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Abstract. The Rees product of partially ordered sets was introduced by Björner and
Welker. Using the theory of lexicographic shellability, Linusson, Shareshian and Wachs
proved formulas, of significance in the theory of gamma-positivity, for the dimension of
its homology. Equivariant analogues of these formulas are proven in this paper and are
applied to establish the Schur gamma-positivity of certain symmetric functions arising
in algebraic and geometric combinatorics.

1. Introduction

The Rees product P ∗Q of two partially ordered sets (posets, for short) was introduced
and studied by Björner andWelker [7] as a combinatorial analogue of the Rees construction
in commutative algebra (a precise definition of P ∗ Q can be found in Section 2). The
connection of the Rees product of posets to enumerative combinatorics was hinted in [7,
Section 5], where it was conjectured that the dimension of the homology of the Rees
product of the truncated Boolean algebra Bnr{∅} of rank n−1 with an n-element chain
equals the number of permutations of [n] := {1, 2, . . . , n} without fixed points. This
statement was generalized in several ways in [13], using enumerative and representation
theoretic methods, and in [9], using the theory of lexicographic shellability.

One of the results of [9] proves formulas [9, Corollary 3.8] for the dimension of the
homology of the Rees product of an EL-shellable poset P with a contractible poset which
generalizes the chain of the same rank as P . This paper provides an equivariant analogue
of this result which seems to have enough applications on its own to be of independent
interest. To state it, let P be a finite bounded poset, with minimum element 0̂ and maxi-
mum element 1̂, which is graded of rank n+1, with rank function ρ : P → {0, 1, . . . , n+1}
(for basic terminology on posets, see [20, Chapter 3]). Fix a field k and let G be a finite
group which acts on P by order preserving bijections. Then, G defines a permutation
representation αP (S) over k for every S ⊆ [n], induced by the action of G on the set of
maximal chains of the rank-selected subposet

(1) PS = {x ∈ P : ρ(x) ∈ S} ∪ {0̂, 1̂}
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of P . Following [17], we may consider the virtual G-representation

(2) βP (S) =
∑

T⊆S

(−1)|S−T | αP (T ),

defined equivalently by the equations

(3) αP (T ) =
∑

S⊆T

βP (S)

for T ⊆ [n]. When P is Cohen–Macaulay over k, βP (S) coincides with the non-virtual
G-representation induced on the top homology group of P̄S := PSr{0̂, 1̂}; see [17] [25,
Section 3.4] for more information.

As in references [9, 13], we write β(P̄ ) in place of βP ([n]) and denote by Tt,n the poset
whose Hasse diagram is a complete t-ary tree of height n, rooted at the minimum element.
We denote by P−, P− and P̄ the poset obtained from P by removing its maximum element,
or minimum element, or both, respectively, and recall from [13] (see also Section 2) that
the action of G on P induces actions on P− ∗ Tt,n and P̄ ∗ Tt,n−1 as well. We also write
[a, b] := {a, a + 1, . . . , b} for integers a ≤ b and denote by Stab(Θ) the set of all subsets,
called stable, of Θ ⊆ Z which do not contain two consecutive integers. The following
result reduces to [9, Corollary 3.8], proven in [9] under additional shellability assumptions
on P , in the special case of a trivial action.

Theorem 1.1. Let G be a finite group acting on a finite bounded graded poset P of rank
n+ 1 by order preserving bijections. Then,

β((P− ∗ Tt,n)−) ∼=G

∑

S∈Stab([n−1])

βP ([n]rS) t
|S|(1 + t)n−2|S| +(4)

∑

S∈Stab([n−2])

βP ([n− 1]rS) t|S|+1(1 + t)n−1−2|S|

and

β(P̄ ∗ Tt,n−1) ∼=G

∑

S∈Stab([2,n−2])

βP ([n− 1]rS) t|S|+1(1 + t)n−2−2|S| +(5)

∑

S∈Stab([2,n−1])

βP ([n]rS) t
|S|(1 + t)n−1−2|S|

for every positive integer t, where ∼=G stands for isomorphism of G-representations. If
P is Cohen–Macaulay over k, then the left hand-sides of (4) and (5) may be replaced by

the G-representations H̃n−1((P
− ∗ Tt,n)−;k) and H̃n−1(P̄ ∗ Tt,n−1;k), respectively, and all

representations which appear in these formulas are non-virtual.

A polynomial in t with real coefficients is said to be γ-positive if for some m ∈ N,
it can be written as a nonnegative linear combination of the binomials ti(1 + t)m−2i for
0 ≤ i ≤ m/2. Clearly, all such polynomials have symmetric and unimodal coefficients.
Several applications of [9, Corollary 3.8] to γ-positivity appear in [9] [3, Section 3] and
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are summarized in [5, Section 2.4]. Theorem 1.1 has non-trivial applications to Schur γ-
positivity, which we now briefly discuss. Two symmetric function identities due to Gessel
(unpublished), stated without proof in [9, Section 4] [14, Theorem 7.3], can be written in
the form

(6)
1− t

E(x; tz)− tE(x; z)
= 1 +

∑

n≥2

zn
⌊(n−2)/2⌋∑

k=0

ξn,k(x) t
k+1(1 + t)n−2k−2

and

(7)
(1− t)E(x; tz)

E(x; tz)− tE(x; z)
= 1 +

∑

n≥1

zn
⌊(n−1)/2⌋∑

k=0

γn,k(x) t
k+1(1 + t)n−1−2k,

where E(x; z) =
∑

n≥0 en(x)z
n is the generating function for the elementary symmetric

functions in x = (x1, x2, . . . ) and the ξn,k(x) and γn,k(x) are Schur-positive symmetric
functions, whose coefficients in the Schur basis can be explicitly described (see Corol-
lary 4.1). The coefficients of zn in the right-hand sides of Equations (6) and (7) are Schur
γ-positive symmetric functions, in the sense that their coefficients in the Schur basis are
γ-positive polynomials in t with the same center of symmetry. We will show (see Sec-
tion 4) that these identities can in fact be derived from the special case of Theorem 1.1 in
which P− is the Boolean algebra Bn, endowed with the natural symmetric group action.
Moreover, applying the theorem when P− is a natural signed analogue of Bn, endowed
with a hyperoctahedral group action, we obtain new identities of the form

(8)
E(x; tz)− tE(x; z)

E(x; tz)E(y; tz) − tE(x; z)E(y; z)
=
∑

n≥0

zn
⌊n/2⌋∑

k=0

ξ+n,k(x,y) t
k(1 + t)n−2k,

(9)
E(x; z)− E(x; tz)

E(x; tz)E(y; tz)− tE(x; z)E(y; z)
=
∑

n≥1

zn
⌊(n−1)/2⌋∑

k=0

ξ−n,k(x,y) t
k(1 + t)n−1−2k,

(10)
E(x; z)E(x; tz) (E(y; tz)− tE(y; z))

E(x; tz)E(y; tz)− tE(x; z)E(y; z)
=
∑

n≥0

zn
⌊n/2⌋∑

k=0

γ+n,k(x,y) t
k(1 + t)n−2k

and

(11)
tE(x; z)E(x; tz) (E(y; z)− E(y; tz))

E(x; tz)E(y; tz)− tE(x; z)E(y; z)
=
∑

n≥1

zn
⌊(n+1)/2⌋∑

k=1

γ−n,k(x,y) t
k(1 + t)n+1−2k,

where the ξ±n,k(x,y) and γ
±
n,k(x,y) are Schur-positive symmetric functions in the sets of

variables x = (x1, x2, . . . ) and y = (y1, y2, . . . ) separately. Note that the left-hand sides
of Equations (8) and (11) specialize to those of (6) and (7), respectively, for x = 0.

Various combinatorial and algebraic-geometric interpretations of the left-hand sides of
Equations (6) and (7) are discussed in [14, Section 7] [9, Section 4] [15]. For instance,
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by [18, Proposition 4.20], the coefficient of zn in the left-hand side of (6) can be inter-
preted as the Frobenius characteristic of the symmetric group representation on the local
face module of the barycentric subdivision of the (n − 1)-dimensional simplex, twisted
by the sign representation. Thus, the Schur γ-positivity of this coefficient, manifested
by Equation (6), is an instance of the local equivariant Gal phenomenon, as discussed in
[5, Section 5.2]. Section 5 shows that another instance of this phenomenon follows from
the specialization x = y of Equation (8). Similarly, setting y = 0 to (10) yields another
identity, recently proven by Shareshian and Wachs (see Proposition 3.3 and Theorem 3.4
in [16]) in order to establish the equivariant Gal phenomenon for the n-dimensional stel-
lohedron. Further applications of Theorem 1.1 will appear in [6]. It would be interesting
to generalize some of the known interpretations for the left-hand sides of Equations (6)
and (7) to those of (8) – (11).

Outline. The proof of Theorem 1.1 is given in Section 3, after the relevant background
and definitions are explained in Section 2. This proof is fairly elementary and different
from that of [9, Corollary 3.8], given in [9]. Section 4 derives Equations (6) – (11) from
Theorem 1.1 and provides explicit combinatorial interpretations, in terms of standard
Young (bi-)tableaux and their descents, for the Schur-positive symmetric functions which
appear there. Section 5 provides the promised application of Equation (8) to the equi-
variant γ-positivity of the symmetric group representation on the local face module of a
certain triangulation of the simplex.

2. Preliminaries

This section briefly records definitions and background on posets, group representations
and (quasi)symmetric functions. For basic notions and more information on these topics,
the reader is referred to the sources [11] [17] [20, Chapter 3] [21, Chapter 7] [25]. The
symmetric group of permutations of the set [n] := {1, 2, . . . , n} is denoted by Sn and the
cardinality of a finite set S by |S|.

Group actions on posets and Rees products. All groups and posets considered here
are assumed to be finite. Homological notions for posets always refer to those of their
order complex; see [25, Lecture 1]. A poset P has the structure of a G-poset if the group
G acts on P by order preserving bijections. Then, G induces a representation on every
reduced homology group H̃i(P ;k), for every field k.

Suppose that P is a G-poset with minimum element 0̂ and maximum element 1̂. Sun-
daram [24] (see also [25, Theorem 4.4.1]) established the isomorphism of G-representations

(12)
⊕

k≥0

(−1)k
⊕

x∈P/G

H̃k−2((0̂, x);k) ↑
G
Gx

∼=G 0.

Here P/G stands for a complete set of G-orbit representatives, (0̂, x) denotes the open
interval of elements of P lying strictly between 0̂ and x, Gx is the stabilizer of x and ↑

denotes induction. Moreover, H̃k−2((0̂, x);k) is understood to be the trivial representation
1Gx

if x = 0̂ and k = 0, or x covers 0̂ and k = 1.
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The Lefschetz character of a finite G-poset P (over the field k) is defined as the virtual
G-representation

L(P ;G) :=
⊕

k≥0

(−1)k H̃k(P ;k).

Note that L(P ;G) = (−1)rH̃r(P ;k), if P is Cohen–Macaulay over k of rank r.
Given finite graded posets P and Q with rank functions ρP and ρQ, respectively, their

Rees product is defined in [7] as P ∗ Q = {(p, q) ∈ P × Q : ρP (p) ≥ ρQ(q)}, with partial
order defined by setting (p1, q1) � (p2, q2) if all of the following conditions are satisfied:

• p1 � p2 holds in P ,
• q1 � q2 holds in Q and
• ρP (p2)− ρP (p1) ≥ ρQ(q2)− ρQ(q1).

Equivalently, (p1, q1) is covered by (p2, q2) in P ∗ Q if and only if (a) p1 is covered by p2
in P ; and (b) either q1 = q2, or q1 is covered by q2 in Q. We note that the Rees product
P ∗Q is graded with rank function given by ρ(p, q) = ρP (p) for (p, q) ∈ P ∗Q, and that if
P is a G-poset, then so is P ∗Q with the G-action defined by setting g · (p, q) = (g · p, q)
for g ∈ G and (p, q) ∈ P ∗Q.

A bounded graded G-poset P , with maximum element 1̂, is said to be G-uniform [13,
Section 3] if the following hold:

• the intervals [x, 1̂] and [y, 1̂] in P are isomorphic for all x, y ∈ P of the same rank,
• the stabilizers Gx and Gy are isomorphic for all x, y ∈ P of the same rank, and

• there is an isomorphism between [x, 1̂] and [y, 1̂] that intertwines the actions of Gx

and Gy, for all x, y ∈ P of the same rank.

Given a sequence of groups G = (G0, G1, . . . , Gn), a sequence of posets (P0, P1, . . . , Pn)
is said to be G-uniform [13, Section 3] if

• Pk is Gk-uniform of rank k for all k,
• Gk is isomorphic to the stabilizer (Gn)x for every x ∈ Pn of rank n− k and all k,
and

• there is an isomorphism between Pk and the interval [x, 1̂] in Pn that intertwines
the actions of Gk and (Gn)x for every x ∈ Pn of rank n− k and all k.

Under these assumptions, Shareshian and Wachs [13, Proposition 3.7] established the
isomorphism of G-representations

(13) 1Gn
⊕

n⊕

k=0

Wk(Pn;Gn) [k + 1]t L((Pn−k ∗ Tt,n−k)−;Gn−k) ↑
Gn

Gn−k

∼=G 0

for every positive integer t, where Wk(Pn;Gn) is the number of Gn-orbits of elements of
Pn of rank k and [k + 1]t := 1 + t+ · · ·+ tk.

Permutations, Young tableaux and symmetric functions. Our notation concerning
these topics follows mostly that of [11] [20, Chapter 1] [21, Chapter 7]. In particular,
the set of standard Young tableaux of shape λ is denoted by SYT(λ), the descent set
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{i ∈ [n − 1] : w(i) > w(i + 1)} of a permutation w ∈ Sn is denoted by Des(w) and
that of a tableau Q ∈ SYT(λ), consisting of those entries i for which i + 1 appears in
Q in a lower row than i, is denoted by Des(Q). We recall that the Robinson–Schensted
correspondence is a bijection from the symmetric group Sn to the set of pairs (P, Q)
of standard Young tableaux of the same shape and size n. This correspondence has the
property [21, Lemma 7.23.1] that Des(w) = Des(Q(w)) and Des(w−1) = Des(P(w)),
where (P(w), Q(w)) is the pair of tableaux associated to w ∈ Sn.

We will consider symmetric functions in the indeterminates x = (x1, x2, . . . ) over the
complex field C. We denote by E(x; z) :=

∑
n≥0 en(x)z

n and H(x; z) :=
∑

n≥0 hn(x)z
n

the generating functions for the elementary and complete homogeneous symmetric func-
tions, respectively, and recall the identity E(x; z)H(x;−z) = 1. The characteristic
map, a C-linear isomorphism of fundamental importance from the space of virtual Sn-
representations to that of homogeneous symmetric functions of degree n, will be denoted
by ch. The fundamental quasisymmetric function associated to S ⊆ [n− 1] is defined as

(14) Fn,S(x) =
∑

1≤i1≤i2≤···≤in
j∈S⇒ ij<ij+1

xi1xi2 · · ·xin .

The following well known expansion [21, Theorem 7.19.7]

(15) sλ(x) =
∑

Q∈SYT(λ)

Fn,Des(Q)(x)

of the Schur function sλ(x) associated to λ ⊢ n will be used in Section 4.
For the applications given there, we need the analogues of these concepts in the rep-

resentation theory of the hyperoctahedral group of signed permutations of the set [n],
denoted here by Bn. We will keep this discussion rather brief and refer to [1, Section 2]
for more information.

A bipartition of a positive integer n, written (λ, µ) ⊢ n, is any pair (λ, µ) of integer
partitions of total sum n. A standard Young bitableaux of shape (λ, µ) ⊢ n is any pair
Q = (Q+, Q−) of Young tableaux such that Q+ has shape λ, Q− has shape µ and every
element of [n] appears exactly once as an enrty of Q+ or Q−. The tableaux Q+ and
Q− are called the parts of Q and the number n is its size. The Robinson–Schensted
correspondence of type B, as described in [17, Section 6] (see also [1, Section 5]) is a
bijection from the group Bn to the set of pairs (P, Q) of standard Young bitableaux of
the same shape and size n.

The characteristic map for the hyperoctahedral group, denoted by chB, is a C-linear iso-
morphism from the space of virtual Bn-representations to that of homogeneous symmetric
functions of degree n in the sets of indeterminates x = (x1, x2, . . . ) and y = (y1, y2, . . . )
separately; see, for instance, [22, Section 5]. The following basic properties of chB will be
useful in Section 4:

• chB(1Bn
) = hn(x), where 1Bn

is the trivial Bn-representation,

• chB(σ ⊗ τ ↑Bn

Bk×Bn−k
) = chB(σ) · chB(τ) for all representations σ and τ of Bk and

Bn−k, respectively, where Bk × Bn−k is a Young subgroup of Bn,
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• chB(↑
Bn

Sn
ρ) = ch(ρ)(x,y) for every Sn-representation ρ, where Sn ⊂ Bn is the

standard embedding.

We denote by E(x,y; z) :=
∑

n≥0 en(x,y)z
n and H(x,y; z) :=

∑
n≥0 hn(x,y)z

n the
generating function for the elementary and complete homogeneous, respectively, symmet-
ric functions in the variables (x,y) = (x1, x2, . . . , y1, y2, . . . ) and note that E(x,y; z) =
E(x; z)E(y; z), since en(x,y) =

∑n
k=0 ek(x)en−k(y), and similarly that H(x,y; z) =

H(x; z)H(y; z).
The signed descent set [1, Section 2] [10] of w ∈ Bn, denoted sDes(w), records the

positions of the increasing (in absolute value) runs of constant sign in the sequence
(w(1), w(2), . . . , w(n)). Formally, we may define sDes(w) as the pair (Des(w), ε), where
ε = (ε1, ε2, . . . , εn) ∈ {−,+}n is the sign vector with ith coordinate equal to the sign of
w(i) and Des(w) consists of the indices i ∈ [n−1] for which either εi = + and εi+1 = −, or
else εi = εi+1 and |w(i)| > |w(i+ 1)| (this definition is slightly different from, but equiv-
alent to, the ones given in [1, 10]). The fundamental quasisymmetric function associated
to w, introduced by Poirier [10] in a more general setting, is defined as

(16) FsDes(w)(x,y) =
∑

i1≤i2≤···≤in
j∈Des(w)⇒ ij<ij+1

zi1zi2 · · · zin ,

where zij = xij if εj = +, and zij = yij if εj = −. Given a standard Young bitableau
Q of size n, one defines the signed descent set sDes(Q) as the pair (Des(Q), ε), where
ε = (ε1, ε2, . . . , εn) ∈ {−,+}n is the sign vector with ith coordinate equal to the sign of
the part of Q in which i appears and Des(Q) is the set of indices i ∈ [n − 1] for which
either εi = + and εi+1 = −, or else εi = εi+1 and i+1 appears in Q in a lower row than i.
The function FsDes(Q)(x,y) is then defined by the right-hand side of Equation (16), with
w replaced by Q; see [1, Section 2]. The analogue

(17) sλ(x)sµ(y) =
∑

Q∈SYT(λ,µ)

FsDes(Q)(x,y)

of the expansion (15) holds ([1, Proposition 4.2]) and the Robinson–Schensted corre-
spondence of type B has the properties that sDes(w) = sDes(QB(w)) and sDes(w−1) =
sDes(PB(w)), where (PB(w), QB(w)) is the pair of bitableaux associated to w ∈ Bn;
see [1, Proposition 5.1].

3. Proof of Theorem 1.1

This section proves Theorem 1.1 using only the definition of Rees product and the
defining equation (2) of the representations βP (S). For S = {s1, s2, . . . , sk} ⊆ [n] with
s1 < s2 < · · · < sk we set

ϕt(S) := [s1 + 1]t [s2 − s1 + 1]t · · · [sk − sk−1 + 1]t

ψt(S) := [s1]t [s2 − s1 + 1]t · · · [sk − sk−1 + 1]t,

where [m]t := 1 + t + · · ·+ tm−1 for positive integers m.
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Lemma 3.1. Let G be a finite group, P be a finite bounded graded G-poset of rank n+1,
as in Theorem 1.1, and Q,R be the posets defined by Q̄ = (P− ∗Tt,n)− and R̄ = P̄ ∗Tt,n−1.
Then,

αQ(S) ∼=G ϕt(S)αP (S)

αR(S) ∼=G ψt(S)αP (S)

for all positive integers t and S ⊆ [n].

Proof. Let S = {s1, s2, . . . , sk} ⊆ [n] with s1 < s2 < · · · < sk and let ρ : Tt,n → N be the
rank function of Tt,n. By the definition of Rees product, the maximal chains in QS have
the form

(18) 0̂ ≺ (p1, τ1) ≺ (p2, τ2) ≺ · · · ≺ (pk, τk) ≺ 1̂

where 0̂ ≺ p1 ≺ p2 ≺ · · · ≺ pk ≺ 1̂ is a maximal chain in PS and τ1 � τ2 � · · · � τk is a
multichain in Tt,n such that

• 0 ≤ ρ(τ1) ≤ s1 and
• ρ(τj)− ρ(τj−1) ≤ sj − sj−1 for 2 ≤ j ≤ k.

Let mt(S) be the number of these multichains. Since the elements of G act on (18) by
fixing the τj and acting on the corresponding maximal chain of PS, we have αQ(S) ∼=G

mt(S)αP (S). To choose such a multichain τ1 � τ2 � · · · � τk, we need to specify the
sequence i1 ≤ i2 ≤ · · · ≤ ik of ranks of its elements so that ij − ij−1 ≤ sj − sj−1 for
1 ≤ j ≤ k, where i0 := s0 := 0, and choose its maximum element τk in tik possible ways.
Summing over all such sequences, we get

mt(S) =
∑

(i1,i2,...,ik)

tik =
∑

0≤aj≤sj−sj−1

ta1+a2+···+ak = ϕt(S)

and the result for αQ(S) follows. The same argument applies to αR(S); one simply has
to switch the condition for the rank of τ1 to 0 ≤ ρ(τ1) ≤ s1 − 1. �

The proof of the following technical lemma will be given after that of Theorem 1.1.

Lemma 3.2. We have

(19)
∑

S⊆T⊆[n]

(−1)n−|T | ϕt(T ) =






0, if [n]rS is not stable,

tk(1 + t)n−2k, if [n]rS is stable and n ∈ S,

tk(1 + t)n+1−2k, if [n]rS is stable and n 6∈ S

and

(20)
∑

S⊆T⊆[n]

(−1)n−|T | ψt(T ) =






0, if 1 6∈ S,

0, if [n]rS is not stable,

tk(1 + t)n−1−2k, if [n]rS is stable and 1, n ∈ S,

tk(1 + t)n−2k, if [n]rS is stable, 1 ∈ S and n 6∈ S
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for every S ⊆ [n], where k := n− |S|.

Proof of Theorem 1.1. Using Equations (2) and (3), as well as Lemma 3.1, we compute
that

βQ([n]) =
∑

T⊆[n]

(−1)n−|T | αQ(T ) ∼=G

∑

T⊆[n]

(−1)n−|T | ϕt(T )αP (T )

=
∑

T⊆[n]

(−1)n−|T | ϕt(T )
∑

S⊆T

βP (S)

=
∑

S⊆[n]

βP (S)
∑

S⊆T⊆[n]

(−1)n−|T | ϕt(T )

and find similarly that

βR([n]) ∼=G

∑

S⊆[n]

βP (S)
∑

S⊆T⊆[n]

(−1)n−|T | ψt(T ).

The proof follows from these formulas and Lemma 3.2. For the last statement of the
theorem one has to note that, as a consequence of [7, Corollary 2], if P is Cohen–Macaulay
over k, then so are the Rees products P− ∗ Tt,n and P̄ ∗ Tt,n−1. �

Proof of Lemma 3.2. Let us denote by χt(S) the left-hand side of (19) and write S =
{s1, s2, . . . , sk}, with 1 ≤ s1 < s2 < · · · < sk ≤ n. By definition, we have

(21) χt(S) = χt(s1)χt(s2 − s1) · · ·χt(sk − sk−1)ωt(n− sk),

where

χt(n) :=
∑

n∈T⊆[n]

(−1)n−|T | ϕt(T )

ωt(n) :=
∑

T⊆[n]

(−1)n−|T | ϕt(T )

for n ≥ 1 and ωt(0) := 1. We claim that

χt(n) =





1 + t, if n = 1,

t, if n = 2,

0, if n ≥ 3

and ωt(n) =





1, if n = 0,

t, if n = 1,

0, if n ≥ 2.

Equation (19) is a direct consequence of (21) and this claim. To verify the claim, note
that the defining equation for χt(n) can be rewritten as

χt(n) =
∑

(a1,a2,...,ak)�n

(−1)n−k [a1 + 1]t [a2 + 1]t · · · [ak + 1]t,
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where the sum ranges over all sequences (compositions) (a1, a2, . . . , ak) of positive integers
summing to n. We leave it as a simple combinatorial excercise for the interested reader to
show (for instance, by standard generating function methods) that χt(n) = 0 for n ≥ 3.
The claim follows from this fact and the obvious recurrence ωt(n) = χt(n) − ωt(n − 1),
valid for n ≥ 1.

Finally, note that Equation (20) is equivalent to (19) in the case 1 ∈ S. Otherwise, the
terms in the left-hand side can be partitioned into pairs of terms, corresponding to pairs
{T, T ∪ {1}} of subsets with 1 6∈ T , cancelling each other. This shows that the left-hand
side vanishes. �

4. Symmetric function identities

This section derives Equations (6) – (11) from Theorem 1.1 (Corollaries 4.1, 4.4 and 4.7)
and interprets combinatorially the Schur-positive symmetric functions which appear there.
We first explain why Gessel’s identities are special cases of this theorem. The set of ascents
of a permutation w ∈ Sn is defined as Asc(w) := [n− 1]rDes(w) and, similarly, we have
Asc(P) := [n− 1]rDes(P) for every standard Young tableau P of size n.

Corollary 4.1. Equations (6) and (7) are valid for the functions

(22) ξn,k(x) =
∑

λ⊢n

cλ,k · sλ(x) =
∑

w

Fn,Des(w)(x)

and

(23) γn,k(x) =
∑

λ⊢n

dλ,k · sλ(x) =
∑

w

Fn,Des(w)(x),

where cλ,k (respectively, dλ,k) stands for the number of tableaux P ∈ SYT(λ) for which
Asc(P) ∈ Stab([2, n − 2]) (respectively, Asc(P) ∈ Stab([n − 2])) has k elements and,
similarly, w ∈ Sn runs through all permutations for which Asc(w−1) ∈ Stab([2, n − 2])
(respectively, Asc(w−1) ∈ Stab([n− 2])) has k elements.

Proof. We will apply Theorem 1.1 when P− is the Boolean lattice Bn of subsets of [n],
partially ordered by inclusion, considered as an Sn-poset. On the one hand, we have the
equality

1 +
∑

n≥2

ch
(
H̃n−1((Bnr{∅}) ∗ Tt,n−1;C)

)
zn =

1− t

E(x; tz)− tE(x; z)

which, although not explicitly stated in [13], follows as in the proof of its special case
t = 1 [13, Corollary 5.2]. On the other hand, since Bn has a maximum element, the
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second summand in the right-hand side of Equation (5) vanishes and hence this equation
gives

ch
(
H̃n−1((Bnr{∅}) ∗ Tt,n−1;C)

)
=

∑

S∈Stab([2,n−2])

ch (βBn
([n− 1]rS)) t|S|+1 (1+t)n−2−2|S|

for n ≥ 2. The representations βBn
(S) for S ⊆ [n − 1] are known to satisfy (see, for

instance, [17, Theorem 4.3])

ch (βBn
(S)) =

∑

λ⊢n

cλ,S · sλ(x),

where cλ,S is the number of standard Young tableaux of shape λ and descent set equal
to S. Combining the previous three equalities yields the first equality in Equation (22).
The second equality follows from the first by expanding sλ(x) according to Equation (15)
to get

ξn,k(x) =
∑

λ⊢n

∑

P

∑

Q∈SYT(λ)

Fn,Des(Q)(x)

where, in the inner sum, P runs through all tableaux in SYT(λ) for which Asc(P) ∈
PStab([2, n− 2]) has k elements, and then using the Robinson–Schensted correspondence
and its standard properties Des(w) = Des(Q(w)) and Des(w−1) = Des(P(w)) to replace
the summations with one running over elements ofSn, as in the statement of the corollary.

The proof of (23) is entirely similar; one has to use Equation (4) instead of (5), as well
as the equality

1 +
∑

n≥1

ch
(
H̃n−1((Bn ∗ Tt,n)−;C)

)
zn =

(1− t)E(x; tz)

E(x; tz)− tE(x; z)
.

The latter follows from the proof of Equation (3.3) in [13, pp. 15–16], where the left-hand
side is equal to −Ft(−z), in the notation used in that proof. �

Example 4.2. The coefficient of z4 in the left-hand sides of Equations (6) and (7) equals

• e4(x) (t+ t2 + t3) + e2(x)
2 t2, and

• e4(x) (t+ t2 + t3 + t4) + e1(x)e3(x) (t
2 + t3) + e2(x)

2 (t2 + t3),

respectively. These expressions may be rewritten as

• s(1,1,1,1)(x) t(1 + t)2 + s(2,1,1)(x) t
2 + s(2,2)(x) t

2, and

• s(1,1,1,1)(x) t(1 + t)3 + 2s(2,1,1)(x) t
2(1 + t) + s(2,2)(x) t

2(1 + t),

respectively, and hence ξ4,0(x) = s(1,1,1,1)(x), ξ4,1(x) = s(2,1,1)(x) + s(2,2)(x), γ4,0(x) =
s(1,1,1,1)(x) and γ4,1(x) = 2s(2,1,1)(x) + s(2,2)(x). We leave it to the reader to verify that
these formulas agree with Corollary 4.1. �
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We now focus on the identities (8) – (11). We will apply Theorem 1.1 to the collection
sBn of all subsets of {1, 2, . . . , n} ∪ {−1,−2, . . . ,−n} which do not contain {i,−i} for
any index i, partially ordered by inclusion. This signed analogue of the Boolean algebra
Bn is a graded poset of rank n, having the empty set as its minimum element, on which
the hyperoctahedral group Bn acts in the obvious way [17, Section 6], turning it into a
Bn-poset. It is isomorphic to the poset of faces (including the empty one) of the boundary
complex of the n-dimensional cross-polytope and hence it is Cohen–Macaulay over Z and
any field. Our computations of the left-hand sides of Equations (4) and (5) for P− = sBn

follow closely the methods of [13].
Consider the n-element chain Cn = {0, 1, . . . , n − 1}, with the usual total order. Fol-

lowing [13], we denote by Ij(Bn) the order ideal of elements of (Bnr{∅}) ∗Cn which are
strictly less than ([n], j). Then Ij(Bn) is an Sn-poset for every j ∈ Cn and one of the
main results of [13] (see [13, p. 21] [15, Equation (2.5)]) states that

(24) 1 +
∑

n≥1

zn
n−1∑

j=0

tj ch
(
H̃n−2(Ij(Bn);C)

)
=

(1− t)E(x; z)

E(x; tz)− tE(x; z)
.

Proposition 4.3. For the Bn-poset sBn we have

(25)

1 +
∑

n≥1

chB

(
H̃n−1((sBnr{∅}) ∗ Tt,n−1;C)

)
zn =

(1− t)E(y; z)

E(x; tz)E(y; tz)− tE(x; z)E(y; z)
.

Proof. Following the reasoning in the proof of [13, Corollary 5.2], we apply (12) to the
Cohen–Macaulay Bn-poset obtained from (sBnr{∅}) ∗ Tt,n−1 by adding a minimum and
a maximum element. For 0 ≤ j < k ≤ n, there are exactly tj Bn-orbits of elements x of
rank k in this poset with second coordinate equal to j and for each one of these, the open
interval (0̂, x) is isomorphic to Ij(Bk) and the stabilizer of x is isomorphic to Sk × Bn−k.
We conclude that

H̃n−1((sBnr{∅})∗Tt,n−1;C) ∼=Bn

n⊕

k=0

(−1)n−k
k−1⊕

j=0

tj
(
H̃k−2(Ij(Bk);C)⊗ 1Bn−k

)
↑Bn

Sk×Bn−k .

Applying the map chB and using the transitivity ↑Bn

Bn−k×Sk

∼=Bn
↑
Bn−k×Bk

Bn−k×Sk
↑Bn

Bn−k×Bk
of in-

duction and properties of chB discussed in Section 2, the right-hand side becomes

n∑

k=0

(−1)n−k

k−1∑

j=0

tj ch
(
H̃k−2(Ij(Bk);C)

)
(x,y) · hn−k(x).
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Thus, the left-hand side of Equation (25) is equal to

H(x;−z) ·

(
1 +

∑

n≥1

zn
n−1∑

j=0

tj ch
(
H̃n−2(Ij(Bn);C)

)
(x,y)

)

and the result follows from Equation (24) and the identities E(x; z)H(x;−z) = 1 and
E(x,y; z) = E(x; z)E(y; z). �

Recall the definition of the sets Des(w) and Des(P) for signed permutations w ∈ Bn

and standard Young bitableau P of size n, respectively, from Section 2. Following [17,
Section 6], we define the type B descent set of P = (P+,P−) as DesB(P) = Des(P)∪{n},
if n appears in P+, and DesB(P) = Des(P) otherwise. The complement of DesB(P) in
the set [n] is called the type B ascent set of P and is denoted by AscB(P). Similarly, we
define the type B descent set of w ∈ Bn as DesB(w) = Des(w) ∪ {n}, if w(n) is positive,
and DesB(w) = Des(w) otherwise. The complement of DesB(w) in the set [n] is called
the type B ascent set of w and is denoted by AscB(w). The sets DesB(w) and DesB(P)
depend only on the signed descent sets sDesB(w) and sDesB(P), respectively, and [1,
Proposition 5.1], mentioned at the end of Section 2, implies that DesB(w) = DesB(Q

B(w))
and DesB(w

−1) = DesB(P
B(w)) for every w ∈ Bn.

Corollary 4.4. Equations (8) and (9) are valid for the functions

(26) ξ+n,k(x,y) =
∑

(λ,µ)⊢n

c+(λ,µ),k · sλ(x)sµ(y) =
∑

w

FsDes(w)(x,y)

and

(27) ξ−n,k(x,y) =
∑

(λ,µ)⊢n

c−(λ,µ),k · sλ(x)sµ(y) =
∑

w

FsDes(w)(x,y),

where c+(λ,µ),k (respectively, c−(λ,µ),k) stands for the number of bitableaux P ∈ SYT(λ, µ)

for which AscB(P) ∈ Stab([2, n]) has k elements and contains (respectively, does not
contain) n and where, similarly, w ∈ Bn runs through all signed permutations for which
AscB(w

−1) ∈ Stab([2, n]) has k elements and contains (respectively, does not contain) n.

Proof. We apply the second part of Theorem 1.1 for P− = sBn, thought of as a Bn-poset.
The representations βP (S) for S ⊆ [n] were computed in this case in [17, Theorem 6.4],
which implies that

chB (βBn
(S)) =

∑

(λ,µ)⊢n

c(λ,µ),S · sλ(y)sµ(x)

for S ⊆ [n], where c(λ,µ),S is the number of standard Young bitableaux P of shape (λ, µ)
such that DesB(P) = S. Switching the roles of x and y and combining this result with
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the second part of Theorem 1.1 and Proposition 4.3 we get

(1− t)E(x; z)

E(x; tz)E(y; tz) − tE(x; z)E(y; z)
=

∑

n≥0

zn
⌊n/2⌋∑

k=0

ξ+n,k(x,y) t
k(1 + t)n−2k +

∑

n≥1

zn
⌊(n−1)/2⌋∑

k=0

ξ−n,k(x,y) t
k(1 + t)n−1−2k,(28)

where the ξ±n,k(x,y) are given by the first equalities in (26) and (27). We now note that the

left-hand side of Equation (28) is equal to the sum of the left-hand sides, say Ξ+(x,y, t; z)
and Ξ−(x,y, t; z), of Equations (8) and (9). Since, as one can readily verify, Ξ+(x,y, t; z) is
left invariant under replacing t with 1/t and z with tz, while Ξ−(x,y, t; z) is multiplied by
t after these substitutions, the coefficient of zn in Ξ+(x,y, t; z) (respectively, Ξ−(x,y, t; z))
is a symmetric polynomial in t with center of symmetry n/2 (respectively, (n− 1)/2) for
every n ∈ N. Since the corresponding properties are clear for the coefficient of zn in the
two summands in the right-hand side of Equation (28) and because of the uniqueness
of the decomposition of a polynomial f(t) as a sum of two symmetric polynomials with
centers of symmetry n/2 and (n−1)/2 (see [5, Section 5.1]), we conclude that (26) and (27)
follow from the single equation (28).

The second equalities in (26) and (27) follow by expanding sλ(x)sµ(y) according to
Equation (17) and then using the Robinson–Schensted correspondence of type B and its
properties sDes(w) = sDes(QB(w)) and DesB(w

−1) = DesB(P
B(w)), exactly as in the

proof of Corollary 4.1. �

Example 4.5. The coefficient of z2 in the left-hand side of Equations (8) and (9) equals

• e1(x)e1(y) t+ e2(y) t = s(1)(x)s(1)(y) t+ s(1,1)(y) t, and

• e2(x) (1 + t) = s(1,1)(x) (1 + t),

respectively and hence ξ+2,0(x,y) = 0, ξ+2,1(x,y) = s(1)(x)s(1)(y)+s(1,1)(y) and ξ
−
2,0(x,y) =

s(1,1)(x), in agreement with Corollary 4.4. �

Proposition 4.6. For the Bn-poset sBn we have

(29) 1 +
∑

n≥1

chB

(
H̃n−1((sBn ∗ Tt,n)−;C)

)
zn =

(1− t)E(y; z)E(x; tz)E(y; tz)

E(x; tz)E(y; tz)− tE(x; z)E(y; z)
.

Proof. Following the reasoning in the proof of [13, Equation (3.3)], we set

Ln(x,y; t) := chB (L((sBn ∗ Tt,n)−;Bn)) ,

where L(P ;G) denotes the Lefschetz character of the G-poset P over C (see Section 2).
Since (sBn ∗ Tt,n)− is Cohen–Macaulay over C of rank n− 1, we have
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chB

(
H̃n−1((sBn ∗ Tt,n)−;C)

)
= (−1)n−1 Ln(x,y; t).

Thus, the left-hand side of (29) is equal to −
∑

n≥0Ln(x,y; t)(−z)
n. The sequence of

posets (sB0, sB1, . . . , sBn) can easily be verified to be (B0×Sn,B1×Sn−1, . . . ,Bn×S0)-
uniform (see Section 2). Moreover, there is a single Bn-orbit of elements of sBn of rank k
for each k ∈ {0, 1, . . . , n}. Thus, applying (13) to this sequence gives

1Bn
⊕

n⊕

k=0

[k + 1]t L((sBn−k ∗ Tt,n−k)−;Bn−k ×Sk) ↑
Bn

Bn−k×Sk

∼=Bn
0.

Applying the characteristic map chB, as in the proof of Proposition 4.3, gives
n∑

k=0

[k + 1]t hk(x,y)Ln−k(x,y; t) = −hn(x).

Standard manipulation with generating functions, as in the proof of [13, Equation (3.3)],
results in the formula

∑

n≥0

Ln(x,y; t)z
n = −

H(x; z)∑
n≥0 [n + 1]t hn(x,y)zn

= −
(1− t)H(x; z)

H(x,y; z)− tH(x,y; tz)
.

The proof now follows by switching z to −z and using the identities E(x; z)H(x;−z) = 1
and E(x,y; z) = E(x; z)E(y; z). �

Corollary 4.7. Equations (10) and (11) are valid for the functions

(30) γ+n,k(x,y) =
∑

(λ,µ)⊢n

d+(λ,µ),k · sλ(x)sµ(y) =
∑

w

FsDes(w)(x,y)

and

(31) γ−n,k(x,y) =
∑

(λ,µ)⊢n

d−(λ,µ),k · sλ(x)sµ(y) =
∑

w

FsDes(w)(x,y),

where d+(λ,µ),k (respectively, d−(λ,µ),k) is the number of bitableaux P ∈ SYT(λ, µ) for which

AscB(P) ∈ Stab([n]) has k elements and does not contain (respectively, contains) n and,
similarly, w ∈ Bn runs through all signed permutations for which AscB(w

−1) ∈ Stab([n])
has k elements and does not contain (respectively, contains) n.

Proof. This statement follows by the same reasoning as in the proof of Corollary 4.4,
provided one appeals to the first part of Theorem 1.1 and Proposition 4.6 instead. �

Example 4.8. The coefficient of z2 in the left-hand side of Equations (10) and (11) equals

• e2(x) (1+t+t
2)+e1(x)

2 t+e1(x)e1(y) t = s(1,1)(x) (1+t)
2+s(2)(x) t+s(1)(x)s(1)(y) t,

• e1(x)e1(y) (t+ t2) + e2(y) (t+ t2) = s(1)(x)s(1)(y) t(1 + t) + s(1,1)(y) t(1 + t),
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respectively and hence we have γ+2,0(x,y) = s(1,1)(x), γ
+
2,1(x,y) = s(2)(x) + s(1)(x)s(1)(y)

and γ−2,1(x,y) = s(1)(x)s(1)(y) + s(2)(y), in agreement with Corollary 4.7. �

5. An instance of the local equivariant Gal phenomenon

This section uses Equation (8) to verify an equivariant analogue of Gal’s conjecture [8]
for the local face module of a certain triangulation of the simplex with interesting combi-
natorial properties. Background and any undefined terminology on simplicial complexes
can be found in [19].

To explain the setup, let Vn = {ε1, ε2, . . . , εn} be the set of unit coordinate vectors in
R

n and Σn be the geometric simplex on the vertex set Vn. Consider a triangulation Γ
of Σn (meaning, a geometric simplicial complex which subdivides Σn) with vertex set VΓ
and the polynomial ring S = C[xv : v ∈ VΓ] in indeterminates which are in one-to-one
correspondence with the vertices of Γ. The face ring [19, Chapter II] of Γ is defined as
the quotient ring C[Γ] = S/IΓ, where IΓ is the ideal of S generated by the square-free
monomials which correspond to the non-faces of Γ. Following [18, p. 824], we consider
the linear forms

(32) θi =
∑

v∈VΓ

〈v, εi〉xv

for i ∈ [n], where 〈 , 〉 is the standard inner product on Rn, and denote by Θ the ideal in
C[Γ] generated by θ1, θ2, . . . , θn. This sequence is a special linear system of parameters for
C[Γ], in the sense of [18, Definition 4.2]. As a result, the quotient ring C(Γ) = C[Γ]/Θ is a
finite dimensional, graded C-vector space and so is the local face module LVn

(Γ), defined
[18, Definition 4.5] as the image in C(Γ) of the ideal of C[Γ] generated by the square-free
monomials which correspond to the faces of Γ lying in the interior of Σn. The Hilbert
polynomials

∑n
i=0 dimC(C(Γ))it

i and
∑n

i=0 dimC(LVn
(Γ))it

i of C(Γ) and LVn
(Γ) are two

important enumerative invariants of Γ, namely the h-polynomial [19, Section II.2] and
the local h-polynomial [18, Section 2] [19, Section III.10], respectively.

Suppose that G is a subgroup of the automorphism group Sn of Σn which acts simpli-
cially on Γ. Then, G acts on the polynomial ring S and (as discussed on [23, p. 250]) leaves
the C-linear span of θ1, θ2, . . . , θn invariant. Therefore, G acts on the graded C-vector
spaces C(Γ) and LVn

(Γ) as well and the polynomials
∑n

i=0(C(Γ))it
i and

∑n
i=0(LVn

(Γ))it
i,

whose coefficients lie in the representation ring of G, are equivariant generalizations of
the h-polynomial and local h-polynomial of Γ, respectively. The pair (Γ, G) is said (see
also [5, Section 5.2]) to satisfy the local equivariant Gal phenomenon if

(33)

n∑

i=0

(LVn
(Γ))i t

i =

⌊n/2⌋∑

k=0

Mk t
k(1 + t)n−2k

for some non-virtual G-representations Mk. This is an analogue for local face modules
of the equivariant Gal phenomenon, formulated by Shareshian and Wachs [16, Section 5]
for group actions on (flag) triangulations of spheres as an equivariant version of Gal’s
conjecture [8, Conjecture 2.1.7]. For trivial actions on flag triangulations of simplices,
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the validity of the local equivariant Gal phenomenon was conjectured in [2] and has been
verified in many special cases; see [4, Section 4] [5, Section 3.2] and references therein.

Although it would be too optimistic to expect that the local equivariant Gal phenom-
enon holds for all group actions on flag triangulations of Σn, the case G = Sn deserves
special attention. We then use the notation

ch (C(Γ), t) :=
n∑

i=0

ch (C(Γ))i t
i,

ch (LVn
(Γ), t) :=

n∑

i=0

ch (LVn
(Γ))i t

i.

For the (first) barycentric subdivision of Σn we have the following result of Stanley.

Proposition 5.1. ([18, Proposition 4.20]) For the Sn-action on the barycentric subdivi-
sion Γn of the simplex Σn, we have

(34) 1 +
∑

n≥1

ch (LVn
(Γn), t) z

n =
1− t

H(x; tz)− tH(x; z)
.

Combining this result with Gessel’s identity (6) gives

ch (LVn
(Γn), t) =

⌊(n−2)/2⌋∑

k=0

ω ξn,k(x) t
k+1(1 + t)n−2k−2,

where ω is the standard involution on symmetric functions exchanging eλ(x) and hλ(x)
for every λ, whence it follows that (Γn,Sn) satisfies the local equivariant Gal phenomenon
for every n.

The combinatorics of the barycentric subdivision Γn is related to the symmetric group
Sn. We now consider a triangulation Kn of the simplex Σn, studied in [12, Chapter 3]
(see also [4, Remark 4.5] [5, Section 3.3]) and shown on the right of Figure 1 for n = 3, the
combinatorics of which is related to the hyperoctahedral group Bn. The triangulation Kn

can be defined as the barycentric subdivision of the standard cubical subdivision of Σn,
shown on the left of Figure 1 for n = 3, whose faces are in inclusion-preserving bijection
with the nonempty closed intervals in the truncated Boolean lattice Bnr{∅}. Thus, the
faces of Kn correspond bijectively to chains of nonempty closed intervals in Bnr{∅} and
Sn acts simplicially on Kn in the obvious way.

Proposition 5.2. For the Sn-action on Kn we have

(35) 1 +
∑

n≥1

ch (C(Kn), t) z
n =

H(x; z) (H(x; tz)− tH(x; z))

H(x; tz)2 − tH(x; z)2

and

(36) 1 +
∑

n≥1

ch (LVn
(Kn), t) z

n =
H(x; tz)− tH(x; z)

H(x; tz)2 − tH(x; z)2
.

Moreover, the pair (Kn,Sn) satisfies the local equivariant Gal phenomenon for every n.
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Figure 1. The triangulation K3

The proof relies on methods developed by Stembridge [23] to study representations of
Weyl groups on the cohomology of the toric varieties associated to Coxeter complexes.
To prepare for it, we recall that the h-polynomial of a simplicial complex ∆ of dimension
n− 1 is defined as

h(∆, t) =

n∑

i=0

fi−1(∆) ti(1− t)n−i,

where fi(∆) stands for the number of i-dimensional faces of ∆. Consider a pair (Γ, G),
consisting of a triangulation Γ of Σn and a subgroup G of Sn acting on Γ, as discussed
earlier. Following [23, Section 1], we call the action of G on Γ proper if w fixes all vertices
of every face F ∈ ∆ which is fixed by w, for every w ∈ G. Note that group actions, such
as the Sn-actions on Γn and Kn, on the order complex (simplicial complex of chains) of
a poset which are induced by an action on the poset itself, are always proper. Under this
assumption, the set Γw of faces of Γ which are fixed by w forms an induced subcomplex
of Γ, for every w ∈ G.

Although Stembridge [23] deals with triangulations of spheres, rather than simplices,
his methods apply to our setting and his Theorem 1.4, combined with the considerations
of Section 6 in [23], imply that

(37) ch (C(Γ), t) =
1

n!

∑

w∈Sn

h(Γw, t)

(1− t)1+dim(Γw)

∏

i≥1

(1− tλi(w)) pλi(w)(x)

for every proper Sn-action on Γ, where λ1(w) ≥ λ2(w) ≥ · · · are the sizes of the cycles
of w ∈ Sn and pk(x) is a power sum symmetric function.

Proof of Proposition 5.2. To prove Equation (35), we follow the analogous computation
in [23, Section 6] for the barycentric subdivision of the boundary complex of the simplex.
We first note that (Kn)

w is combinatorially isomorphic to Kc(w) for every w ∈ Sn, where
c(w) is the number of cycles of w. Furthermore, it was shown in [12, Section 3.6] that, in
the notation of Section 3, h(Kn, t) is the ‘half Bn-Eulerian polynomial’

(38) B+
n (t) =

∑

w∈B+
n

t|DesB(w)|,
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where B+
n consists of the signed permutations w ∈ Bn with negative first coordinate.

These remarks and Equation (37) imply that

ch (C(Kn), t) z
n =

∑

λ=(λ1,λ2,... )⊢n

m−1
λ

B+
ℓ(λ)(t)

(1− t)ℓ(λ)

∏

i≥1

(1− tλi) pλi
(x)zλi ,

where n!/mλ is the cardinality of the congugacy class of Sn which corresponds to λ ⊢ n
and ℓ(λ) is the number of parts of λ. The polynomials B+

n (t) are known (see, for instance,
[12, Equation 3.7.5]) to satisfy

(39)
B+

n (t)

(1− t)n
=
∑

k≥0

((2k + 1)n − (2k)n) tk

and hence, we may rewrite the previous formula as

ch (C(Kn), t) z
n =

∑

k≥0

tk
∑

λ=(λ1,λ2,... )⊢n

m−1
λ

(
(2k + 1)ℓ(λ) − (2k)ℓ(λ)

)∏

i≥1

(1− tλi) pλi
(x)zλi .

Summing over all n ≥ 1 and using the standard identities

H(x; z) =
∑

λ

m−1
λ pλ(x)z

|λ| = exp

(
∑

n≥1

pn(x)z
n/n

)

just as in the proof of [23, Theorem 6.2] (one considers the pn as algebraically independent
indeterminates and replaces first each pn with (2k+1)(1−tn)pn, then with (2k)(1−tn)pn),
we conclude that

1 +
∑

n≥1

ch (C(Kn), t) z
n = 1 +

∑

k≥0

tk
(
H(x; z)2k+1

H(x; tz)2k+1
−

H(x; z)2k

H(x; tz)2k

)

= 1 +

(
H(x; z)

H(x; tz)
− 1

)(
1− t

H(x; z)2

H(x; tz)2

)−1

=
H(x; z) (H(x; tz)− tH(x; z))

H(x; tz)2 − tH(x; z)2

and the proof of (35) follows. To prove (35), it suffices to observe that

1 +
∑

n≥1

ch (LVn
(Kn), t) z

n = E(x,−z)

(
1 +

∑

n≥1

ch (C(Kn), t) z
n

)
.

The latter follows exactly as the corresponding identity for the barycentric subdivision
Γn, shown in the proof of [18, Proposition 4.20]. Finally, from Equations (8) and (36) we
deduce that

ch (LVn
(Kn), t) =

⌊n/2⌋∑

k=0

ω ξ+n,k(x,x) t
k(1 + t)n−2k.
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This expression, Corollary 4.4 and the well known fact that sλ(x)sµ(x) is Schur-positive
for all partitions λ, µ imply that ch (LVn

(Kn), t) is Schur γ-positive for every n, as claimed
in the last statement of the proposition. �
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