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Abstract. We investigate the vertex-connectivity of the graph off -mono-
tone paths on ad-polytopeP with respect to a generic functionalf . The
third author has conjectured that this graph is always(d − 1)-connected.
We resolve this conjecture positively for simple polytopes and show that the
graph is2-connected for anyd-polytope withd ≥ 3. However, we disprove
the conjecture in general by exhibiting counterexamples for eachd ≥ 4 in
which the graph has a vertex of degree two.

We also re-examine the Baues problem for cellular strings on polytopes,
solved by Billera, Kapranov and Sturmfels. Our analysis shows that their
positive result is a direct consequence of shellability of polytopes and is
therefore less related to convexity than is at first apparent.

1. Introduction

Let P be ad-dimensional polytope inRd andf be a linear functional on
R

d which is generic with respect toP , in the sense thatf is nonconstant
on every edge ofP . An f -monotone pathγ onP is a sequence of vertices
(v0, v1, . . . , vm) of P such thatv0 andvm are the unique vertices at which
f achieves its minimum and maximum values onP , respectively,vi−1 and
vi lie on an edge ofP for eachi andf(v0) < f(v1) < · · · < f(vm).
Monotone paths have been studied in the context of the Hirsch Conjecture
[17, Sect. 3.3] [10], have recently appeared in a directed version of Steinitz’s
Theorem [12], and appear in the study of fractional power series solutions
to systems of polynomial equations [11,9].

Third author partially supported by a Sloan Foundation Fellowship.
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Fig. 1 (a) A 3-dimensional polytopeP and a generic linear functionalf . (b) The graph
G(P, f) of f -monotone paths onP

The set of allf -monotone paths onP forms the vertex set for a natural
graph structure, which we now describe. Each2-dimensional faceF of P
is a polytope in its own right, in fact a polygon, and has exactly twof -
monotone paths, sayγF andγ′

F . We say that twof -monotone pathsγ and
γ′ onP differ by apolygon flip acrossF if they agree on vertices not lying
onF but differ in thatγ restricted to the faceF follows the pathγF , while
γ′ restricted toF follows γ′

F . ThegraphG(P, f) of f -monotone paths on
P is the graph whose vertices are thef -monotone paths onP and whose
edges join pairs off -monotone paths which differ by a polygon flip across
some2-face ofP . An example is shown in Fig. 1.

The question of connectivity of the graphG(P, f) arises naturally in
the work of Billera and Sturmfels [4] and Billera, Kapranov and Sturmfels
[3] on thegeneralized Baues problem. Baues’ original problem concerned
the homotopy theory of iterated loop spaces, where specific examples of
G(P, f) formed the1-skeleton of a cellular model for these spaces [13,2,
3]; see [14] for a survey of the generalized Baues problem. The vertices and
edges inG(P, f) index the elements in the bottom two ranks of theposet of
cellular strings onP . This poset gives rise naturally to a topological space
(see Sect. 5), which was shown to have the homotopy type of a(d − 2)-
dimensional sphere in [3]. It can be deduced from this (see [14, Sect. 3, p.
20]) that the graphG(P, f) is connected. Furthermore, there is a subset of
the vertex set ofG(P, f) which is geometrically distinguished, namely the
subset off -monotone paths which arecoherent(see [4, p. 544], [3, p. 552],
[14, p. 12] for definitions). Under mild genericity assumptions onP and
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f , the induced subgraph ofG(P, f) on these vertices is the1-skeleton of a
(d − 1)-dimensional polytope, called themonotone path polytope, whose
existence is a special case of the general theory offiber polytopes[4]. Recall
that Balinski’s Theorem [17, Sect. 3.5] states that the1-skeleton of ad-
dimensional polytope isd-connected, meaning that any subgraph obtained
by removing a set of at mostd − 1 vertices and their incident edges is
connected and contains at least two vertices. As a consequence, the subgraph
of coherentf -monotone paths onP is (d− 1)-connected.

The preceding results led the third author to conjecture [14, Conjecture
15] that the entire graphG(P, f) is always(d− 1)-connected. In Sect. 3 we
exhibit counterexamples which disprove this conjecture ford ≥ 4. Specif-
ically, for eachd ≥ 3 we exhibit ad-polytopeP , linear functionalf and
f -monotone pathγ onP such thatγ has degree two in the graphG(P, f).

On the other hand, Sects. 2 and 4 contain proofs of the following positive
results. Recall that ad-polytopeP is simple if each vertex is incident to
exactlyd edges ofP .

Theorem 1.1. If P is a simpled-polytope andf is a generic linear func-
tional onP then the graphG(P, f) is (d− 1)-connected.

Theorem 1.2. If P is anyd-polytope withd ≥ 3 andf is a generic linear
functional onP then the graphG(P, f) is 2-connected.

In Sect. 5 we re-examine the role played by convexity in the positive
answer to the Baues problem for cellular strings, given by Billera, Kapranov
and Sturmfels [3]. Specifically, we show that for every shelling of a regular
CW -sphereX, there is an associated Baues problem for cellular strings on
the sphereX∗ which is the polar dual ofX and that the shelling ofX leads
to a positive answer to this problem. This gives a common generalization
for the results of [3] and of Björner [5].

2.G(P, f) is (d − 1)-connected for simpled-polytopes

The goal of this section is to prove Theorem 1.1, namely that for a generic
functional f on a simpled-polytopeP , the graphG(P, f) is (d − 1)-
connected.

We prove this in a slightly more general form. LetP be a finite,2-
dimensional regularCW -complex (see [7, Sect. 4.7], [6] for definitions and
background on regularCW -complexes). LetG be the1-skeleton ofP and
O be an acyclic orientation ofG. In the motivating special case,P is the
2-skeleton of a simpled-polytope andO is the acyclic orientation induced
by a generic linear functionalf . Motivated by this special case, we further
assume the following:
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(i) the entire graphG has a unique sourcevmin and sinkvmax with re-
spect toO, as does its restriction to every2-face ofP (such acyclic
orientationsO are calledfacial in Sect. 5),

(ii) the degree ofvmin in G is at leastd,
(iii) any two faces ofP intersect in a unique common face of each; in

particular, the1-skeleton ofP is a graph with no multiple edges and
different2-faces can share at most one edge, and

(iv) any two directed edges ofG having common initial vertexu span a
2-face whose1-skeleton has sourceu with respect toO.

We refer to the2-faces ofP as thepolygonsof P . LetG(P,O) be the
graph on the node set of all directed paths inG from vmin to vmax, with
adjacency defined by the flips across the polygons ofP . To avoid confusion,
in this section we will reserve the termnode for the nodes of the graph
G(P,O) and the termvertex for vertices of the graphG. The following
theorem is the main result of this section.

Theorem 2.1. If P andO are as before then the graphG(P,O) is (d− 1)-
connected.

Given two nodesγ1, γ2 of G(P,O), we first construct a pathγ1 ∗ γ2
in G(P,O) from γ1 to γ2 as follows. Letu(γ1, γ2) be the first vertex of
either path from whichγ1 andγ2 leave through distinct edgese1 ande2,
respectively. We proceed by induction on the position ofu(γ1, γ2) with
respect to the partial order on the vertices ofG induced byO. LetF be the
polygon ofP spanned bye1 ande2, v be the unique sink of the boundary of
F andp be a directed path inG from v to vmax. We choosep as the part of
γ1 from v to vmax if v is a vertex ofγ1. Fori = 1, 2 we letγF

i be the path in
G which followsγ1 andγ2 up tou(γ1, γ2), then follows the boundary ofF
throughei up tov, and finally follows the pathp up tovmax. The pathsγF

1
andγF

2 differ by a flip acrossF . Sinceu(γi, γF
i ) is higher thanu(γ1, γ2) in

the partial order induced byO for i = 1, 2, we can define inductivelyγ1 ∗γ2
to be the path inG(P,O) whose successive nodes are the ones ofγ1 ∗ γF

1 ,
followed by those ofγF

2 ∗ γ2. Note that each node ofγ1 ∗ γ2 is a path inG
whose initial edge is that ofγ1 or γ2.

Lemma 2.2. If γ, γ1 and γ′
1 are nodes ofG(P,O) with pairwise distinct

initial edges then the pathsγ ∗ γ1 andγ ∗ γ′
1 in G(P,O) are node-disjoint,

except for their initial nodeγ.

Proof. Let e1, e′1 be the initial edges ofγ1, γ′
1 andγ2, γ′

2 be nodes on the
pathsγ ∗ γ1 andγ ∗ γ′

1 other thanγ, respectively. To prove thatγ2 �= γ′
2

we show thate2 �= e′2, wheree2 ande′2 are the first edges ofγ2, γ′
2 which

are not edges ofγ, respectively. Indeed, by construction ofγ ∗ γ1, there is
an alternating sequence(ε0, F1, ε1, F2, . . . , Fr, εr) of edgesεi ofG through
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verticesvi of γ and polygonsFi of P such thatε0 = e1, εr = e2 and that
Fi containsεi−1, εi, as well all of the vertices and edges ofγ lying between
vi−1 andvi. Similarly, there is an analogous sequence with initial edgee′1
and terminal edgee′2. By our assumption (iii) onP , the two sequences are
uniquely determined byγ ande2, or γ ande′2, respectively. Sincee1 �= e′1,
we should also havee2 �= e′2. ✷

We now prove Theorem 2.1.

Proof of Theorem 2.1. LetΓ be a subset of the node set ofG(P,O) with at
mostd− 2 elements. We will show thatG(P,O)− Γ is connected. LetE
be the set of initial edges of the elements ofΓ and let∆ be the set of nodes
of G(P,O) with initial edge not inE. Note that the induced subgraph of
G(P,O) on∆ is connected since ifγ1, γ2 are in∆, so is every node of the
pathγ1 ∗ γ2.

It thus suffices to show that any pathγ not inΓ with initial edgee ∈ E
can be connected inG(P,O)−Γ to some element of∆. Letk be the number
of elements ofΓ with initial edgee. SinceΓ has at mostd − 2 elements
and because of the assumption (ii) onP , there are at leastk + 1 edges of
G throughvmin not in E. Hence we may choose elementsγi of ∆, for
1 ≤ i ≤ k+1, with pairwise distinct initial edges. By Lemma 2.2, the paths
γ ∗γi arek+1 node-disjoint paths inG(P,O), except for their initial node,
which connectγ to paths in∆. At least one of them avoids allk elements
of Γ with initial edgee, and hence connectsγ to ∆ in G(P,O) − Γ , as
desired. ✷

The following corollary is an immediate consequence of Theorem 2.1
and generalizes Theorem 1.1.

Corollary 2.3. If P is a simple polytope,f is a generic linear functional
on P and v is a vertex ofP with f -outdegreej then the graph of partial
f -monotone paths onP from v to vmax and polygon flips among them is
(j − 1)-connected.

3. A monotone path on ad-polytope with only 2 flips

The goal of this section is to prove the following theorem.

Theorem 3.1. For eachd ≥ 3 there is ad-polytopeP , linear functional
f and f -monotone pathγ on P such thatγ has degree two in the graph
G(P, f).

Proof. To constructP , start with a(d − 2)-simplex in R
d−2. Form the

(d− 1)-polytope which is the prism over this simplex, that is, its Cartesian
product with the line segment[−1, 1], and then letP be thed-polytope
which is the pyramid over this prism.
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Fig. 2 The functionalf(x) = αx1 + βxd−1 should be chosen so that the level setf = 0
looks as shown

To be somewhat more explicit, choose real numberst1 < t2 < · · · <
td−1 symmetrically about0, i.e. so thattd−i = −ti. Then fori = 1, . . . , d−1
let

ai = (ti, t2i , . . . , t
d−2
i , 1, 0),

bi = (ti, t2i , . . . , t
d−2
i , −1, 0),

c = (0, 0, . . . , 0, 0, 1)

and letP be the convex hull of{a1, . . . , ad−1, b1, . . . , bd−1, c}.
Our requirement on the functionalf is that it is generic and that it orders

the vertices so that

f(b1) < f(b2), . . . , f(bd−2),
f(a1) < f(c) < f(bd−1), f(a2), . . . , f(ad−2) < f(ad−1).

One can achieve this by choosing anf of the formf(x) = αx1 + βxd−1
for some real constantsα, β. To see that such a choice is possible, note that
the projection of the verticesai, bi, c onto the(x1, xd−1)-plane will look as
in Fig. 2 and one need only choose the constantsα, β so that the level set
f = 0 is as the line depicted there andf increases to the northeast. For
example, the polytope and functional shown in Fig. 1(a) are the cased = 3
of our construction.

With P andf as described, thef -monotone pathγ is the sequence of
vertices(b1, a1, c, bd−1, ad−1). It is straightforward to check that the only
two polygon flips applicable toγ are across the triangular2-face having
verticesb1, a1, c and its symmetric partner having verticesc, bd−1, ad−1. In
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checking that these are the only flips, one uses the fact that the2-faces ofP
can be listed as

triangles:{ai, aj , ak}1≤i<j<k≤d−1

{bi, bj , bk}1≤i<j<k≤d−1

{c, ai, aj}1≤i<j≤d−1

{c, bi, bj}1≤i<j≤d−1

{c, ai, bi}1≤i≤d−1,

quadrangles:{ai, aj , bi, bj}1≤i<j≤d−1.

This completes the proof. ✷

We conclude this section with a series of remarks about the counterex-
ample just constructed.

Remark 3.2. Ford = 4, the example constructed in the proof of Theorem
3.1 of ad-polytope with a monotone path having fewer thand − 1 flips is
minimal in several senses:

– It has minimum dimensiond = 4, by Theorem 1.2.
– It achieves the minimum number of vertices possible, which is7. Indeed,

a4-polytope with five vertices is a4-simplex and all itsf -monotone paths
have exactly three flips, while ifP is a4-polytope with six vertices, then
a quick enumeration ofGale diagrams(see, e.g., [17, Sect. 6.5]) shows
that there are only four possibilities for the combinatorial type ofP . For
each of these four types, one can check by computer that no matter how
f orders the vertices, everyf -monotone path onP has at least three flips.

– It achieves the minimum number of edges possible, which is15. Indeed,
every vertex in a4-polytope has degree at least4 and thus every4-
polytope with at least7 vertices has at least4·7

2 = 14 edges. However,
equality occurs only when the polytope is simple, and by Theorem 1.1
there are no simple4-polytopes yielding such examples.

For generald, the example constructed in the proof of Theorem 3.1 is a
d-polytope with2d− 1 vertices. This raises the following question.

Question 3.3.For a given dimensiond ≥ 5, what is the minimum number of
vertices required to construct ad-polytope and generic functionalf having
anf -monotone path with fewer thand − 1 flips? What about two flips? Is
either of these two numbers less than2d− 1?

Remark 3.4. In light of Theorem 1.1, it would be interesting to investi-
gate the question of connectivity ofG(P, f) within other natural classes of
polytopes.

For example, one might ask whether there exist monotone paths on sim-
plicial polytopes having few polygon flips. Starting with the counterexample
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in Theorem 3.1 ford = 4, one can produce a simplicial counterexample by
pulling (see [7, p. 410]) the verticesb1 anda3 of P in either order, and
using the same functionalf andf -monotone pathγ. We do not know if
this technique can be used to produce simplicial counterexamples in higher
dimensions.

A class of particular interest with regard to monotone paths is that of
zonotopes; see [7, Sect. 2.2]. It is possible to construct a4-zonotopeZ
with 6 zones and a vertexv such that the vertex figure ofZ at v is a prism
over a2-simplex, as in thed = 4 case of our polytopal counterexampleP .
Furthermore, it is also possible to choose a functionalf and anf -monotone
path onZ having only two flips. However, the analogous construction for
d = 5 fails to give any paths with fewer than four flips. These observations
suggest the following questions.

Question 3.5.If Z is ad-zonotope andd ≥ 5, isG(Z, f) always(d − 1)-
connected? IfZ is a d-zonotope with at least7 zones, isG(Z, f) always
(d− 1)-connected?

4. Proof of Theorem 1.2

The goal of this section is to prove Theorem 1.2, which states that the graph
G(P, f) is 2-connected ford ≥ 3. We use ideas analogous to those in the
first proof of homotopy-sphericity of the poset of cellular strings onP , given
in [3, Theorem 1.2]. We construct the graphG(P, f) as a certain inverse
limit in the category of graphs and simplicial maps. This construction is
an iteration of a simpler “pullback” construction, which will be shown to
behave sufficiently well with respect to connectivity and2-connectivity.

Letvmin andvmax be the vertices ofP at whichf achieves its minimum
and maximum onP , respectively, and

f(vmin) = c0 < c1 < · · · < cm−1 < cm = f(vmax)

be the set of values off taken at the vertices ofP . The fiberPi := f−1(ci)
is a(d− 1)-polytope for1 ≤ i ≤ m− 1. We denote byGi the1-skeleton of
Pi. Similarly, for each0 ≤ i ≤ m − 1 we denote byGi,i+1 the1-skeleton
of the fiberPi,i+1 := f−1(c) for some valuec with ci < c < ci+1. The
facial structure ofPi,i+1, and hence the graphGi,i+1, are independent of the
choice ofc; see Fig. 3.

Since every vertex or edge inPi,i+1 degenerates to some vertex or edge of
Pi asc approachesci, there is a mapβi : Gi,i+1 → Gi for eachi. Similarly,
there is a mapαi : Gi−1,i → Gi. Thus one obtains a diagram of graphs and
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Fig. 3 The fibersPi,i+1 over intermediate values off

maps as follows:

G0,1
α1−→ G1

β1←− G1,2
α2−→ G2

β2←− · · · αm−1−→ Gm−1
βm−1←− Gm,m−1.

(1)

If we consider graphs as1-dimensional simplicial complexes, then the
maps in (1) are allsimplicial, meaning that they send vertices to vertices and
edges to either edges or vertices. We define theinverse limitG of a diagram
of graphs and simplicial maps, such as (1), to be a graph whose vertices and
edges are certain orderedm-tuples

F = (F0,1, F1,2, . . . , Fm−1,m),

whereFi,i+1 is a vertex or an edge ofGi,i+1 for eachi, Fi−1,i andFi,i+1
have the same image inGi under the mapsαi andβi, respectively, and
moreover, this image is an edge ofGi if both Fi−1,i andFi,i+1 are edges.
We callF a vertexof G if eachFi,i+1 is a vertex of the graphGi,i+1 and
anedgeof G if the set of indicesi for which Fi,i+1 is an edge ofGi,i+1
forms a sequence of consecutive integers. The vertexF ofG is defined to be
incident to the edgeF ′ = (F ′

0,1, F
′
1,2, . . . , F

′
m−1,m) if Fi,i+1 ⊆ F ′

i,i+1 for
eachi. One can check that each edge ofG has exactly two vertices incident
to it, so thatG indeed defines a graph with no loops or multiple edges, that
is, a1-dimensional simplicial complex.

Eachf -monotone pathγ onP corresponds to a vertex in the inverse limit
G, namely the vertexF = (F0,1, F1,2, . . . , Fm−1,m) for whichFi,i+1 is the



324 C.A. Athanasiadis et al.

intersection of the fiberPi,i+1 of f with the union of the edges ofP whichγ
traverses. This correspondence is in fact a bijection. Similarly, a polygon flip
between twof -monotone pathsγ1, γ2 corresponds to an edge ofG, namely
the edge(F ′

0,1, F
′
1,2, . . . , F

′
m−1,m) for whichFi,i+1 is the intersection of the

fiberPi,i+1 of f with the union of the edges ofP which the paths traverse
and the2-face where the flip occurs. Hence we can deduce the following
proposition.

Proposition 4.1. (cf. [3, Lemma 1.3])If diagram(1) comes from the family
of graphs{Gi, Gi,i+1} of fibers off on P , then the inverse limitG is
isomorphic to the graphG(P, f) of f -monotone paths onP . ✷

A special case of the inverse limit construction, called the pullback, oc-
curs whenm = 2. In this case we have a diagram of simplicial maps of

graphsA
α→C β←B whose inverse limitG has the following simpler descrip-

tion. Vertices ofG are ordered pairs(a, b), wherea, b are vertices ofA,B,
respectively, andα(a) = β(b). The vertices(a, b) and(a′, b′) are connected
by an edge inG if either

– a = a′ and{b, b′} is an edge ofB or
– b = b′ and{a, a′} is an edge ofA or
– {a, a′} and{b, b′} are edges ofA andB, respectively, which both map

homeomorphically onto the same edge ofC.

In this case, we have the following commutative diagram of simplicial maps

G
πB−−−→ B

πA

� β

�

A
α−−−→ C

(2)

whereπA(a, b) = a andπB(a, b) = b are the usual projections. We call
such a diagram apullback diagramandG thepullbackof α, β 1. For future
use, we denote byπ : G→ C the composite mapα ◦ πA = β ◦ πB.

The pullback is a simpler construction than that of the general inverse
limit of diagram (1). However, the inverse limit can be recovered by iterating
pullbacks as follows. LetHi denote the inverse limit of the subdiagram of
(1) which consists of all graphs and maps weakly to the left ofGi,i+1, so
thatH0 = G0,1, H1 is the pullback of the diagramG0,1 → G1 ← G1,2
andHm−1 is the full inverse limitG. There is a natural mapHi−1 → Gi

1 Note that what we are calling inverse limits and pullbacks do not satisfy the usual
universal existence and uniqueness properties in the category of graphs and simplicial maps.
For example, ifA, B are both graphs consisting of a single edge and map to a graphC which
is a single vertex then the pullback, as we have defined it, is a cycle of length4, while the
categorical pullback is a complete graph on4 vertices.
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obtained by first projecting a tuple(F0,1, . . . , Fi−1,i) in Hi−1 onto its last
entryFi−1,i, which lies inGi−1,i, and then applying the mapGi−1,i → Gi.
The following proposition is straightforward to verify.

Proposition 4.2.We have a pullback diagram

Hi −−−→ Gi,i+1� βi

�

Hi−1
α−−−→ Gi.

(3)

✷

If the graphsGi andGi,i+1 are the1-skeleta of the corresponding fibers
of f on the polytopeP , it is natural to think ofHi as the graph of partial
f -monotone paths ending in fiberPi,i+1.

Next we collect for future use a few propositions about pullbacks, whose
proofs are completely straightforward. We use the following convention
throughout: ifβ : B → C is a simplicial map of graphs, then for any
vertexc in C, β−1(c) refers to the vertex-induced subgraph ofB on the
set of vertices ofB which are mapped toc by β. The simplicial mapβ is
surjectiveif any vertex or edge inC is the image of some vertex or edge,
respectively, ofB. The special case of a pullback in whichC is a single
vertex is called theCartesian productA×B (see, e.g., [16, p. 175]).

Proposition 4.3. If (2) is a pullback diagram then:

(i) the subgraphπ−1
B (b) ofG is isomorphic to the subgraphα−1(β(b)) of

A for any vertexb ofB,
(ii) the subgraphπ−1(c) of G is isomorphic to the Cartesian product

α−1(c)× β−1(c) for any vertexc ofC and
(iii) surjectivity ofα implies surjectivity ofπB. ✷

Proposition 4.4. If (2) is a pullback diagram and

(i) B is nonempty and connected,
(ii) α is surjective and
(iii) the fiberα−1(c) is connected for every vertexc in C

thenG is nonempty and connected. ✷

Proposition 4.5. TheCartesianproductG×H of1-connectedgraphsG,H
is 2-connected. ✷

Remark 4.6.Although we will not need this fact here, the previous propo-
sition generalizes to the statement that ifG is k-connected andH is l-
connected, thenG×H is (k + l)-connected.
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One property of the polytopal degeneration maps in diagram (1) which
will be used repeatedly is the following.

Proposition 4.7. (cf. [3, Lemma 1.4])The maps

αi : Gi−1,i → Gi

βi : Gi,i+1 → Gi

are surjective.Moreover, for any vertexv ofGi the fibersα
−1
i (v)andβ−1

i (v)
are connected.

Proof. The normal fan of the polytopePi−1,i refines the normal fan of
Pi. Furthermore, the adjacency graph for the full-dimensional cones in the
normal fan ofPi−1,i is exactlyGi−1,i. For each vertexv ofGi, the subgraph
α−1

i (v) is the adjacency graph for the subset of cones which refine the
unique cone corresponding tov in the normal fan ofPi. The assertions of
the proposition forαi follow from this description. The case of the mapβi

is analogous. ✷

Theorem 1.2 will be deduced from the following proposition.

Proposition 4.8. If (2) is a pullback diagram and

(i) A,B are both2-connected,
(ii) α, β are both surjective and
(iii) the fibersα−1(c), β−1(c) are connected for every vertexc in C

then the mapsπA, πB are both surjective andG is 2-connected.

Proof. Surjectivity ofπA andπB is immediate from Proposition 4.3 (iii).
Note also that sinceπB is surjective andB has at least three vertices, by virtue
of its 2-connectivity,Gmust have at least three vertices. Hence removing at
most one vertex fromG leaves at least2 vertices. It remains to show that if
u, u′ andv are distinct vertices ofG then there exists a path fromu to u′ in
G− v. We distinguish three cases.

Case 1:πA(v) �= πA(u), πA(u′). By 2-connectivity ofA, there exists a path
γ from πA(u) to πA(u′) in A − πA(v). SinceπA is surjective, we can lift
each edge ofγ to an edge inG. By Proposition 4.3 (i), the fibers ofπA are
connected since so are the fibers ofβ. Hence we can “sew” together the
previously lifted edges to form a path̃γ from u to u′ in G, whose image
underπA is γ. This path̃γ must lie inG− v, sinceγ lies inA− πA(v).
Case 2:πB(v) �= πB(u), πB(u′). This is symmetric to the previous case,
interchangingA andB.

Case 3:πA(v) ∈ {πA(u), πA(u′)} andπB(v) ∈ {πB(u), πB(u′)}. Since
u, u′ andv are distinct and any vertex ofG is determined by its two projec-
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tions underπA andπB, we may assume that

πA(v) = πA(u),
πB(v) = πB(u′).

It follows that π(v) = π(u) = π(u′) =: c, so all three verticesu, u′
andv lie in π−1(c). By Proposition 4.3 (ii),π−1(c) is isomorphic to the
Cartesian productα−1(c)×β−1(c). Sinceα−1(c) andβ−1(c) are connected
by hypothesis, they are also1-connected as they have at least two vertices
(e.g.α−1(c) containsπA(v) = πA(u) andπA(u′)). Henceπ−1(c) is 2-
connected by Proposition 4.5, so there exists a path fromu to u′ in π−1(c)
which avoidsv. ✷

In order to apply Proposition 4.8 to the pullback diagram of Proposition
4.2, we need to identify the fibers of the mapHi−1

α→ Gi. For a fixed vertex
v ofGi, the fiberα−1(v) is, by definition, the induced subgraphHv ofHi−1
on the vertex set of partialf -monotone paths which end in fiberPi−1,i and
whose last entries map tov underαi : Gi−1,i → Gi. One should think of
this subgraphHv of Hi−1 as the graph of partialf -monotone paths from
vmin to v.

We will need to show thatHv is connected, so we construct it as an
iteration of pullbacks. Forj < i, start with the inverse limit of the subdiagram
of (1) containingGj,j+1,Gi−1,i and all graphs and maps lying between them.
Then take the vertex-induced subgraphHj,v of this graph on the vertices
whoseGi−1,i-coordinate maps tov underαi : Gi−1,i → Gi. Note that
Hi−1,v is the fiberα−1

i (v). One might think of the graphHj,v as the graph
of partialf -monotone paths which start inPj,j+1 and end inv. The following
proposition should be clear.

Proposition 4.9.We have a pullback diagram

Hj−1,v −−−→ Hj,v� β

�

Gj−1,j
αj−−−→ Gj

(4)

andH0,v = Hv.

Corollary 4.10. For any vertexv inGi, the graphHv of partialf -monotone
paths ending atv is nonempty and connected.

Proof. We wish to apply Proposition 4.4 to the pullback diagram (4), in
order to showHj,v is nonempty and connected by descending induction on
j for j < i. At the base of the induction, we know thatHi−1,v is nonempty
and connected by Proposition 4.7. For the inductive step, we must check
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that the hypotheses of Proposition 4.4 are satisfied. Indeed, we know that
Hj,v is nonempty and connected, by induction, and thatαj is surjective with
connected fibers, by Proposition 4.7. ✷

We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2.We wish to apply Proposition 4.8 to the pullback
diagram (3), in order to show thatHi is 2-connected by induction oni. This
will suffice, sinceG(P, f) = Hm−1. Note that, at the base of the induction,
H0 = G0,1 is 2-connected by Balinski’s Theorem, since it is the graph of a
(d− 1)-polytope andd ≥ 3.

To apply Proposition 4.8, we must check thatHi−1 andGi,i+1 are both
2-connected, that the mapsα, βi are surjective and that their fibers are con-
nected. The graphHi−1 is 2-connected by the inductive hypothesis. The
graphGi,i+1 is 2-connected by Balinski’s Theorem. Surjectivity ofβi and
connectivity of its fibers follow from Proposition 4.7. Surjectivity ofα fol-
lows from the fact that it is the composition of two maps

Hi−1 −→ Gi−1,i
αi−→ Gi,

the first of which is surjective by Proposition 4.3 (iii) applied inductively
to diagram (3), and the second being surjective by Proposition 4.7. For any
vertexv in Gi, the fiberα−1(v) is the graphHv which was shown to be
connected in Corollary 4.10. ✷

5. Cellular strings and shellable spheres

In this section we consider a Baues problem associated with cellular strings
on the duals of shellableCW -spheres and show that shellability suffices
to give a positive answer to this problem. This generalizes the main results
of [3,5]. Theorem 5.4, which is the main result of this section, shows that
convexity is not absolutely essential in this special case of the Baues problem,
as was hinted by the context and methods of Björner [5], and that it plays a
crucial role only in so far as it implies shellability.

We assume some familiarity with the notions of a regularCW -complex,
shellability and a recursive (co)atom ordering. An excellent reference for
this material is [7, Sect. 4.7]; see also [6].

We begin by defining a general context in which monotone paths and
cellular strings make sense. LetP be a finite, graded poset with minimum
and maximum elementŝ0P and 1̂P , and rank functionr. Our motivation
comes from the special case in whichP is the (augmented) face poset of a
regularCW -sphereX, so that̂0P and1̂P correspond to the “empty face”
and the “interior” of the sphere, respectively, andr(x)− 1 is the dimension
of x for each cellx in X.
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We say thatP hasa1-skeletonif every lower interval[0̂, x] with r(x) = 2
has exactly four elements, namely0̂, x and two atomsa, a′. In this situation
we say that the1-skeletonor graphG(P ) is the graph (with no loops but
multiple edges allowed) which has the set of atoms ofP as its vertex set and
an edge with endpointsa, a′ for each elementx with r(x) = 2, covering
a anda′. If P has a1-skeleton, then any linear ordering of the atoms ofP
gives rise to an acyclic orientationO of the graphG(P ) which orients the
edge corresponding tox from a towarda′, if a comes earlier thana′ in the
ordering.

We call an acyclic orientationO ofG(P ) facial if for everyx in P with
r(x) ≥ 2, the restriction ofO to the vertex-induced subgraph ofG(P ) on
the atoms of[0̂, x] has a unique sourceamin(x) and a unique sinkamax(x).
We fix the notationamin = amin(1̂P ) andamax = amax(1̂P ). Given a
facial acyclic orientationO of G(P ), a cellular string onP (with respect
to O) is a sequencex = (x1, . . . , xr) of elements ofP with r(xi) ≥ 2,
such thatamin(x1) = amin, amax(xr) = amax and for eachi we have
amax(xi) = amin(xi+1). We partially order the set of cellular strings onP
by defining

x = (x1, . . . , xr) ≤ y = (y1, . . . , ys)

if for eachi ≤ r there exists somej ≤ s with xi ≤P yj . We denote by
ω(P,O) this partial order on the set of cellular strings onP with respect
toO. Note thatω(P,O) has a maximum element1̂ω, given by the cellular
string(1̂P ).

Remark 5.1.The functionsamin andamax are an example of a pair ofstip-
plings, as defined by Baues [2] [3], and our notion of cellular string coincides
with his for this example. Our stipplings on regularCW spheres arising from
shellings are more general than the stipplings on convex polytopes arising
from linear functionals, treated in [3]; see Corollary 5.8.

The next proposition records a few properties of cellular strings. All of
them generalize properties which are easily verified in the special case of
cellular strings on a polytope with respect to a generic linear functional (see
[3, Sect. 1]).

Proposition 5.2. Given cellular strings x = (x1, . . . , xr) and
y = (y1, . . . , ys) onP with x ≤ y, we have:

(i) (0̂, xi] ∩ (0̂, xi+1] = {amax(xi)} = {amin(xi+1)} for each1 ≤ i ≤
r − 1,

(ii) (0̂, xi] ∩ (0̂, xj ] = ∅ if |i− j| ≥ 2,
(iii) for each 1 ≤ i ≤ r the indexj(i) satisfyingxi ≤ yj(i) is unique and

the functioni �→ j(i) is increasing, that is,i ≤ i′ impliesj(i) ≤ j(i′),
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(iv) for eachj ≤ s, there exist unique indicesi, i′ such thatamin(xi) =
amin(yj) andamax(xi′) = amax(yj).

Proof. For (i), note that if the intersection is larger then it contains at least
one atoma �= amax(xi) = amin(xi+1). The atoma has a directed path
in G(P ) ∩ [0̂, xi] to the unique sinkamax(xi), and there is also a directed
path inG(P ) ∩ [0̂, xi+1] from the unique sourceamin(xi+1) to a. Since
amax(xi) = amin(xi+1), this contradicts acyclicity ofO.

The remaining assertions follow by similar arguments. ✷

One way in which facial acyclic orientations arise is from ashelling
order on the maximal faces of a regularCW -sphereX. Recall [7, Lemma
4.7.18, Theorem 4.7.24] that a shelling order of the maximal faces ofX is
equivalent to arecursive coatom orderingon its face posetP . This gives rise
to a recursive atom orderingon the opposite posetP op, which is the face
poset of the polar dualCW -sphereX∗ [7, Proposition 4.7.26]. The poset
P op has a1-skeleton because it is the face poset of a sphere. The recursive
coatom ordering onP induces an acyclic orientationO of G(P op).

Proposition 5.3. Theacyclic orientationO ofG(P op) induced fromashell-
ing order of a regularCW -sphere with face posetP is facial.

Proof. We must show that for anyx ∈ P op with r(x) ≥ 2, the restriction of
the orientationO to the atoms of[0̂, x]P op has a unique source and sink. By
definition of a recursive atom ordering, the recursive atom ordering onP
restricts to one on its lower interval[0̂, x]P op and this interval is also opposite
to the face poset of a (shellable) regularCW -sphere (see [7, Proposition
4.7.24]). Thus we may assume without loss of generality thatx = 1̂P

and show thatO has exactly one source and sink on theentire1-skeleton
G(P op). It has at least one source and sink, namely the first and last atoms
in the ordering. There can be no other sources or sinks becauseO comes
from a shelling of a sphere (see the proof of [7, Proposition 4.7.22]).✷

One can associate to every posetQ its order complex∆(Q), that is the
simplicial complex of totally ordered subsets ofQ, and the topological space
which is thegeometric realizationof∆(Q). In what follows, we will abuse
notation and make no distinction betweenQ, the order complex∆(Q) and
its geometric realization, hoping that no confusion will ensue.

We can now state the main result of this section. The special case of the
Baues problem for monotone paths asks about the homotopy type of the
posetω(P,O)− 1̂ω of propercellular strings onP (see [3]).

Theorem 5.4. LetX be a regularCW d-sphere with face posetP . LetO
be the facial acyclic orientation of the1-skeletonG(P op) of P op induced
by some fixed shelling order on the maximal faces ofX.
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Thenω(P op,O) − 1̂ω is homotopy equivalent to the(d − 1)-sphere
triangulated by the open interval(amax, 1̂)P op .

Before proving Theorem 5.4, we identify some auxiliary objects and an
important hypothesis onO that arise in the proof.

Given any atoma of P , let ω(P,O, a) be the poset of partial cellular
strings ending ata, i.e. the set of tuplesx = (x1, . . . , xr) of elements ofP
with

– r(xi) ≥ 2 for eachi,
– amin(x1) = amin,
– amax(xi) = amin(xi+1) for 1 ≤ i ≤ r − 1 and
– amax(xr) = a.

Also define the posetD(P,O, a), called theO-backward vertex figure ofP
at a, to be the following induced subposet ofP :

D(P,O, a) = {x ∈ P : amax(x) = a}.
Note that ifa = amax, thenD(P,O, amax) is just the half-open interval
(amax, 1̂P ]. We say that the facial acyclic orientationO is tameif D(P,O, a)
is contractible for every atoma of P .

Lemma 5.5. Assume thatP has a1-skeleton andO is a tame, facial acyclic
orientation ofG(P ). Thenω(P,O, a) is contractible for every atoma in P .
Proof. We use Babson’s Lemma, whose statement we recall next. See [15,
Lemma 3.2] for a proof.

Lemma 5.6. (Babson [1])Let f : X → Y be an order preserving map of
posets. If

(i) f−1(y) is contractible for eachy in Y and
(ii) f−1(y)∩X≤x is contractible for eachx inX andy in Y withf(x) ≥ y,
thenf induces a homotopy equivalence. ✷

We can assume thata �= amax, sinceω(P,O, amax) = ω(P,O) has the
maximum element̂1ω and hence is contractible. We wish to apply Lemma
5.6 to the forgetful map

f : ω(P,O, a) → D(P,O, a)
(x1, . . . , xr) �→ xr

and use induction on the product of two orderings, one of which is the
position ofa in the partial ordering of the atoms ofP induced byO, and the
other being the rank of the posetP .

To check condition (i) of Lemma 5.6, giveny ∈ D(P,O, a), the fiber
f−1(y) consists of all partial cellular strings of the form(x1, . . . , xr−1, y).
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Using Proposition 5.2, the map which sends such a cellular string to
(x1, . . . , xr−1) gives a poset isomorphism

f−1(y) ∼= ω(P,O, amin(y)).

Sinceamin(y) is strictly less thana in the partial order induced byO,
induction implies thatω(P,O, amin(y)) is contractible, as desired.

To check condition (ii) of Lemma 5.6, giveny ∈ D(P,O, a) and given
anyx = (x′

1, . . . , x
′
s−1, x

′
s) with f(x) ≥ y, the setf−1(y)∩ ω(P,O, a)≤x

consists of all partial cellular strings of the form(x1, . . . , xr−1, y) which lie
belowx. Using Proposition 5.2, any such cellular string must contain some
elementxk with amin(xk) = amin(x′

s), and the map which breaks such a
cellular string into two strings

((x1, . . . , xk−1), (xk, . . . , xr−1))

gives a poset isomorphism

f−1(y) ∩ ω(P,O, a)≤x ∼= ω(P,O, amin(x′
s)≤(x′

1,...,x′
s−1))

× ω([0̂, x′
s],O, amin(y)).

The first factor in the latter direct product of posets is contractible because
it has(x′

1, . . . , x
′
s−1) as its maximum element. The second factor is con-

tractible by induction on the rank ofP , since[0̂, x′
s]P has smaller rank than

P . ✷

Corollary 5.7. Assume thatP has a1-skeleton andO is a tame, facial
acyclic orientation ofG(P ). Then the posetω(P,O)− 1̂ω of proper cellular
strings onP is homotopy equivalent to the open interval(amax, 1̂P ) in P .

Proof. Consider the special case of the mapf in the proof of Lemma 5.5
whena = amax. This gives a map

f : ω(P,O) → (amax, 1̂P ]

which satisfies the hypotheses of Lemma 5.6. As a result, the restriction

f : ω(P,O)− 1̂ω → (amax, 1̂P )

of this map also satisfies the hypotheses of Lemma 5.6. Therefore it induces
the desired homotopy equivalence. ✷

We can now prove Theorem 5.4.

Proof of Theorem 5.4.Assume thatP andO are as in the statement of the
theorem. In light of Corollary 5.7, we will show thatO is tame. Thus, for
any atoma of P op, we must show thatD(P op,O, a) is contractible. To this
end, we rephrase the definition ofD(P op,O, a).
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LetR be the recursive atom ordering ofP op induced by the shelling of
X. LetI be the set of atomsb of [a, 1̂]P op such thata′ precedesa inR, where
[0̂, b]P op = {0̂, a, a′, b}. The definition of a recursive atom ordering implies
thatI is an initial segment in the ordering thatR induces on the atoms of
[a, 1̂]P op . LetIc be the complement ofI in the set of atoms of[a, 1̂]P op . Note
thatIc is also an initial segment in a recursive atom ordering of[a, 1̂]P op ,
since [8, Lemma 1.2] states that the reverse of a recursive atom ordering is
again a recursive atom ordering whenX is a sphere. Recall thatD(P op,O, a)
is the set of elementsx > a of P op for whichamax(x) = a. This is exactly
the set ofx > a for which every atom of[a, x] lies inI, or equivalently, the
set ofx > a which donot lie above any atoms inIc. It follows from [8,
Theorem 1.3] (see also [7, Lemma 4.7.28]) thatD(P op,O, a) is contractible,
since it is the complement of the filter generated by a set of atoms (namely
Ic) which form an initial segment in some recursive atom ordering coming
from the dual of a shellable sphere.

Corollary 5.7 now implies thatω(P op,O)− 1̂ω is homotopy equivalent
to the interval(amax, 1̂)P op . This interval is homeomorphic to a(d − 1)-
sphere because it is an open interval of corank one in the face poset of a
shellabled-sphere (see e.g. [7, Propositions 4.7.19, 4.7.24]). ✷

Corollary 5.8.

(i) [3, Theorem 1.2] For a convexd-polytopeQ and generic linear func-
tional f , the posetω(Q, sf , tf ) of cellular strings onQ is homotopy
equivalent to a(d− 2)-sphere.

(ii) [5, Theorem 2] For an oriented matroidL of rank r, the poset
Ess(T (L, B)) of essential chains in the poset of topes (with respect
to the base topeB) has the homotopy type of an(r − 2)-sphere.

Proof. A generic linear functionalf onQ gives rise to a shelling order on
the boundary(d−1)-sphereX of the polar polytopeQ∗ (see [17, Exercises
8.10, 8.11]). One can then check that the poset of cellular stringsω(Q, sf , tf )
from [3] is exactly ourω(P op,O). Hence the first assertion follows from
Theorem 5.4.

For an oriented matroidL of rankr, [7, Theorem 4.3.3] states that any
linear extension of the poset of topesT (L, B) gives rise to a shelling of a
regularCW (r−1)-sphereX. One can then check that the poset of essential
chainsEss(T (L, B)) is exactly ourω(P op,O). Hence the second assertion
follows also from Theorem 5.4. ✷

Acknowledgements.The first author thanks Anders Björner for a helpful conversation.
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