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ABSTRACT

The branching operation D, defined by Propp, assigns to any directed graph G an-
other directed graph D(G) whose vertices are the oriented rooted spanning trees of
the original graph G. We characterize the directed graphs G for which the sequence
δ(G) = (G,D(G), D2(G), . . .) converges, meaning that it is eventually constant. As a
corollary of the proof we get the following conjecture of Propp: for strongly connected
directed graphs G, δ(G) converges if and only if D2(G) = D(G). c© 1997 John Wiley &
Sons, Inc.

1. INTRODUCTION

Throughout this paper G = (V,E) denotes a directed graph on a vertex set V , with multiple
edges and loops allowed. All directed graphs we will consider are assumed to be finite. Let l be a
nonnegative integer and recall that a pathP in G is an alternating sequence (u0, e1, u1, . . . , el, ul)
of vertices and edges of G such that each edge ei has initial vertex ui−1 and terminal vertex ui.
We say that P is a path from u0 to ul and refer to e1 as the initial edge of P if l ≥ 1. An oriented
rooted spanning tree on G, or simply a rooted spanning tree on G, is a spanning subgraph T of G
together with a distinguished vertex r, called the root, such that for every v ∈ V there is a unique
path in T from v to r.
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FIGURE 1. A re-rooting move.

We are concerned with a certain operation on directed graphs, denoted byD, which was defined
by James Propp [5]. The object D(G) is a directed graph whose vertex set is the set of rooted
spanning trees of G. The edges in the new directed graph D(G) are constructed as follows: Let T
be a rooted spanning tree of G with root r and let v ∈ V . Given an edge e ∈ E with initial vertex
r and terminal vertex v, let Te be the tree obtained from T by adding the edge e and deleting the
edge with initial vertex v in T ∪ e (note that the root of Te is v and that Te = T if e is a loop).
Then add a directed edge in D(G) from T to Te. We denote this edge in D(G) by T (e). An
example is illustrated in Figure 1.

We call D the branching operation. We use the letter D because it reminds us that D(G) is
some kind of a derived directed graph from G and since this was Propp's original notation. The
idea of the construction of D(G) appeared for the first time implicitly in the proof of the Markov
chain-tree theorem by Anantharam and Tsoucas [1]. In this paper the authors needed to lift a
random walk in G to a random walk in the set of arborescences of G, which coincides with the
set of rooted spanning trees if G is strongly connected. On the other hand, Propp's motivation for
defining D(G) came from problems related to domino tilings of regions. Any domino tiling of a
simply connected region can be obtained from any other tiling of the same region by a sequence
of local changes, called ‘‘elementary moves’’ in [4]. Hence the set of domino tilings of such a
region can be given the structure of a connected graph. An analogous result holds in the case
of rooted spanning trees and the ‘‘re-rooting’’moves described in the definition of the branching
operation. We state this as Lemma 2.2 in Section 2.

The directed graph D(G) is a covering space of the directed graph G. This means that there
exists a graph homomorphism p from D(G) to G with the following property: if T and r are
vertices of D(G) and G respectively with p(T ) = r and if e is an edge in G with initial vertex
r, then there exists a unique edge ẽ in D(G) with initial vertex T such that p(ẽ) = e. Indeed, to
define such a map p we can simply map a rooted spanning tree T of G to its root r and the edge
T (e) of D(G) with initial vertex T to the corresponding edge e in G with initial vertex r that
gave rise to T (e). The lift ẽ of e with initial vertex T is simply the edge T (e).

This covering map seems to be what makes the branching operation interesting. It was crucial
in showing that D(G) has remarkable spectral properties [2] [3, Ch. 2]. More specifically, the
eigenvalues of D(G) can be computed directly from the eigenvalues of the induced subgraphs
and the Laplacian matrix of G. Here we will be concerned with another aspect of the branching
operation. For i ≥ 2 let Di(G) = D(Di−1(G)) and consider the sequence

δ(G) = (G,D(G), D2(G), . . .)
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FIGURE 2. A counterexample to Propp's conjecture.

obtained by iterating D on G. Propp noted that δ(G) is very often a convergent (eventually
constant) sequence, where equality of directed graphs is graph isomorphism. He asked for nec-
essary and sufficient conditions on the graph G for δ(G) to be convergent and conjectured that,
for strongly connected graphs G, δ(G) converges only when D2(G) = D(G) [5]. Moreover, he
conjectured that this happens if and only if the simple paths in G, i.e., the paths in which each
vertex appears at most once, satisfy a certain condition. Although his proposed condition turned
out to be incorrect, we will show that a variant of this condition, given in the following definition,
is true.

Definition 1.1. We call G admissible if there are no two distinct vertices s, t in G having the
following property: There exist two simple paths in G from s to t with different initial edges and
similarly, two simple paths from t to s with different initial edges.

In other words we require that for any two distinct vertices s, t of G, we have at most one
choice for the initial edge of a simple path when moving from s to t or from t to s or in both
directions. A different but equivalent formulation of the same condition is given as Lemma 2.1
and will be useful in Section 2.

Recall that G is said to be strongly connected if for any two distinct vertices s and t there exists
a path in G from s to t. Our result, proved in the next two sections, can be stated as follows.

Theorem 1.2. Let G be strongly connected. The sequence δ(G) converges if and only if G is
admissible. Moreover, if δ(G) converges then D2(G) = D(G).

Note that Definition 1.1 allows for the possibility that there are distinct simple paths in G from
s to t and also from t to s as long as, in at least one direction, they all use the same initial edge.
The example in Figure 2 shows that this extra freedom, which is what was missing from Propp's
original formulation of the condition on s and t, is necessary for the theorem to be true.

The question of convergence of δ(G) for an arbitrary directed graph G is no more complicated.
Either D(G) is disconnected, and hence δ(G) stabilizes to the empty directed graph, or else δ(G)
converges if and only if δ(H) does so, whereH = H(G) is a strongly connected induced subgraph
of G, defined below. The details appear in Lemma 2.3.
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More Notation and Definitions

We close this introduction with some basic constructions, notation and terminology which we
will use in the proof of Theorem 1.2.

The outdegree of a vertex s in G, denoted out(s), is the number of nonloop edges of G
emanating from s. Similarly we define the indegree of s and denote it by in(s). We denote by
r(G) the image of the vertex set of D(G) under p, i.e., the set of roots of all rooted spanning trees
of G. In other words, r(G) is the set of vertices s of G such that for all t ∈ V, t 6= s, there exists
a path in G from t to s. Note that r(G) = V if and only if G is strongly connected. We denote
by H(G) the induced subgraph of G on r(G), which is always strongly connected. We call G a
near monodromy if for any two distinct vertices s and t there is at most one simple path from s
to t.

We say that the path P = (u0, e1, u1, . . . , el, ul) in G visits a vertex u if u = ui for some
0 ≤ i ≤ l. For any 0 ≤ i ≤ j ≤ l we denote by P (ui, uj) the part (ui, . . . , ej , uj) of P which
starts at ui and ends at uj . The simplif ication of P is a simple path from u0 to ul whose edges
are some of the edges of P . To define it we start at u0, choose the last edge ek of P emanating
from s and repeat the process with uk until we reach ul. Clearly the simplification of a simple
path P is P itself and a path with one vertex and no edges if the initial and terminal vertex of P
coincide.

If P is a path from s to t in G and Q is a path from t to u, then juxtaposition gives a well
defined path PQ from s to u. The path PQ need not be simple even if P and Q are simple
themselves. We denote the simplification of PQ by P ∗Q.

As a consequence of the covering property discussed above, we can lift paths in G uniquely up
to D(G), once the initial vertex is prescribed. In other words, if p(T ) = r then for any path Q in
G with initial vertex r there is a unique path in D(G), denoted by T (Q), with initial vertex T such
that p(T (Q)) = Q. Note that Q is not assumed to be simple. The notation T (Q) emphasizes the
dependence of the lifted path on both T andQ and is consistent with the notation T (e), introduced
earlier. In Section 3 we discuss how we can describe the endpoint of T (Q) in terms of T and Q.

2. PROOF OF SUFFICIENCY

To prove the sufficiency part of Theorem 1.2 we need a few lemmas. The first lemma gives an
alternative way to define admissibility.
Lemma 2.1. G is admissible if and only if there is no ordered pair (s, t) of distinct vertices of
G with the following property: There exist two simple paths in G from s to t with different initial
edges and also two distinct simple paths from t to s.

Proof. It suffices to show that the existence of an ordered pair (s, t) of distinct vertices with
the property stated in the lemma implies the existence of two vertices as in Definition 1.1. Indeed,
let Q1, Q2 be simple paths from s to t with different initial edges e1, e2 respectively and P1, P2

be distinct simple paths from t to s. Let u be the last vertex visited when walking P1 or P2 such
that P1(t, u) and P2(t, u) coincide (so that u = t if P1 and P2 have different initial edges). Since
P1 and P2 are simple and distinct we have u 6= s. Then P1(u, s) and P2(u, s) are two simple
paths in G from u to s with different initial edges. On the other hand the paths Q1 ∗P1(t, u) and
Q2 ∗ P1(t, u) give two simple paths in G from s to u with different initial edges, namely e1 and
e2. Hence s and u have the property stated in Definition 1.1.

The next lemma is from [2].

Lemma 2.2 ([2, Prop. 2.5] [3, Prop. 2.2.5]). If G is strongly connected then so is D(G).
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FIGURE 3. A counterexample to the stronger version of Lemma 2.4.

A directed graph G is strongly connected and a near monodromy if and only if for any two
distinct vertices s and t there is a unique simple path in G from s to t. These directed graphs
may be thought of as the directed analogues of undirected trees. A characterization is given in
Section 4. The important property of strongly connected near monodromies for us is the fact
that they satisfy the equation D(G) = G. Recall the definitions of p, r(G) and H(G) from the
introduction.

Lemma 2.3. If G is a near monodromy thenD(G) is isomorphic to the induced subgraphH(G)
of G. In particular, if G is a near monodromy and strongly connected then D(G) is isomorphic
to G. For any G,D(G) is a disjoint union of copies of D(H(G)).

Proof. SupposeG is a near monodromy. Then the mapp gives the desired graph isomorphism.
Indeed, since p is a covering map, it suffices to check that it induces a bijection between the vertex
sets of D(G) and H(G). The vertex set r(G) of H(G) is by definition the image of the vertex
set of D(G) under p. Injectivity follows from the fact that G is a near monodromy, so that to any
r ∈ r(G) corresponds a unique rooted spanning tree of G with root r. Also H(G) = G whenever
G is strongly connected.

For the last statement note that if (u, v) is an edge of G and u ∈ r(G) then v ∈ r(G). The
number of copies mentioned is the number of rooted spanning forests (disjoint unions of trees)
of G with root set r(G).

The following two lemmas will also be essential in proving sufficiency.

Lemma 2.4. Let G be admissible. Suppose s, t, u are distinct vertices of G and that there exist
two simple paths from s to t with different initial edges and two distinct simple paths from t to u.
Then there exist two distinct simple paths from s to u.

Proof. Let P1, P2 be the two paths from s to t and Q1, Q2 be the two paths from t to u. If s
is not visited by at least one of Q1, Q2, say Q1, then P1 ∗Q1 and P2 ∗Q1 are simple paths from
s to u. They have different initial edges, namely the initial edges of P1 and P2, respectively.

Suppose now that s is visited by both paths Q1 and Q2. Since G is admissible, by Lemma 2.1
the parts of Q1 and Q2 directed from t to s should coincide. But Q1 and Q2 are by assumption
distinct, hence their parts Q1(s, u) and Q2(s, u) are distinct simple paths from s to u, as desired.

The condition that the two paths from s to t have different initial edges cannot be dropped
from the hypothesis. Figure 3 provides a counterexample to such a statement.

Lemma 2.5. LetG be admissible. Then there exists a vertex s ofG such that for any other vertex
t of G there is at most one simple path in G from t to s. Moreover, if G is not a near monodromy,
we can assume that the outdegree of s is at least 2.

Proof. Suppose that such a vertex s (with outdegree ≥ 2) does not exist. Pick a vertex v0

of G. If G is not a near monodromy we can choose v0 so that out(v0) ≥ 2. By assumption,
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there is a vertex v1 6= v0 of G with the property that there are at least two distinct simple paths
from v1 to v0, and we can certainly choose v1 so that these two paths have different initial edges.
Similarly, since clearly out(v1) ≥ 2, there is a vertex v2 6= v1 and two simple paths from v2 to
v1 with different initial edges. In this way we produce the sequence v0, v1, v2, . . . . Since our
graph is finite, the sequence contains repeated vertices, say vi = vj for some i < j. Clearly
i < j − 1. By iterating Lemma 2.4 we see that there exist two distinct simple paths from vj−1 to
vi. By construction there exist two simple paths from vi = vj to vj−1 with different initial edges.
Lemma 2.1 implies that G is not admissible, a contradiction.

We are now ready to state and prove the main result in this section.

Theorem 2.6. If G is admissible then D(G) is a near monodromy.

Proof. We use induction on the number of nonloop edges e(G) of G. The result is clear for
e(G) = 0.

Suppose that e(G) ≥ 1. First note that if G is a near monodromy then so is D(G) since in this
case, by Lemma 2.3, D(G) is isomorphic to an induced subgraph of G.

Suppose now that G itself is not a near monodromy. Lemma 2.5 guarantees that there exists a
vertex s ∈ V with out(s) ≥ 2, such that for every t ∈ V, t 6= s, there exists at most one simple
path in G from t to s. If s is not in r(G), i.e. there is no rooted spanning tree of G with root s,
then we have e(H(G)) < e(G). By Lemma 2.3, D(G) is a disjoint union of copies of D(H(G)),
hence the result follows by induction.

Lastly suppose that there exists a rooted spanning tree S of G with root s, in which case it is
unique. Let e1, e2, . . . , ek, k ≥ 2, be the nonloop edges emanating from s. Let Gi, 1 ≤ i ≤ k, be
the directed graph obtained from G by deleting all edges ej except ei. Then each Gi is admissible
with e(Gi) < e(G). Hence, by induction, D(Gi) is a near monodromy for each i. Let Ti be the
set of vertices of D(Gi) other than S. In other words, Ti is the set of rooted spanning trees of G
having ei as the edge emanating from s. Since any rooted spanning tree of G either equals S or
has some ei as the unique edge emanating from s, the sets Ti together with {S} form a partition
of the vertex set of D(G). Note also that an edge in D(G) with initial vertex in some Ti will have
its terminal vertex in {S}∪Ti and hence there is no edge in D(G) directed from an element of Ti
to an element of Tj for i 6= j. The fact that each D(Gi) is a near monodromy now easily implies
that D(G) is a near monodromy as well.

The next corollary follows from Theorem 2.6, Lemma 2.2 and Lemma 2.3 and proves one part
of Theorem 1.2.

Corollary 2.7. If G is strongly connected and admissible then D2(G) = D(G).

3. PROOF OF NECESSITY

The other part of Theorem 1.2 states that if G is strongly connected but not admissible then δ(G)
diverges. Note that for strongly connected directed graphs G,D(G) has at least as many vertices
as G, with equality if and only if G is a near monodromy. Thus Theorem 3.1, stated below,
together with Lemma 2.2 implies that for G strongly connected but not admissible, the number
of vertices of the graphs in δ(G) strictly increases. This completes the proof of Theorem 1.2.

One more piece of notation will be useful. Recall from the introduction that, given a path Q
in G with initial vertex r and a rooted spanning tree T on G with root r, there is a unique path
T (Q) in D(G) with initial vertex T which maps to Q under the homomorphism p, defined in
Section 1. The path T (Q) can be thought of as the way T gradually changes as we move along
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Q. Walking an edge e of Q results in adding e to the tree currently visited by T (Q), say S, and
deleting the edge of S ∪ e with initial vertex the endpoint of e.

We denote by T [Q] the terminal vertex of T (Q). The tree T [Q] can be described in terms of
T and Q as follows: For any vertex u of G, the edge emanating from u in T [Q] is the same as in
T if Q never visits u and if it does, it is the edge of Q coming out of u the last time u is visited
by Q. In particular, the endpoint of Q has no outcoming edge in T [Q]. We use this description
to define T [Q] for an arbitrary sequence of edges Q. The subgraph T [Q] will not necessarily be
a tree, but it will in all cases of interest. The crucial property of this construction for us is that
T [Q] = T [Q′] if Q′ is obtained from Q in one of the following ways:

(i) Deleting earlier occurrences of an edge.
(ii) Swapping two adjacent subsequences Q1, Q2 as long as any vertex v that is a vertex of

some edge in both Q1 and Q2 has an emanating edge in Q that succeeds Q1 and Q2.
We are now ready to state and prove the theorem.

Theorem 3.1. Suppose G is strongly connected. If G is not admissible then the same is true
for D(G).

Proof. By assumption, there are two distinct vertices s and t inGwith the following property:
there exist two simple paths Q1, Q2 from s to t with different initial edges e1, e2 respectively and
two simple paths P1, P2 from t to s with different initial edges. We want to show that the same
is true for D(G).

Let T be any rooted spanning tree on G with root s and let T1 = T [Q2P2Q1P1], T2 =
T [Q1P1Q2P2] be the final points of the paths T (Q2P2Q1P1) and T (Q1P1Q2P2) respectively.
Note that T1 and T2 are distinct since the edges emanating from t in the two trees are different.
We proceed to find pairs of paths in D(G) from T1 to T2 and backwards, which will show that
D(G) is not admissible.

Let v be the first vertex other than t, visited by P1, which is also visited by Q1 (see Figure 4).
Note that we could have v = s, but by assumption v 6= t. We construct two distinct paths R1 and
R2 in D(G) from T1 to T2 by setting

R1 = T1(Q2P2)

and

R2 = T1(Q1P2Q1(s, v)P1(v, s)Q2P2).

In the special case v = s we have R2 = T1(Q1P2Q2P2). Note that

T1[Q2P2] = T [Q2P2Q1P1Q2P2] = T [Q1P1Q2P2] = T2,

by cancelling the first occurrence of Q2P2 and that

T1[Q1P2Q1(s, v)P1(v, s)Q2P2] = T [Q2P2Q1P1Q1P2Q1(s, v)P1(v, s)Q2P2]

= (cancelling) T [P1(t, v)Q1(v, t)Q1(s, v)P1(v, s)Q2P2]

= (permitted reordering) T [P1(t, v)Q1P1(v, s)Q2P2]

= (permitted reordering) T [Q1P1Q2P2] = T2.

The way v was defined is essential for the next to last equality. It follows that R1 and R2 have
indeed terminal vertex T2.
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FIGURE 4. The four paths between s and t.

We now show that the simplifications of R1 and R2 (see Section 1) have different initial edges
and therefore they provide us with the desired pair of paths from T1 to T2. Say that a tree not
rooted at s is an e1 tree, respectively e2 tree, if the unique edge emanating from s in the tree
is e1, respectively e2. We claim that the second vertex of the simplification of R1 is an e2 tree
while the corresponding vertex for R2 is e1. For the first claim simply note that all trees visited
by R1, except for its endpoints T1 and T2, are e2 trees. On the other hand, some of the trees
not rooted at s and visited by R2 are e1 and some e2. In fact, the trees visited by the first part
W = T1(Q1P2Q1(s, v)P1(v, s)) of R2 not rooted at s are exactly the e1 ones. Let S be the
terminal vertex of W . It suffices to show that T1 is not visited by S(Q2P2), since then the second
vertex of the simplification of R2 will be a vertex of W and therefore e1. The only possibility for
T1 to occur in S(Q2P2) is that T1 = S. But the edge emanating from t is the one travelled by P1

in T1 and the one travelled by P2 in S since, by construction, t is not visited by Q1(s, v)P1(v, s).
A completely symmetric argument gives the existence of analogous paths from T2 to T1 and

shows that D(G) is not admissible.

4. ON DIRECTED ANALOGUES OF TREES

In this last section we give the characterization of strongly connected near monodromies promised
in Section 2. We call such graphs simply monodromies and consider only loopless directed graphs
in what follows. Thus a monodromy is a loopless directed graphG = (V,E) having the following
property: for any two distinct vertices s, t ∈ V there exists a unique simple path in G from s to t.
In particular, such a graph has no multiple edges. Equivalently, the monodromies are the strongly
connected loopless directed graphs G satisfying D(G) = G.

Here we point out that we can construct all monodromies using a simple algorithmic procedure.
To be more precise, suppose that G is a monodromy and that q ∈ V . Let's add to G a simple
directed cycle with initial and terminal vertex q, i.e., a path

q = v0 → v1 → · · · → vm = q,

where m ≥ 2 is an integer and vi, for 0 < i < m, are new vertices added. It is not difficult to
see that the new directed graph is also a monodromy. The next result says that any monodromy
can be constructed from the loopless graph with one vertex, using a number of these operations.
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Proposition 4.1. Let G = (V,E) be a monodromy. There exists a sequence of monodromies

G0 ⊂ G1 ⊂ · · · ⊂ Gn = G,

whereG0 is the loopless graph with one vertex, such thatGi+1 can be obtained fromGi by adding
a simple cycle, as described above.

Proof. The proof is by induction on the number of vertices of G, the result being clear if G
has one or two vertices.

Let s be any vertex of G and let

s = u0 → u1 → · · · → ur = t

be the longest simple path in G starting at s. Call this path P . We claim that out(t) = in(t) = 1.
To see this, note first that out(t), in (t) ≥ 1 since by assumption, G is strongly connected with
more than one vertex. Also if (t, u) ∈ E, then u = ui for some 0 ≤ i ≤ r − 1 by maximality
of P . So let e1 = (t, ui) ∈ E for some 0 ≤ i ≤ r − 1. If out(t) ≥ 2 then e2 = (t, uj) is
another edge emanating from t for some 0 ≤ j ≤ r − 1. Since G has no multiple edges, we
may assume i < j. But then e2 and e1 followed by P (ui, uj) give two distinct simple paths
from t to uj , contradicting the fact that G is a monodromy. Finally suppose that (v, t) ∈ E for
some v 6= ur−1. By maximality of P , the unique simple path Q from s to v does not visit t,
hence P and Q followed by (v, t) give two distinct simple paths from s to t and we again obtain
a contradiction.

Let G′ be the directed graph obtained from G by removing t and the two edges (ur−1, t) and
(t, ui) coming into and out of t respectively, and adding an extra edge (ur−1, ui) if i 6= r− 1. G′

is also a monodromy and has one vertex fewer than G. Hence the induction hypothesis applies
and G′ has the desired form. This easily implies the result for G as well.
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