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Abstract. Monotone path polytopes arise as a special case of the construction of fiber
polytopes, introduced by Billera and Sturmfels. A simple example is provided by the permu-
tahedron, which is a monotone path polytope of the standard unit cube. The permutahedron
is the zonotope polar to the braid arrangement. We show how the zonotopes polar to the
cones of certain deformations of the braid arrangement can be realized as monotone path
polytopes. The construction is an extension of that of the permutahedron and yields in-
teresting connections between enumerative combinatorics of hyperplane arrangements and
geometry of monotone path polytopes.

1. Introduction

Fiber polytopes were introduced by Billera and Sturmfels [5] and were further studied
in [6]. The fiber polytope6(P, Q) is a polytope naturally associated to any projection
of polytopesπ : P→ Q. It is defined as

6(P, Q) =
{

1

vol(Q)

∫
Q
γ (x)dx | γ is a continuous section ofπ

}
. (1)

A concise introduction to the theory of fiber polytopes can be found in Chapter 9 of
Ziegler’s book [15], on which we rely for general background on polytopes.

We are only interested in the special case in whichQ is one dimensional, i.e., a line
segment. The polytope6(P, Q) is then called themonotone path polytopeof P andπ
[5, §5], [15, §9.2] and is denoted by5(P, π). Its dimension is one less than that ofP.
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Fig. 1. The projectionπ and the permutahedron.

The sections ofπ are the paths inP which aremonotone, that is strictly increasing with
respect to the functionπ , andmaximal, i.e., they project toQ. The vertices of5(P, π)
correspond to certain maximal monotone edge paths onP, calledπ -coherent.

A nice example of a monotone path polytope is the permutahedron5d−1 ⊆ Rd. The
permutahedron5d−1 is a classical geometric object. It is the convex hull of all vectors in
Rd obtained by permuting the coordinates of the vector(1,2, . . . ,d). It was constructed
as a monotone path polytope of the standard unit cubeCd = [0,1]d by Billera and
Sturmfels [5, Example 5.4] (see also [6, Theorem 4.3]). A detailed description of the
construction can be found in [15, Example 9.8]. The projection used isπ : Cd → [0,d]
with

π(x) = x1+ x2+ · · · + xd. (2)

The monotone edge paths from the origin to the vertex(1,1, . . . ,1) are allπ -coherent.
They correspond naturally to permutations of ad-element set and give rise to the vertices
of 5d−1. This is illustrated in Fig. 1 ford = 3.

An important property of5d−1 is that it is a zonotope. The associated hyperplane
arrangement [15, §7.3] is thebraid arrangementAd. It consists of the hyperplanes in
Rd of the formxi = xj for 1≤ i < j ≤ d, i.e., the reflecting hyperplanes of the Coxeter
group of typeAd−1. Our motivation comes from recent work ondeformationsof Ad,
initiated by Stanley [12]. A deformation ofAd is an affine arrangement which has each
of its hyperplanes parallel to some hyperplanexi = xj of Ad. We will be interested in
the deformations of the form

xi − xj = −λi + 1, . . . ,−1,0,1, . . . , λj − 1 for 1≤ i < j ≤ d, (3)

whereλ = (λ1, λ2, . . . , λd) is a composition of a positive integern. We denote the
arrangement (3) byAd(λ). For λ1 = · · · = λd = a + 1 it specializes to theextended
Catalan arrangement(see, e.g., [12, §2]) and is denoted byA[0,a]

d . This reduces to the
braid arrangementAd for a = 0 and is simply called aCatalan arrangementfor a = 1.

The combinatorics of deformations ofAd is very rich and has a growing literature
[12], [13], [3], [11]. The zonotopes associated to the corresponding homogenized linear
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arrangements, or cones, have not been studied much as polytopes. They are generaliza-
tions of the permutahedron that carry the same interesting combinatorial structure as the
arrangements. Our objective is to construct the zonotopes associated to the cones of the
arrangementsAd(λ), with their Minkowski summands suitably rescaled, as monotone
path polytopes.

The construction generalizes that of the permutahedron. In particular, the cubeCd is

replaced by Ziegler’slifted pile of cubes̃Pd+1(λ) [15, §5.1]. The projectionπ is given
by the formula (2). The corresponding monotone path polytope5d(λ) is a zonotope, as
described above, with its upper part truncated. The maximal monotone edge paths in the
lower faces of̃Pd+1(λ) are in bijection with the lattice paths inRd from the origin to the
point λ, having unit coordinate steps. In general, most of these paths arenot coherent.
The coherent ones correspond to the lower vertices of the zonotope and hence to the
regions ofAd(λ). This will enable us to enumerate them (see Corollary 4.3) by an easy
application of the “finite field method” of [1] and [2]. It follows that their number is
small compared to the total number of lower monotone edge paths.

The paper is organized as follows: In Section 2 we give the necessary definitions and
state our main results about5d(λ). Section 3 contains a proof of the main theorem. In
Section 4 we draw all enumerative consequences of the main theorem by analyzing the
combinatorics ofAd(λ). We also characterize the coherent paths in the lower faces of
P̃d+1(λ) directly from the definition. We close with some remarks in Section 5.

2. Basic Definitions and Results

We begin with some notation and terminology. We denote bye1,e2, . . . ,ed the unit
coordinate vectors inRd. We write [a,b] for the line segment joining two pointsa,b ∈
Rd. The canonical projectionRd+1 → Rd is the map which simply forgets the last
coordinate. Lastly, we refer to the union of the lower faces [15, §5.1], or upper faces, of
a polytopeP as itslower part, or upper part, respectively.

We first give the definition of the polytopẽPd+1(λ). Let λ = (λ1, λ2, . . . , λd) be a
composition of a positive integern. In other words, theλi are positive integers which
sum ton. Thepile of cubesPd(λ), corresponding toλ, is the polytopal complex formed
by all unit cubes with integer vertices in thed-box

B(λ) = {(x1, . . . , xd) ∈ Rd | 0≤ xi ≤ λi for 1≤ i ≤ d}.
In particular, the vertex set ofPd(λ) is

vert(Pd(λ)) = B(λ) ∩ Zd.

Let f : Rd → R be of the form

f (x) = f1(x1)+ · · · + fd(xd), (4)

where thefi ’s are strictly convex functions of one variable. For the purpose of our results
we will use the canonical choice

f (x) = x2
1 + x2

2 + · · · + x2
d.
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Fig. 2. P2(4,3) andP̃3(4,3).

We take this as the definition off from now and on. Thelifted pile of cubescorresponding
to λ is the polytope inRd+1

P̃d+1(λ) = conv{(x, f (x)) | x ∈ vert(Pd(λ))}.

The pile of cubesPd(λ) and its lift P̃d+1(λ) are discussed in [15, Example 5.4]. For
suitableλ they provide examples of polytopal complexes, respectively, polytopes, which
are not extendably shellable [15, Chapter 8]. Figure 2 showsP2(4,3) and its liftP̃3(4,3).

The lower faces of̃Pd+1(λ) form a polytopal complex combinatorially equivalent
to Pd(λ). Because of the form (4), these faces are parallelepipeds, as Fig. 2 suggests.
By construction, they map to the corresponding faces ofPd(λ) under the canonical
projectionRd+1→ Rd. The unique upper facet, defined by the hyperplane

λ1x1+ λ2x2+ · · · + λdxd = xd+1, (5)

is a parallelepiped which projects toB(λ).
Let5d(λ) be the monotone path polytope of the projection

π : P̃d+1(λ)→ [0,n]

given by formula (2). Thusπ(x) is the sum of the firstd coordinates ofx ∈ Rd+1. We
have dim5d(λ) = dim P̃d+1(λ)− 1= d, the number of parts ofλ except ifλi = 1 for
all i . In this casẽPd+1(λ) is affinely isomorphic to thed-cubeCd, so5d(λ) is affinely
isomorphic to the permutahedron5d−1 and dim5d(λ) = d − 1.

A truncationof a polytopeP inRr is its intersection with a closed half-spacea·x ≤ 0,
wherea ∈ Rr . We call such a truncation anupper truncationif it includes the lower part
of P but does not intersect the upper part in the regiona · x < 0. In particular, an upper
truncation has a unique upper facet. It rarely happens that a polytopeP has an upper
truncation. However, ifP is a zonotope with a sufficiently large Minkowski summand in
the direction of the last coordinate, as in the situation of the next theorem, then clearly,
upper truncations exist.
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Fig. 3. The polar complex.

Theorem 2.1. Let Zd(λ) be the zonotope

[0, s ed+1] +
∑

1≤i< j≤d

λi−1∑
k=0

λj−1∑
l=0

[0,ej − ei + (2l − 2k)ed+1],

where s is a sufficiently large positive number. The polytope5d(λ) is an upper truncation
of a translate of(1/n)Zd(λ), cut by the hyperplane(5).

Note that the hyperplane arrangement associated toZd(λ) is projectively equivalent to
thecone[10, Definition 1.15] ofAd(λ), denotedcAd(λ). HenceZd(λ) is combinatorially
equivalent to the zonotopeZ[cAd(λ)], associated to this cone, which we call thepolar
zonotope. The faces ofZ[cAd(λ)] are in inclusion-reversing bijection with the faces
of cAd(λ) [15, Corollary 7.17]. Its lower faces define a zonotopal complexZ[Ad(λ)]
which we call thepolar zonotopal complex, or simply thepolar complex. The faces of
Z[Ad(λ)] are in inclusion-reversing bijection with those ofAd(λ). Figure 3 shows the
Catalan arrangementA3(2,2,2), intersected with the hyperplanex1+ x2+ x3 = 0, and
its polar complex, projected canonically onR2.

We now focus on the lower part, which is the interesting part of5d(λ). Theorem 2.1
implies the following corollary:

Corollary 2.2. The complex of all lower faces of5d(λ) is combinatorially equivalent
to the polar complex Z[Ad(λ)] of the arrangementAd(λ). In particular, the lower
vertices of5d(λ) are in bijection with the regions ofAd(λ).

Hence, forλ = (2,2,2), 5d(λ) looks combinatorially like the complex of Fig. 3,
from a point far below on thex3-axis.

It follows from Corollary 2.2 that theπ -coherent monotone edge paths in the lower
part of P̃d+1(λ) are in bijection with the regions ofAd(λ). To characterize them, we
introduce some more terminology. We call the maximal monotone edge paths (with
respect toπ ) in Pd(λ) simply monotoneλ-paths. They are the lattice paths inRd from
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the origin to the pointλ havingn unit coordinate steps. They correspond naturally to
permutations of the multisetMλ, which containsi with multiplicity λi for 1≤ i ≤ d. We
call these permutationsλ-permutationsand denote bypw the monotoneλ-path which
corresponds tow. For example, ifλ = (2,2,2) andw = 121323, then the pathpw has
successive stepse1,e2,e1,e3,e2,e3. The number ofλ-permutations is the multinomial
coefficient

( n
λ1,...,λd

)
.

The maximal monotone edge paths in the lower part ofP̃d+1(λ) are in bijection with
the monotoneλ-paths, via the canonical projectionRd+1→ Rd. We refer to these paths
in P̃d+1(λ) aslifted monotoneλ-pathsand use the notationγ w.

A λ-permutationw = w1w2 · · ·wn is nestingif there exist indices 1≤ i < j <
k < l ≤ n such thatwi = wl , wj = wk andwm 6= wi for all m with j ≤ m ≤ k.
Otherwisew is nonnesting. Equivalently,w is nonnesting if the following linear system
in the variablesy1, y2, . . . , yn is feasible:

(i) y1 < y2 < · · · < yn; and
(ii) yk = yj + 1 if 1 ≤ j < k ≤ n, wk = wj andwm 6= wj for j < m< k.

For example, 12121 is nonnesting but 12211 is not.

Theorem 2.3. The lifted monotoneλ-pathγ w is π -coherent if and only ifw is non-
nesting.The number of such paths,or equivalently the number of lower vertices of5d(λ),
or regions ofAd(λ) is n!/(n− d + 1)!. In particular, this quantity depends only on n
and d.

It follows that the fraction of monotoneλ-paths withπ -coherent lifts is

λ1! λ2! · · · λd!

(n− d + 1)!
.

This result gives concrete examples of projections for which the fraction of coherent
monotone edge paths is explicitly shown to be small. For instance, in the caseλ1 =
· · · = λd = 2 this quantity becomes 2d/(d+1)!. The only other fiber polytope situation
we are aware of, in which it has been shown that the number of coherent subdivisions is
asymptotically negligible compared to the number of all subdivisions, appears in [8] in
the context of triangulations of cyclicd-polytopes withd + 4 vertices.

3. Proof of the Main Theorem

We now prove Theorem 2.1.

Proof of Theorem2.1. Recall that the vertices of5d(λ) correspond to certain maximal
monotone edge pathsγ in P̃d+1(λ). Sinceπ(x) depends only on the firstd coordinates
of x, we only need to consider such paths either in the lower or upper part ofP̃d+1(λ)

and take the convex hull of their integrals, scaled as in the right-hand side of (1). Let

Iγ := 1

vol (Q)

∫
[0,n]

γ (x)dx = 1

n

n∑
k=1

γ (k− 1)+ γ (k)
2

.
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We first consider the lower part of̃Pd+1(λ), so the relevant paths are the lifted monotone
λ-pathsγ w. Instead of calculatingIγ w explicitly, we note that anyλ-permutationw can
be obtained fromw0 = 1 · · ·1 · · ·d · · ·d by successively swapping adjacent entriesi j
with i < j . Letw = w1w2 · · ·wn, wherewk = i < j = wk+1 and letw′ be obtained
fromw by swappingwk andwk+1. If v := γ w(k−1) = γ w′(k−1) = (m1,m2, . . . ,md),
then

Iγ w′ − Iγ w = 1

n
(γ w

′
(k)− γ w(k))

= 1

n
(v + ej + f (v + ej )ed+1− v − ei − f (v + ei )ed+1)

= 1

n
(ej − ei + (2mj − 2mi )ed+1).

We claim that the pointsIγ w lie in (1/n)Zd(λ)+ Iγ w0 and include all its lower vertices.
The first statement follows immediately from the definition ofZd(λ) and the discussion
above. For the second statement we use the description of the vertices of a zonotope [15,
§7.3] in terms of the polar arrangement. A lower vertex of(1/n)Zd(λ) is the sum of
zonotope generators

1

n
(ej − ei + (2l − 2k)ed+1),

chosen so that the region formed by intersecting the half-spacesxj − xi + l − k < 0 if
the corresponding generator is included in the sum andxj − xi + l − k > 0 if not, is
nonempty. For example the empty sum, i.e., the origin, corresponds to the region defined
by xi + k < xj + l for all i < j and appropriatek, l . The procedure described above
to computeIγ w shows that the quantitiesIγ w − Iγ w0 include all sums which give rise to
lower vertices.

Finally, suppose thatγ lies in the upper facet of̃Pd+1(λ), which is defined by the
hyperplane (5). This upper facet projects to thed-boxB(λ)under the canonical projection
Rd+1→ Rd (see Section 2). Each of the monotone edge pathsγ projects to a monotone
λ-path with correspondingλ-permutation of the formw = σ1 · · · σ1 · · · σd · · · σd, where
σ1 · · · σd is a permutation of{1,2, . . . ,d}. Hence the canonical projections ofγ andγ w

are pointwise equal andIγ = Iγ w + ted+1 for somet . Moreovert ≥ 0, as the(d + 1)st
coordinate ofγ w is pointwise bounded above by the(d+ 1)st coordinate ofγ . Sinceγ
lies on (5), so doesIγ . It follows that the upper part of5d(λ) also consists of a single
facet, defined by (5). It projects to the same zonotope onRd, which is combinatorially
equivalent to the permutahedron5d−1, as the lower part. This completes the proof.

4. The Coherent Paths and Enumeration

In this section we characterize and enumerate theπ -coherent lifted monotoneλ-paths
and thus prove Theorem 2.3. This can be done by elaborating more on the proof of
Theorem 2.1. Here we proceed directly from the definition of a coherent path and extend
our argument to get another proof of Corollary 2.2. For the enumeration we use the finite
field method of [1] and [2].
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We first recall what it means for a monotone edge path to be coherent. LetP be a
polytope inRr , π : Rr −→ R an affine function,Q = π(P) ⊆ R and p a maximal
monotone edge path inP. The pathp is said to beπ -coherentif there exists ageneric
linear functionalc ∈ (Rr )∗ such thatπc: Rr −→ R2 with

πc(x) = (π(x), c(x))

mapsp to the path of lower edges of the polygonQc := πc(P). More generally [15,
Definition 9.2], a set of facesF of P is said to form aπ -coherent subdivisionof Q if,
for somec ∈ (Rr )∗,F is the setFc of faces(πc)−1 (G) of P, whereG runs through the
lower faces ofQc. Note thatFc induces the subdivision{π(F) : F ∈ Fc} of Q. This
is also the subdivision obtained by projecting canonically the lower edges ofQc on Q.
The setFc consists of faces ofP, rather thanQ.

For the rest of this section letr = d + 1, P = P̃d+1(λ), Q = [0,n] andπ as in
Section 2.

Proposition 4.1. The lifted monotoneλ-path γ w is π -coherent if and only ifw is
nonnesting. The nonnestingλ-permutations are in bijection with the regions of the
arrangementAd(λ).

Proof. Let c ∈ (Rd+1)∗ be generic and given by

c(x) = a1x1+ a2x2+ · · · + ad+1xd+1. (6)

We need to describe theπ -coherent path defined byc, directly in terms ofc. Since we
want this path to lie in the lower part of̃Pd+1(λ), we can assume thatad+1 is positive,
sayad+1 = 1/2 by rescaling.

Let w = w1w2 · · ·wn be aλ-permutation andpw, γ w as in Section 2, withpw =
(v0, v1, . . . , vn) andγ w = (ṽ0, ṽ1, . . . , ṽn). Thusvk = vk−1 + ei if wk = i and ṽk =
(vk, f (vk)) for all k. We denote by1c(w) the sequence of lengthn whosekth term
records the difference

c(ṽk)− c(ṽk−1)

of c at thekth edge ofγ w. Let vk−1 = (m1, . . . ,md) andwk = i . Then

c(ṽk)− c(ṽk−1) = ai + ad+1 ( f (vk−1+ ei )− f (vk−1))

= ai + (1/2)(2mi + 1) = a′i +mi ,

wherea′i = ai + 1/2 for 1 ≤ i ≤ d and the possible values ofmi are the integers
satisfying 0≤ mi ≤ λi − 1. It follows that1c(w) is the permutation of the numbers

a′i +m, 0≤ m≤ λi − 1, 1≤ i ≤ d, (7)

which placesa′i ,a
′
i + 1, . . . ,a′i + λi − 1, in this order, in theλi positions occupied byi

in w. The numbers (7) are distinct becausec is assumed to be generic.
Letwc be theλ-permutation which corresponds to theπ -coherent path defined byc. If

πc mapsγ w to the lower edge path of the polygonQc, then1c(w) is strictly increasing, by
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the convexity of this path. It follows thatwc is the uniqueλ-permutationw for which the
permutation1c(w) of the numbers (7) is strictly increasing. Letc′ = (a′1,a′2, . . . ,a′d) ∈
Rd. For a fixedλ-permutationw, if nonempty, the set of allc′ such thatwc = w forms
exactly a region ofAd(λ). Indeed, deciding which of the two numbersa′i +m anda′j + l
in (7) is smaller amounts to choosing a side of the hyperplanexi − xj = l −m ofAd(λ).
Finally,w = wc for somec if and only if the condition that1c(w) is strictly increasing
does not impose inequalities of the form

dj < di < di + 1< dj + 1.

By definition, this means thatw is nonnesting.

We now compute the number of regions ofAd(λ). We assume familiarity with the
characteristic polynomialχ(A,q)ofA [10, §2.3], a fundamental combinatorial invariant
ofA, and use Zaslavsky’s theorem [14] for the number of regions ofA. The characteristic
polynomial ofAd(λ) can be computed by an easy application of the finite field method of
[1] and [2, Part II]. This method reduces the computation to a simple counting problem in a
vector space over a finite field. The argument in the following proposition is similar to the
one given in [1, Theorem 5.1] for the special case of the extended Catalan arrangements.

Proposition 4.2. We have

χ(Ad(λ),q) = q
n−1∏

j=n−d+1

(q − j ).

Proof. Let q be a large prime number and letFq denote the finite field of integers mod
q. Theorem 2.2 in [1] (see also [10, Theorem 2.69] and the original version in [7, §16])
implies thatχ(Ad(λ),q) counts the number ofd-tuples(x1, x2, . . . , xd) ∈ Fd

q satisfying

xi − xj 6= −λi + 1, . . . ,−1,0,1, . . . , λj − 1 for 1≤ i < j ≤ d.

Equivalently, we want to choose thexi so that the classes modq

xi , xi + 1, . . . , xi + λi − 1 for 1≤ i ≤ d (8)

are distinct. To count thesed-tuples we first cyclically permute thed strings (8) in
(d−1)! ways. Then we distributeq−n indistinguishable boxes in thed spaces between
successive strings in

(q−n+d−1
d−1

)
ways. Theq − n boxes distributed stand for theq − n

classes inFq not of the form (8). Finally we assign tox1 a specific value inFq in q ways,
sayx1 = 0. The other classes of (8)x1+ 1, . . . and the boxes are naturally assigned the
values 1, . . . ,q − 1 ∈ Fq, according to their cyclic arrangement. The product

q (d − 1)!

(
q − n+ d − 1

d − 1

)
is the expression forχ(Ad(λ),q) we have claimed.
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Fig. 4. The arrangementA3(3,2,1).

Zaslavsky’s theorem [14] expresses the number of regions of an arrangementA in
Rd as(−1)dχ(A,−1) and yields the following corollary:

Corollary 4.3. The number of regions ofAd(λ) is

n!

(n− d + 1)!
.

In particular, this number depends only on n and d, the sum and number of parts ofλ,
respectively.

Figure 4 shows the arrangementA3(3,2,1), intersected with the hyperplanex1 +
x2+ x3 = 0. Note that it has 30 regions, as many as the Catalan arrangementA3(2,2,2)
of Figure 3.

Corollary 4.3 specializes to the formula given in [12, §2] for the number of regions of
the extended Catalan arrangementA[0,a]

d , since in this casen = (a+1)d. Proposition 4.1
and Corollary 4.3 imply Theorem 2.3.

The reasoning in the proof of Proposition 4.1 can be extended to determine the face
lattice of5d(λ). Below we give an alternative proof of Corollary 2.2, obtained in this
way. By the general theory of fiber polytopes [5, Theorem 2.1], [15, Theorem 9.6], the
face lattice of5d(λ) is isomorphic to the poset ofπ -coherent subdivisions ofQ = [0,n],
with a minimal element adjoined. In this poset we haveF1 ≤ F2 if the union of the faces
in F1 is contained in the union of the faces inF2.

Alternative Proof of Corollary2.2. To get the lower faces of5d(λ)we consider linear
functionalsc ∈ (Rd+1)∗ as in (6), with positivead+1, but not necessarily generic. Let
Pc denote the set of monotoneλ-paths whose lifts lie inFc, so thatPc is a singleton if
c is generic. Note thatFc1 ≤ Fc2 in the poset ofπ -coherent subdivisions if and only if
Pc1 ⊆ Pc2. Using the notation in the proof of Proposition 4.1, we havepw ∈ Pc if and
only if 1c(w) is weaklyincreasing. It follows thatPc1 ⊆ Pc2 if and only if the faces
F1, F2 of Ad which containc′1 andc′2, respectively, satisfyF1 ≥ F2 in the face poset
of Ad.
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A precise description of theπ -coherent lower subdivisions is given in Remark 2 of
the next section.

5. Remarks

1. A direct bijective proof of Corollary 4.3 is possible and is outlined next.

Alternative Proof of Corollary4.3. Recall that a region ofAd(λ) is defined by a linear
orderingτ1 < τ2 < · · · < τn of

xi +m, 0≤ m≤ λi − 1, 1≤ i ≤ d, (9)

which respects the orderingsxi < xi + 1< · · · < xi + λi − 1 for 1≤ i ≤ d and is such
that theλ-permutation obtained by replacing eachxi + m with i is nonnesting. Given
such an orderingτ with corresponding permutationw = w1w2 · · ·wn, let j1, j2, . . . , jd
be the positions in whichx1, x2, . . . , xd appear inτ , respectively. In other words,ji is
the smallestj such thatwj = i . Consider the quotient of the abelian groupZd

n+1 by the
cyclic subgroupH generated by(1,1, . . . ,1). The map

τ → Jτ = ( j1, j2, . . . , jd)+ H

defines a bijection between the regions ofAd(λ) and cosetsJ = ( j1, j2, . . . , jd) + H
of Zd

n+1/H for which all ji are mutually distinct. Clearly, the number of such cosets is
n(n− 1) · · · (n− d + 2).

To show that this map is indeed a bijection, we describe explicitly its inverse. LetJ
be a coset, as above. There is a unique representative( j1, j2, . . . , jd) of J such that for
all 1≤ k ≤ n, ∑

jr≤k

λr ≥ k. (10)

We leave the proof of this fact to the interested reader. Now letx1, x2, . . . , xd be generic
real variables. We assign values to the variablesxi one after the other, in the order
of increasing ji , so thatxi is the ji th smallest from the numbers in (9) with values
already assigned. This is possible because of (10). The resulting orderingτ of (9) has its
correspondingλ-permutation nonnesting and is such thatJτ = J.

2. Let π : P → Q be as in the beginning of Section 4. The poset ofπ -coherent
subdivisions ofQ is an induced subposet of the posetω(P, Q) of all π -induced sub-
divisionsof Q [15, Definition 9.1] (see also [4, §3]). In the special case dimQ = 1
we are considering, this is the poset of cellular strings ofP, induced byπ [4, §1]. The
π -induced subdivisions in the lower partP = P̃d+1(λ) form an interesting poset, which
we denote byÄ(λ). It is the set of allproperordered partitions of the multisetMλ, par-
tially ordered by refinement. An ordered partition ofMλ is proper if none of its blocks
contains repeated elements. The subdivision defined byρ = (B1, B2, . . . , Bk) ∈ Ä(λ)
has as maximal faces the lifts of the faces

j−1∑
i=1

eBi +
∑
r∈Bj

[0,er ], 1≤ j ≤ k,
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Fig. 5. The subdivision defined by(1,12,2,12,1).

ofPd(λ), whereeB =
∑

i∈B ei . Figure 5 shows the faces ofP2(4,3)which correspond to
the proper ordered partition(1,12,2,12,1)of Mλ = {1,1,1,1,2,2,2}, withλ = (4,3).
The minimal elements ofÄ(λ) are theλ-permutations, which give rise to the lifted
monotoneλ-paths.

The argument in the proof of Corollary 2.2 in Section 4 yields the following description
of the subposet ofπ -coherent lower subdivisions: Letρ = (B1, B2, . . . , Bk) ∈ Ä(λ),
as before. For each 1≤ i ≤ d replace the entries in the blocks ofρ equal toi , from
left to right, withxi , xi + 1, . . . , xi + λi − 1, respectively, to getρ ′ = (B′1, B′2, . . . , B′k).
Theπ -induced subdivision defined byρ is coherent if and only if the following linear
system in the variablesx1, x2, . . . , xd is feasible:

(i) u = v wheneveru, v are in the same blockB′j ; and
(ii) u < v wheneveru ∈ B′j , v ∈ B′l and j < l .

In this case, the set of solutions forms exactly a face ofAd(λ). The subdivision of Fig. 5
is not coherent because the system

x1 < x1+ 1= x2 < x2+ 1< x1+ 2= x2+ 2< x1+ 3

has no solution. The only coherent atom ofÄ(4,3) smaller than this subdivision is
(1,2,1,2,1,2,1).

3. There is a notion of “flip” on the set of all maximal monotone edge pathsp of P
with respect to the affine functionπ . Two such paths are said to be related by aflip if
they have a common cover in the posetω(P, Q) of π -induced subdivisions ofQ. We
call the minimum number of flips required to makep coherent theincoherencyof p.
In the case of lifted monotoneλ-pathsγ w, the operation of flipping swaps two distinct
successive entriesi j of w. Therefore the incoherency ofγ w is the minimum number of
swappings needed to makew nonnesting. To get a feeling for this number, we compute
the maximum incoherency that can occur forλ = (2,2, . . . ,2).

Proposition 5.1. Letλ = (2,2, . . . ,2). The maximum incoherency of a pathγ w is
(d

2

)
and is attained by theλ-permutations of the formwσ = σ1 σ2 · · · σd σd · · · σ2 σ1, where
σ = σ1 σ2 · · · σd is a permutation of{1, . . . ,d}.

Proof. Every flip can reduce the number of “nestings” ofw by at most one andwσ has
the maximum number

(d
2

)
of nestings. On the other hand, anyw = w1w2 · · ·w2d can be



Piles of Cubes, Monotone Path Polytopes, and Hyperplane Arrangements 129

made nonnesting by at most
(d

2

)
flips in the following way: Suppose thatw1, . . . , wi are

mutually distinct butwi+1 = wk for some 1≤ k ≤ i . Let j be the smallest index with
j > i for whichwj 6= w1, . . . , wi . Movewj to the left until it occupies positioni + 1.
Continue in the same way until the firstd entries of the permutation are all distinct, say
σ1, σ2, . . . , σd. Now continue flipping in the second half of the permutation, in an obvious
way, to getσ1 σ2 · · · σd σ1 σ2 · · · σd, which is nonnesting. Any two distinct integersi, j
are flipped at most once during the whole process, so the total number of flips is at most(d

2

)
, as desired.

4. The extended Catalan arrangements form one of the two families of deformations of
Ad for which explicit formulas have been obtained for the number of faces of any given
dimension [2, Chapter 8]. The other family consists of theextended Shi arrangements

xi − xj = −a+ 1,−a+ 2, . . . ,a for 1≤ i < j ≤ d,

wherea ≥ 1 is an integer. The number of faces in each dimension was shown to have a
surprisingly simple combinatorial interpretation [2, Theorem 8.2.1]. We don’t know if a
fiber polytope construction for the polar complexes exists in this case.

5. The cones of the extended Catalan arrangementsA[0,a]
d were shown to beinductively

free[10, Chapter 4] by Edelman and Reiner (see the proof of Theorem 3.2 in [9]). Other
classes of deformations ofAd, including the extended Shi arrangements, were shown
to be inductively free in [3]. Proposition 4.2 suggests that the same is true for the
arrangementsAd(λ).

Acknowledgment

I am grateful to Lou Billera and Bernd Sturmfels for helpful discussions.

References

1. C. A. Athanasiadis, Characteristic polynomials of subspace arrangements and finite fields,Adv. in Math.,
122(1996), 193–233.

2. C. A. Athanasiadis, Algebraic combinatorics of graph spectra, subspace arrangements and Tutte polyno-
mials, Ph.D. thesis, MIT, 1996.

3. C. A. Athanasiadis, On free deformations of the braid arrangement,European J. Combin., to appear.
4. L. J. Billera, M. M. Kapranov and B. Sturmfels, Cellular strings on polytopes,Proc. Amer. Math. Soc.,

122(1994), 549–555.
5. L. J. Billera and B. Sturmfels, Fiber polytopes,Ann. of Math., 135(1992), 527–549.
6. L. J. Billera and B. Sturmfels, Iterated fiber polytopes,Mathematika, 41 (1994), 348–363.
7. H. Crapo and G.-C. Rota,On the Foundations of Combinatorial Theory: Combinatorial Geometries,

preliminary edition, MIT Press, Cambridge, MA, 1970.
8. J. A. de Loera, S. Ho¸sten, F. Santos, and B. Sturmfels, The polytope of all triangulations of a point

configuration,Doc. Math., 1 (1996), 103–119.
9. P. H. Edelman and V. Reiner, Free arrangements and rhombic tilings,Discrete Comput. Geom., 15(1996),

307–340.



130 C. A. Athanasiadis

10. P. Orlik and H. Terao,Arrangements of Hyperplanes, Grundlehren, vol. 300, Springer-Verlag, New York,
1992.

11. A. Postnikov and R. Stanley, Deformations of Coxeter hyperplane arrangements, Preprint, dated April 14,
1997.

12. R. Stanley, Hyperplane arrangements, interval orders and trees,Proc. Nat. Acad. Sci., 93 (1996), 2620–
2625.

13. R. Stanley, Hyperplane arrangements, parking functions and tree inversions, In:Festschrift in Honor of
Gian-Carlo Rota(B. E. Sagan and R. Stanley, Eds.), Birkh¨auser, Boston, to appear.

14. T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes,
Mem. Amer. Math. Soc., vol. 1, no. 154 (1975).

15. G. M. Ziegler,Lectures on Polytopes, Graduate Texts in Mathematics, vol.152, Springer-Verlag, New
York, 1995.

Received January24, 1997,and in revised form April8, 1997.


