on the gamma-positivity of the Eulerian transformation

November 9, 2022 KTH Combinatorics Seminar

> Christos Athanasiadis University of Athens

Supported by the Hellenic Foundation for Research and Innovation (HFRI-FM20-04537)

Contents

- 1. The Eulerian transformation
- 2. The polynomials $A^{\circ}(x^{n-k}(1+x)^{k})$
- 3. Uniform triangulations
- 4. Some generalized local h-poly nomials

1. The Eulerian transformation

Let

$$A_{n}(x) = \sum_{w \in G_{n}} x^{des(w)} = \sum_{x \in G_{n}} exc(w)$$

be the nth Eulerian polynomial, so

$$A_{n}(x) = \begin{cases} 1, & n=0,1\\ 1+x, & n=2\\ 1+4x+x^{2}, & n=3\\ 1+11x+11x^{2}+x^{3}, & n=4\\ 1+26x+66x^{2}+26x^{3}+x^{4}, & n=5 \end{cases}$$

 α nd

$$A_{n}^{o}(x) = \begin{cases} A_{n}(x), & n=0\\ \alpha A_{n}(x), & n \ge 1. \end{cases}$$

Definition. The Eulerian transformation is the linear map $A^{\circ}: \mathbb{R}[x] \to \mathbb{R}[x]$ defined by

$$\mathcal{A}^{o}(x^{n}) = \mathcal{A}^{o}_{n}(x)$$

for every n ∈ N : = 10,1,2,...}.

Conjecture (Brenti, 1989) The polynomial $A^{\circ}(p(x))$ has only real roots for every polynomial $p(x) \in \mathbb{R}[x]$ which has nonnegative coefficients and only real roots.

Recall that $p(x) = a_0 + a_1 x + \cdots + a_n x \in \mathbb{R}[x]$ is said to be

- unimodal if a₀ ≤ a₁ ≤ ··· ≤ a_k ≥ a_{k+1} ··· ≥
 ≥ a_n for some 0 ≤ k ≤ n,
- symmetric, with respect to n, if
 a_i = a_{n-i} for 0 \(i \) \(i \) \(n \),
- · x-positive if

$$p(x) = \sum_{i=0}^{\lfloor n/2 \rfloor} y_i x^i (1+x)^{n-2i}$$

for some nell and Ji≥0,

real-rooted if it has only real roots
 or p(x) = 0.

Recall also that p(x) has a unique symmetric decomposition with respect to n (Stapledon, 2009), meaning an expression

$$p(x) = \alpha(x) + x b(x)$$

where a(x) and b(x) are symmetric with respect to n and n-1, respectively. This decomposition is said to be nonnegative, unimodal, y-positive or real-rooted if both a(x) and b(x) have the corresponding property.

Note. p(x) has a unimodal symmetric decomposition with respect to n iff

 $a_0 \le a_n \le a_1 \le a_{n-1} \le \cdots \le a_{L(n+1)/2J}$.

Theorem (Bränden - Jochemko, 2021+)

- (a) Brenti's conjecture is false.
- (b) The polynomial $A^{0}(p(x))$ has a unimodal symmetric decomposition with respect to n for every

$$p(x) = \sum_{k=0}^{n} c_k x^{n-k} (1+x)^k$$

with co, c,, c, > 0.

Conjecture (Brandén-Tochemko, 2021+)
The polynomial $A^{0}(p(x))$ is real-rooted
for every $p(x) \in \mathbb{R}[x]$ as in (b).

Theorem (A, recent) The polynomial $A^{0}(p(x))$ has a y-positive symmetric decomposition with respect to n for every $p(x) \in \mathbb{R}[x]$ as in (b).

2. The polynomials $A^{o}(x^{n-k}(1+x)^{k})$

We let

$$q_{n,k}(x) = I_n A^o(x^{n-k}(1+x)^k)$$

for $k \in \{0,1,...,n\}$, where $(I_n p)(x) = x^n$. p(1/x). Thus, if

$$p(x) = \sum_{k=0}^{n} c_k x^{n-k} (1+x)^k,$$

then

$$I_n \mathcal{A}'(p(x)) = \sum_{\kappa=0}^{n} c_{\kappa} q_{n,\kappa}(x).$$

Note.

$$\bullet \quad q_{n,o}(x) = A_n(x)$$

•
$$9n,n(x) = \widetilde{A}_n(x)$$
.

n=0 1
n=1 1, 1+
$$x$$

n=2 1+ x , 1+ $9x$, 1+ $3x$ + x ²
n=3 1+ $4x$ + x ², 1+ $5x$ + $9x$ ², 1+ $6x$ + $4x$ ², 1+ $7x$ + $7x$ ²+ x ³

the $q_{n,K}(x)$ for $n \le 3$

Conjecture. The $q_{n,\kappa}(x)$ for $0 \le k \le n$ form an interlacing sequence of real-rooted polynomials.

Note. This implies the conjecture of Brandén-Jochemko.

Proposition.

(a)
$$q_{n,k+1}(x) = q_{n,k}(x) + x q_{n-1,k}(x)$$

(b)
$$q_{n,K}(x) = \sum_{i=0}^{K} {K \choose i} x^{i} A_{n-i}(x)$$

(c)
$$q_{n,k}(x) = \sum_{w \in G_n} f_{ix}(w) \exp(w)$$

where $fix_k(w)$ is the number of fixed points of $w \in G_n$ which are $\leq k$.

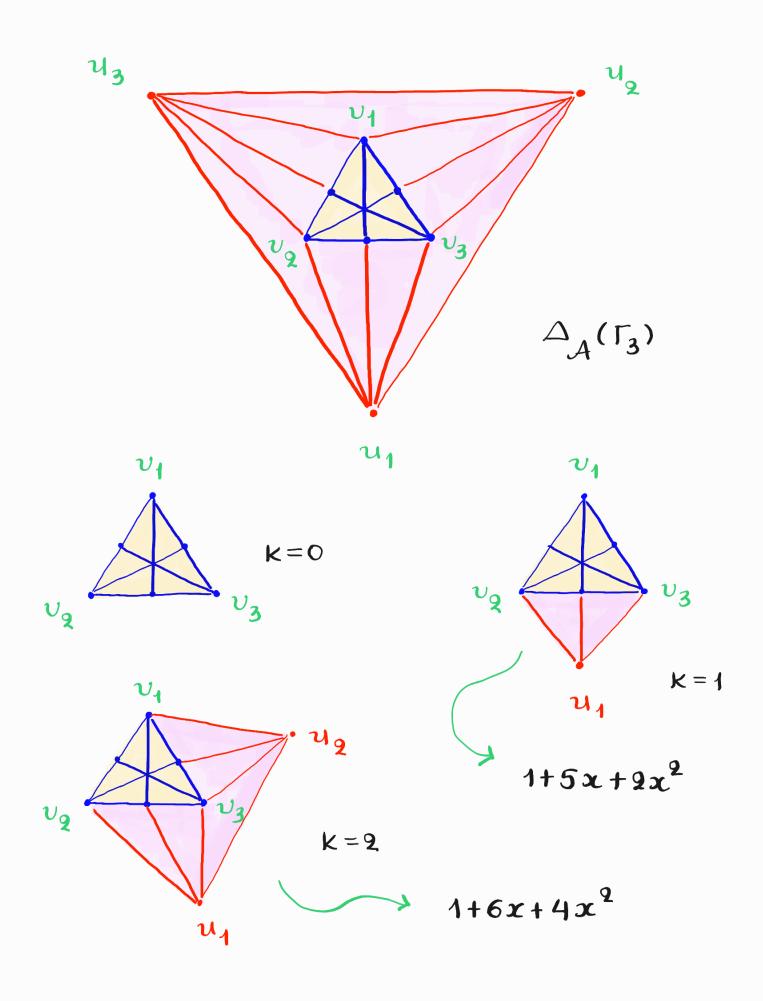
(d)
$$q_{n,k}(x) = \sum_{i=0}^{k} {k \choose i} p_{n-i,k-i}(x)$$

where

$$p_{n,k}(x) = \underbrace{\sum_{w \in G_{n+1} : w(1) = k+1}^{des(w)}}_{x}$$

(e) $q_{n,K}(x)$ is equal to the h-polynomial of the induced subcomplex of the antiprism sphere $\Delta_A(\Gamma_n)$ on the vertex set $V \cup \{u_1, u_2, ..., u_k\}$, where

- $V = \{v_1, v_2, ..., v_n\}$
- Γ_n = barycentric subdivision of the simplex 2^V .



Branden-Solus considered the linear transformation $D: \mathbb{R}[x] \to \mathbb{R}[x]$ with

$$D(x^{n}) = d_{n}(x) := \sum_{i=0}^{n} (-1)^{i} {n \choose i} A_{n-i}(x)$$

and the polynomials

•
$$d_{n,k}(x) = D(x^{k}(1+x)^{n-k})$$

= $\sum_{i=0}^{k} (-1)^{i} {k \choose i} A_{n-i}(x).$

Note.
$$d_{n,o}(x) = A_n(x)$$

•
$$d_{n,n}(x) = d_n(x)$$

and
$$d_{n,K+1}(x) = d_{n,K}(x) - d_{n-1,K}(x)$$
.

$$n=0$$
 1
 $n=1$ 1 0
 $n=2$ 1+x x x
 $n=3$ 1+4x+x² 3x+x² 9x+x² x+x²
the $d_{n,k}(x)$ for $n \le 3$

Note. Bränden-Solus (2021) studied $\mathbb{D}\left((x+\theta_1)(x+\theta_2)\cdots(x+\theta_n)\right)$

for $0 \le \theta_1, \theta_2, \dots, \theta_n \le 1$. From their results it follows that for every neN, the $d_{n,k}(x)$ for $0 \le k \le n$ form an interlacing sequence of real-rooted polynomials.

Proposition.

(a)

$$d_{n,k}(x) = \sum_{w \in G_n: \\ Fix(w) \subseteq (n-k]} exc(w)$$

(b)

$$d_{n,K}(x) = \sum_{i=0}^{\lfloor n/2 \rfloor} \xi_{n,k,i}^{+} x^{i} (1+x)^{n-2i} +$$

$$\sum_{i=0}^{L(n-1)/2J} \bar{\xi}_{n_i k, i} x^{i} (1+x)^{n-1-2i}$$

where

- $\mathfrak{F}_{n,k,i}^{\dagger}$ = # $w \in \mathfrak{G}_n$ with w(4) > n k which have i decreasing runs, all of length > 1
- Fn,k,i = # WEGn with w(1) < n-k
 which have i decreasing
 runs, all but possibly the
 first of length > 1.

Corollary. Since

$$q_{n,K}(x) = \sum_{i=0}^{K} {K \choose i} (1+x)^{i} d_{n-i,K-i}(x),$$

In qnik (a) has a x-positive symmetric decomposition with respect to n.

Note. More conjectures about $q_{n,k}(x)$ are possible. For instance, for $0 \le q \le 1$ let

$$P_{n_{i}K}(x;q) = \sum_{i=0}^{K} {\binom{k}{i}} (x-q)^{i} A_{n-i}(x),$$

SO

•
$$Pn_{i,k}(x;1) = pn_{i,k}(x)$$

&
$$p_{n,k+1}(x;q) = p_{n,k}(x;q) + (x-q) p_{n-1,k}(x;q)$$
.

Conjecture. $p_{n,k}(x;q)$ interlaces $p_{n,k}(x;q')$ for $0 \le q < q' \le 1$. In particular, $q_{n,k}(x)$ interlaces $p_{n,k}(x)$.

3. Uniform triangulations

Let $h_0(x)$, $h_1(x)$, $h_2(x)$, ... $\in \mathbb{R}[x]$ be such that

- hn(x) is real-rooted with nonnegative coefficients
- hn(x) interlaces hn+1 (x)

for every nell and set

$$h_{n,K}(x) = \sum_{i=0}^{K} {k \choose i} x^{i} h_{n-i}(x)$$

for K ∈ {0,1,...,n}.

- $h_0(x)$
- $h_1(x)$, $h_1(x) + x h_0(x)$
- $h_{2}(x)$, $h_{2}(x) + x h_{1}(x)$, $h_{2}(x) + 2x h_{1}(x) + x^{2}h_{1}(x)$
- $h_3(x)$, ...

Question. What additional conditions on the $h_n(x)$ guarantee that for every neIN, $(h_{n_i k}(x))_{0 \le k \le n}$ is an interlacing sequence of real-rooted polynomials?

Computations suggest this may be the case for the following sequences of polynomials:

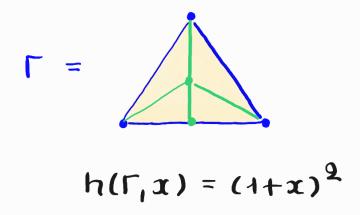
- · An(x) = nth Eulerian polynomial
- B_n(x) = nth Eulerian polynomial
 of type B
- Anir (x) = nth r-colored Eulerian
 polynomial
- $B_n^+(x) = \sum_{\alpha \in B_n : w(n) > 0} des(w)$

- h_{n,r}(x) = the h-polynomial or interior h-polynomial of the r-fold edgewise subdivision of the (n-1)-dimensional simplex, for r>n
- h_n(x) = the h-polynomial or interior h-polynomial of the anntiprism triangulation of the (n-1)-dimensional simplex.

Note. This fails for $h_n(x) = (1+x)^n$

$$n=0$$
 1
 $n=1$ 1+ α , 1+2 α
 $n=2$ (1+ α)² (1+ α)(1+2 α), (1+2 α)²

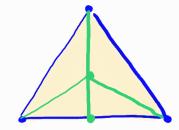
although $(1+x)^n$ is equal to the h-polynomial of a triangulation of the n-dimensional simplex.



Definition (A,2020) A triangulation Δ' of a simplicial complex Δ is said to be uniform if the f-vector of the restriction of Δ' to a face $Fe\Delta$ depends only on dim(F).



uniform



not uniform

we denote by

$$\mathcal{F} = (f(i,j))$$

the triangular array of numbers in which $(f(i,j))_{0 \le i \le j}$ is the f-vector of the restriction of Δ' to a (j-1)-dimensional face of Δ .

Let

 $\sigma_n = (n-1)$ - dimensional simplex.

The data F determines the polynomials

- ff (on,x) = f-polynomial
- $f_F^0(\sigma_{n,x}) = interior f_polynomial$
- · hf(σn,x) = h-polynomial
- $h_{\mathcal{F}}^{\circ}(\sigma_{n,x}) = interior h-polynomial$
- · lf (on,x) = local h-polynomial

$$= \sum_{k=0}^{n} (-1)^{n-k} {n \choose k} h_{k} (\sigma_{k}, x)$$

- $\theta_{F}(\sigma_{n},x) = \text{theta polynomial}$ = $h_{F}(\sigma_{n},x) - h_{F}(\partial \sigma_{n},x)$
- of any F-uniform triangulation of on.

Definition. We say that

- (a) F has the strong interlacing property if each $h_{F}(\sigma_{n},x)$
 - is real-rooted
 - has a nonnegative, real-rooted symmetric decomposition with respect to n-1, each part of which is interlaced by $h_{F}(\sigma_{n-1}, x)$.
- (b) F is theta χ -positive if $\Theta(\sigma_{n}, x)$ is χ -positive for every n.

Given F, we may now consider the linear operators

$$H_{F}$$
, H_{F}° : $\mathbb{R}[x] \to \mathbb{R}[x]$

defined by

•
$$H_F(x^h) = h_F(\sigma_n, x)$$

•
$$H_F^{\circ}(x^n) = h_F^{\circ}(\sigma_{n,x})$$

for ne IN.

Note. In the special case of barycentric subdivision

$$H_{F}^{o}(x^{n}) = \begin{cases} 1, & n=0 \\ xA_{n}(x), & n \geq 1 \end{cases} = A^{o}(x^{n}).$$

Conjecture. Suppose F has the strong interlacing property. Then H(p(x)) and $H^0(p(x))$ are real-rooted for every

$$p(x) = \sum_{k=0}^{n} c_k x^{n-k} (1+x)^k$$

with co, c1, ..., cn ≥0.

Theorem (A, recent) Suppose that F is theta χ -positive. Then $H^0(p(\chi))$ has a χ -positive symmetric decomposition with respect to η for every $\eta(\chi) \in \mathbb{R}[\chi]$ as above.

4. Some generalized local h-polynomials

A crucial role in the proof is played by the following concept. Recall that

•
$$h(\Delta, x) = \sum_{i=0}^{m} f_{i-1}(\Delta) x^{i} (1-x)^{n-i}$$

•
$$\ell_{V}(\Gamma, \alpha) = \sum_{F \subseteq V} \binom{n-|F|}{(-1)} h(\Gamma, \alpha)$$

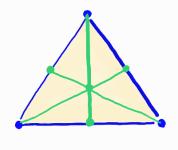
are the definitions of the h-polynomial of a simplicial complex Δ and the local h-polynomial of a triangulation Γ of the simplex 2^{V} , where $n=\dim(\Delta)+1=|V|$.

Example. For the barycentric sub-division Γ_n of the (n-1)-dimensional simplex Q^V

•
$$h(\Gamma_n, x) = A_n(x)$$

•
$$\ell_{V}(\Gamma_{n},x) = d_{n}(x)$$

$$= \sum_{w \in G_n: \\ Fix(w) = \emptyset} exc(w)$$



$$n = 3$$

•
$$h(\Gamma_3, x) = (1-x)^3 +$$

$$7x(1-x)^2 + 12x^2(1-x) +$$

$$6x^3 = 1 + 4x + x^2$$

•
$$\ell_{V}(\Gamma_{3}, x) = (1 + 4x + x^{2}) -$$

$$-3(1+x) + 3 - 1 = x + x^{2}$$

Definition. Given a triangulation Γ of 9^V and ESV, we define

$$\ell_{V,E}(\Gamma, x) = \sum_{E \subseteq F \subseteq V} |V \setminus F| h(\Gamma, x).$$

Note.
$$\ell_{V,V}(\Gamma,x) = h(\Gamma,x)$$

 $\ell_{V,Q}(\Gamma,x) = \ell_{V}(\Gamma,x)$

Example. For the barycentric subdivision Γ_n ,

$$\ell_{V,E}(\Gamma_{n},x) = d_{n,n-\kappa}(x)$$

where k= |E|.

Note. The $\ell_{V,E}^{(\Gamma,\alpha)}$ are relevant because in the case of uniform triangulations,

•
$$H_F^{\circ}(x^{n-k}(1+x)^{k}) =$$

$$= \sum_{E \subseteq F \subseteq V} \ell_{F,E}(\Gamma,x) (1+x)^{n-|F|}$$

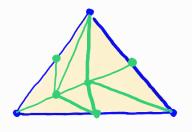
where IEI = n-k, in analogy with the corresponding formula for the $9n_{ik}(x)$.

Definition. We define

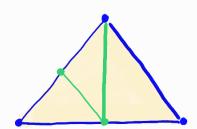
$$\Theta(\Gamma, x) = h(\Gamma, x) - h(\partial \Gamma, x)$$

and say that Γ is theta χ -positive if $\Theta(\Gamma_F, x)$ is χ -positive for every FSV.

Conjecture (A,2022+, Chudnovsky-Nevo 2020) The polynomial $\Theta(\Gamma, x)$ is χ -positive for every flag triangulation Γ of the simplex 2^{V} such that $\partial\Gamma$ is a vertex-induced subcomplex of Γ .



induced



not induced

Note.

•
$$h(\Gamma, \alpha) = \sum_{F \subseteq V} \theta(\Gamma, \alpha) A_{|V \setminus F|}(\alpha)$$

• $\ell_V(\Gamma, \alpha) = \sum_{F \subseteq V} \theta(\Gamma, \alpha) d_{|V \setminus F|}(\alpha)$

Proposition.

$$\ell_{V,E}(\Gamma,x) = \sum_{F \subseteq V} \Theta(\Gamma,x) d_{|V\setminus F|,|V\setminus (E\cup F)|}(x).$$

In particular, the theta χ -positivity of Γ implies the χ -positivity of the symmetric decompositions of $\ell_{V,E}(\Gamma,x)$ and $I_n H_F^o(x^{n-k}(1+x)^k)$.