,d'} is an edge ofd or

— {a,d’} and{b, b’} are edges ofi and B, respectively, which both map
homeomorphically onto the same edge’bf

In this case, we have the following commutative diagram of simplicial maps

G 54 B

(2) TA l BJ{

A2 C
wherem4(a,b) = a andrp(a,b) = b are the usual projections. We call
such a diagram pullback diagramandG thepullbackof «, 5 1. For future
use, we denote by : G — C the composite map o m4 = 5o 7p.

The pullback is a simpler construction than that of the general inverse
limit of diagram (1). However, the inverse limit can be recovered by iterating
pullbacks as follows. LeH; denote the inverse limit of the subdiagram of
(1) which consists of all graphs and maps weakly to the leftrpf, 1, so
that Hy = Go,1, H; is the pullback of the diagrarGy; — G1 < G2
and H,,_1 is the full inverse limitG. There is a natural mafl; 1 — G;

! Note that what we are calling inverse limits and pullbacks do not satisfy the usual
universal existence and uniqueness properties in the category of graphs and simplicial maps.
For example, ifA, B are both graphs consisting of a single edge and map to a graytich
is a single vertex then the pullback, as we have defined it, is a cycle of léngthile the
categorical pullback is a complete graphdbwertices.
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obtained by first projecting a tuplép 1, . .., Fi—1,) in H;—; onto its last
entry F;_ ;, which lies inG;_1 ;, and then applying the ma@;_; ; — G;.
The following proposition is straightforward to verify.

Proposition 4.2. We have a pullback diagram

Hy —— Giin

g |

Hi,1 L) Gz
O

If the graphsG; andG; ;41 are thel-skeleta of the corresponding fibers
of f on the polytopeP, it is natural to think ofH; as the graph of partial
f-monotone paths ending in fib& ;1.

Next we collect for future use a few propositions about pullbacks, whose
proofs are completely straightforward. We use the following convention
throughout: if 3 : B — C is a simplicial map of graphs, then for any
vertexc in C, 371(c) refers to the vertex-induced subgraph®fon the
set of vertices ofB which are mapped to by 5. The simplicial map3 is
surjectiveif any vertex or edge i’ is the image of some vertex or edge,
respectively, ofB. The special case of a pullback in whi¢his a single
vertex is called th€artesian productd x B (see, e.g., [16, p. 175]).

Proposition 4.3. If (2) is a pullback diagram then:

(i) the subgraphrgl(b) of G is isomorphic to the subgrapi—(3(b)) of
A for any vertex of B,

(i) the subgraphr—!(c) of G is isomorphic to the Cartesian product
a~!(c) x B~Y(c) for any vertex of C and

(iii) surjectivity of o implies surjectivity ofrs. O

Proposition 4.4. If (2) is a pullback diagram and

() B is nonempty and connected,
(i) «is surjective and
(iii) the fibera~!(c) is connected for every vertexn C

thenG is nonempty and connected. a

Proposition 4.5. The Cartesian produc x H of 1-connected graph§, H
is 2-connected. O

Remark 4.6. Although we will not need this fact here, the previous propo-
sition generalizes to the statement thatiifis k-connected and{ is I-
connected, thetw x H is (k + [)-connected.



326 C.A. Athanasiadis et al.

One property of the polytopal degeneration maps in diagram (1) which
will be used repeatedly is the following.

Proposition 4.7. (cf. [3, Lemma 1.4])The maps

(673N Gi—l,i — GZ
Bi: Giiv1 — Gy

are surjective. Moreover, for any vertexfG; the fibersy; ' (v) and3; * (v)
are connected.

Proof. The normal fan of the polytop®;_, ; refines the normal fan of

P;. Furthermore, the adjacency graph for the full-dimensional cones in the
normal fan ofP;_; ; is exactlyG;_; ;. For each vertex of G;, the subgraph
a;l(v) is the adjacency graph for the subset of cones which refine the
unigue cone corresponding toin the normal fan ofP;. The assertions of
the proposition foky; follow from this description. The case of the map

is analogous. O

Theorem 1.2 will be deduced from the following proposition.
Proposition 4.8. If (2) is a pullback diagram and

() A, B are both2-connected,
(i) «, 3 are both surjective and
(iii) the fibersa—*(c), 371(c) are connected for every vertexn C

then the maps 4, 7 are both surjective andr is 2-connected.

Proof. Surjectivity of m4 andng is immediate from Proposition 4.3 (iii).
Note alsothat sincep is surjective and3 has atleast three vertices, by virtue
of its 2-connectivity,G must have at least three vertices. Hence removing at
most one vertex fronds leaves at least vertices. It remains to show that if
u,u’ andv are distinct vertices aff then there exists a path fromto u’ in

G — v. We distinguish three cases.

Case 14 (v) # wa(u), ma(u'). By 2-connectivity ofA, there exists a path
v fromma(u) toma(u') in A — mu(v). Sincery is surjective, we can lift
each edge of to an edge inG. By Proposition 4.3 (i), the fibers af, are
connected since so are the fibersgofHence we can “sew” together the
previously lifted edges to form a pathfrom « to «’ in G, whose image
underr 4 is . This pathy must lie inG — v, sincey liesin A — w4 (v).
Case 2:mp(v) # mp(u), 7p(u’). This is symmetric to the previous case,
interchanging4 andB.

Case 3ima(v) € {ma(u),7a(uv)} andwp(v) € {rp(u),75(u')}. Since
u, v’ andv are distinct and any vertex ¢f is determined by its two projec-
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tions underr4 andnr g, we may assume that

ma(v) = wa(u),
7'('3(7)) = TI'B(U/).

It follows that 7(v) = n(u) = w(u') =: ¢, so all three vertices, v’
andv lie in 7=1(c). By Proposition 4.3 (ii),;r—!(c) is isomorphic to the
Cartesian produet—!(c) x 37!(c). Sincea~!(c) and3~!(c) are connected
by hypothesis, they are aldeconnected as they have at least two vertices
(e.g.a"(c) containsma(v) = ma(u) andmwa(u')). Hencer—i(c) is 2-
connected by Proposition 4.5, so there exists a path freow’ in 771 (c)
which avoidsv. O

In order to apply Proposition 4.8 to the pullback diagram of Proposition
4.2, we need to identify the fibers of the mHp_; = G;. For a fixed vertex
v of G, the fibera=! (v) is, by definition, the induced subgraph, of H; ;
on the vertex set of partigl-monotone paths which end in fib&_; ; and
whose last entries map tounderc; : Gi—1,; — G;. One should think of
this subgraphf, of H; ; as the graph of partigf-monotone paths from
VUmin L0 V.

We will need to show thaf{, is connected, so we construct it as an
iteration of pullbacks. Foi < i, startwith the inverse limit of the subdiagram
of (1) containing~; ;+1,Gi—1,; and all graphs and maps lying between them.
Then take the vertex-induced subgrafih, of this graph on the vertices
whoseG;_ ;-coordinate maps to undera; : G;—1; — G;. Note that
H;_1,isthe fiberai‘l(v). One might think of the graph/; ,, as the graph
of partial f-monotone paths which start#} ;1 and endin. The following
proposition should be clear.

Proposition 4.9. We have a pullback diagram

Hj 1, —— Hjy

@ | 4l

Gj—Lj i) Gj
andHy, = H,.

Corollary 4.10. Forany vertew in G;, the graphH,, of partial f-monotone
paths ending at is nonempty and connected.

Proof. We wish to apply Proposition 4.4 to the pullback diagram (4), in
order to showf; , is nonempty and connected by descending induction on
j for j < i. At the base of the induction, we know thd;_ , is nonempty

and connected by Proposition 4.7. For the inductive step, we must check
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that the hypotheses of Proposition 4.4 are satisfied. Indeed, we know that
H; , is nonempty and connected, by induction, and ¢has surjective with
connected fibers, by Proposition 4.7. ]

We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2Me wish to apply Proposition 4.8 to the pullback
diagram (3), in order to show thaf; is 2-connected by induction oh This
will suffice, sinceG(P, f) = H,,,—1. Note that, at the base of the induction,
Hy = Gy, is 2-connected by Balinski's Theorem, since it is the graph of a
(d — 1)-polytope andi > 3.

To apply Proposition 4.8, we must check tiat_; andG; ;.1 are both
2-connected, that the maps ; are surjective and that their fibers are con-
nected. The graplt/; _; is 2-connected by the inductive hypothesis. The
graphG; ;41 is 2-connected by Balinski’s Theorem. Surjectivity @f and
connectivity of its fibers follow from Proposition 4.7. Surjectivity @fol-
lows from the fact that it is the composition of two maps

a;
Hi 1 — Gi—1; — Gy,

the first of which is surjective by Proposition 4.3 (iii) applied inductively
to diagram (3), and the second being surjective by Proposition 4.7. For any
vertexv in Gj, the fibera=!(v) is the graphH, which was shown to be
connected in Corollary 4.10. O

5. Cellular strings and shellable spheres

In this section we consider a Baues problem associated with cellular strings
on the duals of shellabl€'1¥-spheres and show that shellability suffices
to give a positive answer to this problem. This generalizes the main results
of [3,5]. Theorem 5.4, which is the main result of this section, shows that
convexity is not absolutely essential in this special case of the Baues problem,
as was hinted by the context and methods @kB¢r [5], and that it plays a
crucial role only in so far as it implies shellability.

We assume some familiarity with the notions of a regal& -complex,
shellability and a recursive (co)atom ordering. An excellent reference for
this material is [7, Sect. 4.7]; see also [6].

We begin by defining a general context in which monotone paths and
cellular strings make sense. LBtbe a finite, graded poset with minimum
and maximum elementsp and1p, and rank function-. Our motivation
comes from the special case in whiehs the (augmented) face poset of a
regularCTW-sphereX, so that)p and1p correspond to the “empty face”
and the “interior” of the sphere, respectively, aria) — 1 is the dimension
of x for each cellz in X.
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We say thaP has al-skeletorif every lower interval0, z] with 7 (z) = 2
has exactly four elements, namélyz and two atoms:, ¢’ In this situation
we say that thd-skeletonor graph G(P) is the graph (with no loops but
multiple edges allowed) which has the set of atomB @ its vertex set and
an edge with endpoints, «’ for each element with r(z) = 2, covering
a andd’. If P has al-skeleton, then any linear ordering of the atomg of
gives rise to an acyclic orientatiafl of the graphG(P) which orients the
edge corresponding tofrom a towardd’, if a comes earlier than’ in the
ordering.

We call an acyclic orientatio® of G (P) facial if for every z in P with
r(x) > 2, the restriction ofD to the vertex-induced subgraph Gf P) on
the atoms of0, 2] has a unique soureg,;, () and a unique Sink,,,,. ().
We fix the notationd,in = amin(lp) aNdamaer = amaz(1p). Given a
facial acyclic orientatiorO of G(P), acellular string onP (with respect
to O) is a sequencg = (z,...,z,) of elements ofP with r(z;) > 2,
such thata,,in (1) = @min, Gmaz(Tr) = amae, @and for eachi we have
maz(Ti) = amin(xi41). We partially order the set of cellular strings &h
by defining

x=(x1,...,20) <y =(y1,---,9Ys)

if for eachi < r there exists somg < s with x; <p y;. We denote by
w(P, O) this partial order on the set of cellular strings Brwith respect
to O. Note thatv(P, ©) has a maximum elemeiy,, given by the cellular
string(1p).

Remark 5.1. The functionsy,,;, anda,,., are an example of a pair efip-
plings as defined by Baues [2] [3], and our notion of cellular string coincides
with his for this example. Our stipplings on regular” spheres arising from
shellings are more general than the stipplings on convex polytopes arising
from linear functionals, treated in [3]; see Corollary 5.8.

The next proposition records a few properties of cellular strings. All of
them generalize properties which are easily verified in the special case of
cellular strings on a polytope with respect to a generic linear functional (see
[3, Sect. 1]).

Proposition 5.2. Given cellular strings x = (z1,...,z,) and
y = (y1,-..,ys) on P withx <y, we have:

(I) (O,IIJZ'] N (O,le] = {amax(xi)} = {amm(:z:iﬂ)} for eachl <1<
r—1,

(i) (0,2;]) N (0,2;] = 0if i — j| > 2,

(iii) foreach1 < i < r the index;j(i) satisfyingz; < y;(; is unique and

the functioni — j(4) is increasing, that is; < " implies; (i) < j(7'),
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(iv) for eachj < s, there exist unique indicesi’ such thata,,,(z;) =
amin(yj) andamaz(£z”> = ama:c(yj)-

Proof. For (i), note that if the intersection is larger then it contains at least
one atoma # amax (i) = amin(zi+1). The atoma has a directed path
in G(P) N [0, z;] to the unique sinki,,a.(z;), and there is also a directed
path inG(P) N [0, z;,1] from the unique source,;,(x;+1) to a. Since
maz(Ti) = amin(xiy1), this contradicts acyclicity of.

The remaining assertions follow by similar arguments. O

One way in which facial acyclic orientations arise is fronstelling
order on the maximal faces of a regul@ii’’ -sphereX . Recall [7, Lemma
4.7.18, Theorem 4.7.24] that a shelling order of the maximal facées isf
equivalent to aecursive coatom orderingn its face poseP. This gives rise
to arecursive atom orderingn the opposite poset°P, which is the face
poset of the polar dual'W-sphereX™ [7, Proposition 4.7.26]. The poset
P°P has al-skeleton because it is the face poset of a sphere. The recursive
coatom ordering ot induces an acyclic orientatiafl of G(P°P).

Proposition 5.3. The acyclic orientatiod of G(P°P) induced from a shell-
ing order of a regularCWW -sphere with face posét is facial.

Proof. We must show that for any € P°P with r(z) > 2, the restriction of

the orientatior® to the atoms of0), 2] po» has a unique source and sink. By
definition of a recursive atom ordering, the recursive atom ordering on
restricts to one on its lower intervl, z] po» and this interval is also opposite

to the face poset of a (shellable) regu@¥/ -sphere (see [7, Proposition
4.7.24]). Thus we may assume without loss of generality that 1p

and show that? has exactly one source and sink on érire 1-skeleton
G(P°P). It has at least one source and sink, namely the first and last atoms
in the ordering. There can be no other sources or sinks becausenes

from a shelling of a sphere (see the proof of [7, Proposition 4.7.22])]

One can associate to every po&eits order complexA(Q), that is the
simplicial complex of totally ordered subsetgpfand the topological space
which is thegeometric realizatiof A(Q). In what follows, we will abuse
notation and make no distinction betwe@nthe order complex\(Q) and
its geometric realization, hoping that no confusion will ensue.

We can now state the main result of this section. The special case of the
Baues problem for monotone paths asks about the homotopy type of the
posetw(P, ©) — 1., of proper cellular strings orP (see [3]).

Theorem 5.4. Let X be a regularCW d-sphere with face posét. LetO
be the facial acyclic orientation of the-skeletonG(P°P) of P°P induced
by some fixed shelling order on the maximal faceX of
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Thenw(P%®,0) — 1, is homotopy equivalent to thgl — 1)-sphere
triangulated by the open intervédi,,q., 1) por.

Before proving Theorem 5.4, we identify some auxiliary objects and an
important hypothesis o that arise in the proof.
Given any atonu of P, letw(P, O, a) be the poset of partial cellular
strings ending at, i.e. the set of tupleg = (x1, ..., z,) of elements ofP
with
— r(z;) > 2 for eachi,
- amin(xl) = Amin,
— Qmaz(Ti) = amm(xzﬂ) for1 <i¢<r—1and
- amax(l'r)

Also define the poseﬁ’r)(P, 0, a), called theD-backward vertex figure aP
at a, to be the following induced subposet Bf

D(P,0,a) = {z € P : amez(x) = a}.

Note trlat ifa = amaz, thenD(P, O, anq.) IS just the half-open interval
(amaz, 1 p]. We say that the facial acyclic orientatiGhistameif D(P, O, a)
is contractible for every atoma of P.

Lemma 5.5. Assume thaP has al-skeleton and is a tame, facial acyclic
orientation ofG(P). Thenw(P, O, a) is contractible for every atomin P.

Proof. We use Babson’s Lemma, whose statement we recall next. See [15,
Lemma 3.2] for a proof.

Lemma 5.6. (Babson [1])Let f : X — Y be an order preserving map of
posets. If

(i) f~'(y) is contractible for eachy in Y and
(i) f~'(y)NX<,iscontractible for eachr in X andyin Y with f(z) >,

then f induces a homotopy equivalence. O

We can assume that# a4z, Sincew(P, O, amq:) = w(P, O) has the
maximum element,, and hence is contractible. We wish to apply Lemma
5.6 to the forgetful map

f: w(P,0,a) — D(P,0,a)
(X1, . @) Ty

and use induction on the product of two orderings, one of which is the
position ofa in the partial ordering of the atoms é&finduced byO, and the
other being the rank of the posgt

To check condition (i) of Lemma 5.6, givenc D(P, O, a), the fiber
f~(y) consists of all partial cellular strings of the formy, ..., z,_1,%).
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Using Proposition 5.2, the map which sends such a cellular string to
(21,...,2,—1) gives a poset isomorphism

f_l(y) = W(Pa O7amm(y))

Since an,in(y) is strictly less tham in the partial order induced bg,
induction implies thaty(P, O, am:n (y)) is contractible, as desired.

To check condition (ii) of Lemma 5.6, givane D(P, O, a) and given
anyx = (zf,...,2,_1, %) with f(x) > y, the setf 1 (y) Nw(P, O, a)<x
consists of all partial cellular strings of the foifmy, . .., z,—1, y) which lie
belowx. Using Proposition 5.2, any such cellular string must contain some
elementzy, with a,,in (k) = amin(z)), and the map which breaks such a
cellular string into two strings

((xla cee 71"6*1)7 (xka cee 7x7“—1>)
gives a poset isomorphism
F W) Nw(P,0,a)<x = W(P, O, amin(ts)<(ut, 2 ,))
X w([@, ‘r/s}v O? amm(y))'

The first factor in the latter direct product of posets is contractible because

it has(x,...,2._;) as its maximum element. The second factor is con-
tractible by induction on the rank @, since[0, ] » has smaller rank than
P. O

Corollary 5.7. Assume that” has al-skeleton andD is a tame, facial
acyclic orientation ofz(P). Then the poset(P, O) — 1, of proper cellular
strings onP is homotopy equivalent to the open interV@}, ..., 1p) in P.

Proof. Consider the special case of the m&jn the proof of Lemma 5.5
whena = a,,q.. This gives a map
f:wP0) = (amaz, ip]
which satisfies the hypotheses of Lemma 5.6. As a result, the restriction
f:wPO) -1, — (amaz,1p)
of this map also satisfies the hypotheses of Lemma 5.6. Therefore it induces
the desired homotopy equivalence. O

We can now prove Theorem 5.4.

Proof of Theorem 5.4Assume that”? andO are as in the statement of the
theorem. In light of Corollary 5.7, we will show thé&? is tame. Thus, for
any atormu of P°P, we must show thab (PP, O, a) is contractible. To this
end, we rephrase the definition B PP, O, a).
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Let R be the recursive atom ordering 8f” induced by the shelling of
X . Let[ be the set of atorisof [a, 1] per SUCh that/ precedes in R, where
[0,b] por = {0, a, a’, b}. The definition of a recursive atom ordering implies
that is an initial segment in the ordering thRtinduces on the atoms of
[a, 1] por. Let I° be the complement dfin the set of atoms dfi, 1] por. Note
that I¢ is also an initial segment in a recursive atom orderinguof] por,
since [8, Lemma 1.2] states that the reverse of a recursive atom ordering is
again arecursive atom ordering whgns a sphere. Recall that(P°?, O, a)
is the set of elements > a of PP for which a,,,. () = a. This is exactly
the set ofr > « for which every atom ofa, =] lies in I, or equivalently, the
set ofx > a which donot lie above any atoms ii“. It follows from [8,
Theorem 1.3] (see also [7,Lemma4.7.28]) thaP°?, O, a) is contractible,
since it is the complement of the filter generated by a set of atoms (namely
1¢) which form an initial segment in some recursive atom ordering coming
from the dual of a shellable sphere.

Corollary 5.7 now implies thab(P°P, ©) — 1,, is homotopy equivalent
to the interval(a,nqz, 1) por. This interval is homeomorphic to @ — 1)-
sphere because it is an open interval of corank one in the face poset of a
shellabled-sphere (see e.q. [7, Propositions 4.7.19, 4.7.24]). O

Corollary 5.8.

() [3, Theorem 1.2] For a convex-polytope and generic linear func-
tional f, the posetv(Q, sf,t¢) of cellular strings on@ is homotopy
equivalent to &d — 2)-sphere.

(ii) [5, Theorem 2] For an oriented matroidC of rank r, the poset
Ess(T(L,B)) of essential chains in the poset of topes (with respect
to the base top#) has the homotopy type of &n — 2)-sphere.

Proof. A generic linear functionaf on @ gives rise to a shelling order on
the boundaryd — 1)-sphereX of the polar polytop&* (see [17, Exercises
8.10, 8.11]). One can then check that the poset of cellular strif@ss s, t £)
from [3] is exactly ourw(P°P, ©O). Hence the first assertion follows from
Theorem 5.4.

For an oriented matroid of rankr, [7, Theorem 4.3.3] states that any
linear extension of the poset of top@$L, B) gives rise to a shelling of a
regularCW (r—1)-sphereX . One can then check that the poset of essential
chainsEss(T (L, B)) is exactly ouw(P°P, O). Hence the second assertion
follows also from Theorem 5.4. a

AcknowledgementsThe first author thanks Anders@jer for a helpful conversation.
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