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Abstract. Monotone path polytopes arise as a special case of the construction of fiber
polytopes, introduced by Billera and Sturmfels. A simple example is provided by the permu-
tahedron, which is a monotone path polytope of the standard unit cube. The permutahedron
is the zonotope polar to the braid arrangement. We show how the zonotopes polar to the
cones of certain deformations of the braid arrangement can be realized as monotone path
polytopes. The construction is an extension of that of the permutahedron and yields in-
teresting connections between enumerative combinatorics of hyperplane arrangements and
geometry of monotone path polytopes.

1. Introduction

Fiber polytopes were introduced by Billera and Sturmfels [5] and were further studied
in [6]. The fiber polytopex (P, Q) is a polytope naturally associated to any projection
of polytopest: P — Q. Itis defined as

1
vol(Q)

A concise introduction to the theory of fiber polytopes can be found in Chapter 9 of
Ziegler’s book [15], on which we rely for general background on polytopes.

We are only interested in the special case in whils one dimensional, i.e., a line
segment. The polytopE (P, Q) is then called thenonotone path polytopaf P andx
[5, 85], [15, §9.2] and is denoted ly(P, 7). Its dimension is one less than that®f

(P, Q) = { / y(X) dx | yis a continuous section ccf} . D
Q
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Fig. 1. The projectionr and the permutahedron.

The sections of are the paths if? which aremonotonethat is strictly increasing with
respect to the function, andmaximal i.e., they project t&Q. The vertices of 1(P, 7)
correspond to certain maximal monotone edge pathB,aralleds-coherent

A nice example of a monotone path polytope is the permutahddgon € RY. The
permutahedroily_; is a classical geometric object. Itis the convex hull of all vectors in
RY obtained by permuting the coordinates of the ve¢to®, . . ., d). It was constructed
as a monotone path polytope of the standard unit ¢@pe= [0, 1]¢ by Billera and
Sturmfels [5, Example 5.4] (see also [6, Theorem 4.3]). A detailed description of the
construction can be found in [15, Example 9.8]. The projection used & — [0, d]
with

T(X) = Xy + Xg + - + Xqg. )

The monotone edge paths from the origin to the vefiex, .. ., 1) are allx-coherent.
They correspond naturally to permutations dfalement set and give rise to the vertices
of [Ty_3. This is illustrated in Fig. 1 fod = 3.

An important property offly_; is that it is a zonotope. The associated hyperplane
arrangement [15, 87.3] is thwaid arrangement4y. It consists of the hyperplanes in
RY of the formx; = x; for 1 <i < j < d, i.e., the reflecting hyperplanes of the Coxeter
group of typeAy_1. Our motivation comes from recent work deformationsof Aq,
initiated by Stanley [12]. A deformation 044 is an affine arrangement which has each
of its hyperplanes parallel to some hyperplane= x; of A4. We will be interested in
the deformations of the form

Xi—X==A+1...,-101...,1-1 for 1<i<j=<d, 3)
wherer = (A1, A2, ..., Ag) iS @ composition of a positive integer We denote the
arrangement (3) bylg(A). Fora; = .- = Ag = a + 1 it specializes to thextended

Catalan arrangemenfsee, e.g., [12, 8§2]) and is denotedhi?’a]. This reduces to the
braid arrangemently for a = 0 and is simply called €atalan arrangemerfora = 1.

The combinatorics of deformations gfy is very rich and has a growing literature
[12], [13], [3], [11]. The zonotopes associated to the corresponding homogenized linear
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arrangements, or cones, have not been studied much as polytopes. They are generaliza-
tions of the permutahedron that carry the same interesting combinatorial structure as the
arrangements. Our objective is to construct the zonotopes associated to the cones of the
arrangementsiy (1), with their Minkowski summands suitably rescaled, as monotone
path polytopes.

The construction generalizes that of the permutahedron. In particular, th€glibe
replaced by Ziegler'$ifted pile of cube§d+1(k) [15, 85.1]. The projectiorr is given
by the formula (2). The corresponding monotone path polyldpg.) is a zonotope, as
described above, with its upper part truncated. The maximal monotone edge paths in the
lower faces ofPy..1(1) are in bijection with the lattice paths B from the origin to the
point &, having unit coordinate steps. In general, most of these pathwaoeherent.

The coherent ones correspond to the lower vertices of the zonotope and hence to the
regions ofA44(1). This will enable us to enumerate them (see Corollary 4.3) by an easy
application of the “finite field method” of [1] and [2]. It follows that their number is
small compared to the total number of lower monotone edge paths.

The paper is organized as follows: In Section 2 we give the necessary definitions and
state our main results abolly (A). Section 3 contains a proof of the main theorem. In
Section 4 we draw all enumerative consequences of the main theorem by analyzing the
combinatorics of4dq4(%). We also characterize the coherent paths in the lower faces of
Pqy+1(1) directly from the definition. We close with some remarks in Section 5.

2. Basic Definitions and Results

We begin with some notation and terminology. We denoteehy,, ..., e the unit
coordinate vectors ilRY. We write [a, b] for the line segment joining two points b €

RY. The canonical projectionR*! — RY is the map which simply forgets the last
coordinate. Lastly, we refer to the union of the lower faces [15, 8§5.1], or upper faces, of
a polytopeP as itslower part or upper part respectively.

We first give the definition of the polytopBy,1(1). LetA = (A1, A2, ..., Aq) be a
composition of a positive integer. In other words, the.,; are positive integers which
sum ton. Thepile of cubesPy (1), corresponding ta, is the polytopal complex formed
by all unit cubes with integer vertices in thebox

BL) ={(X,.... X)) e RY|0<x <A forl<i <d}.
In particular, the vertex set @ (1) is
vert(Pq(1)) = B(x) N Z°.
Let f: RY — R be of the form
fO) = fa(x) + - + fa(Xa), 4)

where thef;’s are strictly convex functions of one variable. For the purpose of our results
we will use the canonical choice

fO)=x2+x3+--+x2.
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Fig. 2. P2(4,3) andPs(4, 3).

We take this as the definition déffrom now and on. Théfted pile of cubesorresponding
to A is the polytope irfR9+1

Par1(r) = conv(X, f(X)) | X € Vert(Pq(r))}.

The pile of cubesPy (1) and its lift 73d+1(k) are discussed in [15, Example 5.4]. For
suitablex they provide examples of polytopal complexes, respectively, polytopes, which
are not extendably shellable [15, Chapter 8]. Figure 2 stiéps, 3) and its liftPs(4, 3).

The lower faces oﬂSdH(k) form a polytopal complex combinatorially equivalent
to P4(r). Because of the form (4), these faces are parallelepipeds, as Fig. 2 suggests.
By construction, they map to the corresponding face®gf.) under the canonical
projectionR4+? — RY, The unique upper facet, defined by the hyperplane

A1X1 + AoXo + - - - + AgXd = Xd41, 5)

is a parallelepiped which projects B(1).
Let [Ty (1) be the monotone path polytope of the projection

T 75d+1(k) — [0, n]

given by formula (2). Thus (x) is the sum of the firsl coordinates ok € R+, We
have dimllq(%) = dimPq,1(2) — 1 = d, the number of parts of except ifA; = 1 for
alli. In this casePq,1(2) is affinely isomorphic to the-cubeCy, solly (1) is affinely
isomorphic to the permutahedrdhy_; and dimllg(x) =d — 1.

A truncationof a polytopeP in R" is its intersection with a closed half-space < 0,
wherea € R". We call such a truncation ampper truncatiorif it includes the lower part
of P but does not intersect the upper part in the regiox < 0. In particular, an upper
truncation has a unique upper facet. It rarely happens that a polfadpes an upper
truncation. However, iP is a zonotope with a sufficiently large Minkowski summand in
the direction of the last coordinate, as in the situation of the next theorem, then clearly,
upper truncations exist.
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Fig. 3. The polar complex.

Theorem 2.1. Let Z4(1) be the zonotope

Ai—1 )tj -1

[O.sesa]+ > > Y [0.g—a+ @ -2k el

1<i<j=<d k=0 =0

where s is a sufficiently large positive numidre polytopdly (1) is an upper truncation
of a translate 0of{1/n)Z4()), cut by the hyperplan).

Note that the hyperplane arrangement associatéd(to) is projectively equivalent to
thecong[10, Definition 1.15] of44(1), denoted.A4(1). HenceZ4 (1) is combinatorially
equivalent to the zonotopé[c.44(A)], associated to this cone, which we call {haar
zonotope The faces ofZ[cA4(A)] are in inclusion-reversing bijection with the faces
of cAq(2) [15, Corollary 7.17]. Its lower faces define a zonotopal compéxXy(A)]
which we call thepolar zonotopal complexor simply thepolar complex The faces of
Z[Aq4(A)] are in inclusion-reversing bijection with those 4f;(1). Figure 3 shows the
Catalan arrangements(2, 2, 2), intersected with the hyperplang+ x, + x3 = 0, and
its polar complex, projected canonically &3.

We now focus on the lower part, which is the interesting pafigf.). Theorem 2.1
implies the following corollary:

Corollary 2.2. The complex of all lower faces bfy (1) is combinatorially equivalent
to the polar complex EA4(2)] of the arrangementdy(2). In particular, the lower
vertices ofl14(2) are in bijection with the regions oflg(1).

Hence, forh = (2, 2, 2), T14(1) looks combinatorially like the complex of Fig. 3,
from a point far below on th&s-axis.

It follows from Corollary 2.2 that ther-coherent monotone edge paths in the lower
part of Py4,1(1) are in bijection with the regions oflq(1). To characterize them, we
introduce some more terminology. We call the maximal monotone edge paths (with
respect tar) in Py(A) simply monotonei-paths They are the lattice paths R from
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the origin to the poini. havingn unit coordinate steps. They correspond naturally to
permutations of the multisé, , which contains with multiplicity A; for1 <i < d. We

call these permutations-permutationsand denote byp® the monotone.-path which
corresponds taw. For example, ik = (2, 2, 2) andw = 121323, then the path” has
successive stefs, €, €1, €3, €, €3. The number of-permutations is the multinomial

.....

The maximal monotone edge paths in the lower paﬁcgfl(k) are in bijection with
the monotone.-paths, via the canonical projecti®it! — RY. We refer to these paths
in Pq;1(A) aslifted monotone.-pathsand use the notatiop™.

A A-permutationw = wjyw; - - - wy, is nestingif there exist indices < i < | <
k < | < nsuchthatw; = w, wj = wx andwm # w; forall mwith j <m < k.
Otherwisew is nonnestingEquivalently,w is nonnesting if the following linear system
in the variablesy, yo, . . ., y, is feasible:

() yp<y2<---<ynand
(i) e=yj+1ifl<j <k<n, we=w; andwny # wj for j <m < k.

For example, 12121 is nonnesting but 12211 is not.

Theorem 2.3. The lifted monotoné-path y* is w-coherent if and only ifv is non-
nesting The number of such pathe equivalently the number of lower verticedaf (1),
or regions ofA4(2) is nl/(n —d + 1)!. In particular, this quantity depends only on n
and d

It follows that the fraction of monotonke-paths withr -coherent lifts is

Arl Aol Ag!
(n—d+1n!°

This result gives concrete examples of projections for which the fraction of coherent
monotone edge paths is explicitly shown to be small. For instance, in the.¢ase

... = Ag = 2 this quantity becomes'2(d + 1)!. The only other fiber polytope situation

we are aware of, in which it has been shown that the number of coherent subdivisions is
asymptotically negligible compared to the number of all subdivisions, appears in [8] in
the context of triangulations of cycld-polytopes withd + 4 vertices.

3. Proof of the Main Theorem
We now prove Theorem 2.1.

Proof of Theoren2.1. Recall that the vertices dfy(2) correspond to certain maximal
monotone edge pathsin Pgy,1(1). Sincer (x) depends only on the first coordinates

of X, we only need to consider such paths either in the lower or upper p&g,afA)
and take the convex hull of their integrals, scaled as in the right-hand side of (1). Let

1 Gryk=D+yk
yxydx==-S —— 27

|, i= ————
" vol(Q) Jiom 2
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We first consider the lower part §d+1(k), so the relevant paths are the lifted monotone
A-pathsy™. Instead of calculating,. explicitly, we note that any-permutatiorw can

be obtained fromwg = 1---1---d---d by successively swapping adjacent entrjes
withi < j. Letw = wiwy---wp, Wherewy =i < | = w1 and letw’ be obtained
from w by swappinguvk andwy1. If v := y*(k—1) = ¥ (k—1) = (Mg, My, ..., My),
then

1 .
o =l = S (0 =" (k)

1
= ﬁ(v+ej +fv+e)egr—v—6 — f(v+6)egs1)

1
ﬁ(ej — € + (2m; — 2m;)€y41).

We claim that the points, . lie in (1/n)Z4(%) + 1, and include all its lower vertices.

The first statement follows immediately from the definitionZgf(1) and the discussion
above. For the second statement we use the description of the vertices of a zonotope [15,
87.3] in terms of the polar arrangement. A lower vertexXfn)Z4 (1) is the sum of
zonotope generators

1
ﬁ(e‘j -6 + (2 — 2K)ey11),

chosen so that the region formed by intersecting the half-spaces; + 1 — k < O if
the corresponding generator is included in the sumxand x; +1 — k > 0 if not, is
nonempty. For example the empty sum, i.e., the origin, corresponds to the region defined
by xi +k < x; + 1 foralli < j and appropriaté, |. The procedure described above
to computel,. shows that the quantitids. — I, include all sums which give rise to
lower vertices. ~

Finally, suppose that lies in the upper facet oPq.1(21), which is defined by the
hyperplane (5). This upper facet projects todHeox B(1) under the canonical projection
RY+1 s RY (see Section 2). Each of the monotone edge pai®jects to a monotone
A-path with corresponding-permutation of the fornw = o1---01---0g - - - 04, Where
o1 --+0g IS a permutation ofl, 2, . . ., d}. Hence the canonical projections;ofandy ™
are pointwise equal and = 1, + tey,1 for somet. Moreovert > 0, as the(d + 1)st
coordinate ofy™ is pointwise bounded above by tbé+ 1)st coordinate of/. Sincey
lies on (5), so does, . It follows that the upper part dil4(A) also consists of a single
facet, defined by (5). It projects to the same zonotop®&&nwhich is combinatorially
equivalent to the permutahedrdhy_;, as the lower part. This completes the proaofl

4. The Coherent Paths and Enumeration

In this section we characterize and enumeraterttemherent lifted monotong-paths

and thus prove Theorem 2.3. This can be done by elaborating more on the proof of
Theorem 2.1. Here we proceed directly from the definition of a coherent path and extend
our argument to get another proof of Corollary 2.2. For the enumeration we use the finite
field method of [1] and [2].
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We first recall what it means for a monotone edge path to be coheren® beta
polytope inR", 7: R" — R an affine functionQ = 7 (P) € R and p a maximal
monotone edge path iR. The pathp is said to ber-coherentif there exists ajeneric
linear functionak € (R")* such thatr®: R" — R? with

7¢(x) = ((x), c(X))

mapsp to the path of lower edges of the polygQ@f := 7°(P). More generally [15,
Definition 9.2], a set of face$ of P is said to form ar-coherent subdivisionf Q if,
for somec € (R")*, F is the setF® of faces(x®) 1 (G) of P, whereG runs through the
lower faces ofQC. Note that#° induces the subdivisiofir (F) : F € F¢} of Q. This
is also the subdivision obtained by projecting canonically the lower edg@$ of Q.
The setF* consists of faces dP, rather thamQ. ~

For the rest of this section let=d + 1, P = P4.1(1), Q = [0,n] andx as in
Section 2.

Proposition 4.1. The lifted monotone.-path y* is w-coherent if and only ifw is
nonnesting The nonnesting.-permutations are in bijection with the regions of the
arrangementdq(1.).

Proof. Letc e (R%*1)* be generic and given by
C(X) = ayXy + axXo + - - - + Ag+1Xd+1. (6)

We need to describe the-coherent path defined ly directly in terms ofc. Since we
want this path to lie in the lower part 314, 1(1), we can assume thay, ; is positive,
sayaq.1 = 1/2 by rescaling.

Letw = wyw,-- - wy be ai-permutation ancg®, y* as in Section 2, withp* =
(vg, V1, ..., vn) andy¥ = (Do, U1, ..., Op). Thusvx = vk_1 + g if wx =i andix =
(vk, f(vk)) for all k. We denote byA®(w) the sequence of lengthh whosekth term
records the difference

C(vk) — C(Vk-1)
of c at thekth edge ofy™. Letvk_1 = (My, ..., Mg) andwg = i. Then

C(Uk) — C(Uk—1) = & + ad+1 (f(vk—1+8€) — fF(vk-1))
=a +(1/292m +1) =a +m,

wherea) = & + 1/2 for 1 < i < d and the possible values af; are the integers
satisfying 0< m; < A; — 1. It follows thatA®(w) is the permutation of the numbers

a +m, O<m<i -1, 1<ic<d, (N

which placesa/, & +1,...,a + A; — 1, in this order, in the; positions occupied by
in w. The numbers (7) are distinct becawgse assumed to be generic.

Letw® be ther-permutation which corresponds to thecoherent path defined loyIf
7°mapsy® to the lower edge path of the polyg@?, thenA®(w) is strictly increasing, by
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the convexity of this path. It follows thai® is the unique.-permutatiorw for which the
permutationA®(w) of the numbers (7) is strictly increasing. leét= (aj, &, ..., &) €
RY. For a fixedr-permutatiorw, if nonempty, the set of alt’ such thatw® = w forms
exactly a region of44(1). Indeed, deciding which of the two numbe¥st- m andaj’ +1
in (7) is smaller amounts to choosing a side of the hyperptarex; =1 —mof Ag4(2).
Finally, w = w® for somec if and only if the condition than\®(w) is strictly increasing
does not impose inequalities of the form

q <d <d +1< q + 1.

By definition, this means that is nonnesting. O

We now compute the number of regions.d(x). We assume familiarity with the
characteristic polynomiat (A, q) of A4[10, §2.3], afundamental combinatorial invariant
of A, and use Zaslavsky’s theorem [14] for the number of regionk dhe characteristic
polynomial of A4 (1) can be computed by an easy application of the finite field method of
[1]and[2, Part1l]. This method reduces the computation to a simple counting problemin a
vector space over a finite field. The argument in the following proposition is similar to the
one given in [1, Theorem 5.1] for the special case of the extended Catalan arrangements.

Proposition 4.2. We have

n-1

x(As), ) =q ] @-p.

j=n—d+1

Proof. Letq be alarge prime number and [&f denote the finite field of integers mod
g. Theorem 2.2 in [1] (see also [10, Theorem 2.69] and the original version in [7, §16])
implies thaty (A4 (%), ) counts the number af-tuples(xs, Xz, ..., Xg) € ]Faj satisfying

X=X #-=A+1...,-1,01.. ., -1 for 1<i<j=<d.
Equivalently, we want to choose tleso that the classes maod
Xi, % +1,...,% +A —1 for 1<i<d (8)

are distinct. To count thesa-tuples we first cyclically permute the strings (8) in

(d — 1! ways. Then we distributg — n indistinguishable boxes in thiespaces between
successive strings iffi 79™") ways. Theq — n boxes distributed stand for tig— n
classes ir"y not of the form (8). Finally we assign tq a specific value iffy in g ways,
sayx; = 0. The other classes of (8) + 1, ... and the boxes are naturally assigned the
values 1...,q — 1 € Fq, according to their cyclic arrangement. The product

g—n+d-1
q(d—l)!( do1 )

is the expression foy (Aq4(1), q) we have claimed. O
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Fig. 4. The arrangementl3(3, 2, 1).

Zaslavsky's theorem [14] expresses the number of regions of an arrangenient
RY as(—1)%x (A, —1) and yields the following corollary:

Corollary 4.3. The number of regions o4 (1) is

n!
(n—d+ 1!

In particular, this number depends only on n angtide sum and number of parts of
respectively

Figure 4 shows the arrangement(3, 2, 1), intersected with the hyperplang +
X2 + X3 = 0. Note that it has 30 regions, as many as the Catalan arrangeiyi@ne, 2)
of Figure 3.

Corollary 4.3 specializes to the formula given in [12, 82] for the number of regions of
the extended Catalan arrangemﬁl,[fta], since in this case = (a+1)d. Proposition 4.1
and Corollary 4.3 imply Theorem 2.3.

The reasoning in the proof of Proposition 4.1 can be extended to determine the face
lattice of [14(A). Below we give an alternative proof of Corollary 2.2, obtained in this
way. By the general theory of fiber polytopes [5, Theorem 2.1], [15, Theorem 9.6], the
face lattice ofl14 (1) is isomorphic to the poset af-coherent subdivisions @ = [0, n],
with a minimal element adjoined. In this poset we h&ye< F; if the union of the faces
in F is contained in the union of the facesfa.

Alternative Proof of Corollan2.2. To get the lower faces ©fy (1) we consider linear
functionalsc € (R%+1)* as in (6), with positiveay, 1, but not necessarily generic. Let
P¢ denote the set of monotonepaths whose lifts lie irF¢, so thatP¢® is a singleton if
cis generic. Note that® < F% in the poset ofr-coherent subdivisions if and only if
P¢ C P, Using the notation in the proof of Proposition 4.1, we hatfec P¢ if and
only if A%(w) is weaklyincreasing. It follows thaP® C P if and only if the faces
F1, F> of Agq which containc] andc,, respectively, satisffr; > F in the face poset
of Aq. O
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A precise description of the-coherent lower subdivisions is given in Remark 2 of
the next section.

5. Remarks
1. A direct bijective proof of Corollary 4.3 is possible and is outlined next.

Alternative Proof of Corollary.3. Recall that a region od4(1) is defined by a linear
orderingr; < 12 < -+ < tp Of

which respects the orderings< X +1 < --- <X +Aj —1forl<i <dandis such
that ther-permutation obtained by replacing eaght+ m with i is nonnesting. Given
such an ordering with corresponding permutatian = wiw, - - - wn, let j1, j2, ..., jq
be the positions in whicl, xo, ..., Xq appear inc, respectively. In other wordg; is
the smallesf such thatw; = i. Consider the quotient of the abelian gr(ﬂ’ﬂ;rl by the
cyclic subgroupH generated by1, 1, ..., 1). The map

T —> \]‘[:(jl7j27"'7jd)+H

defines a bijection between the regions4f(1) and cosets) = (j1, j2,..., ja) + H
of ZﬂH/H for which all j; are mutually distinct. Clearly, the number of such cosets is
nn—-1---(n—d+2).

To show that this map is indeed a bijection, we describe explicitly its inversel Let

be a coset, as above. There is a unique represent@ive, . .., jq) of J such that for
alll1 <k <n,
Z)‘f > k. (10
jr<k
We leave the proof of this fact to the interested reader. Nowlety, . . . , X4 be generic

real variables. We assign values to the variabiesne after the other, in the order
of increasingji, so thatx; is the jith smallest from the numbers in (9) with values
already assigned. This is possible because of (10). The resulting ordexirtg) has its
corresponding.-permutation nonnesting and is such tiat= J. O

2. Letr: P — Q be as in the beginning of Section 4. The posetre€oherent
subdivisions ofQ is an induced subposet of the posatP, Q) of all 7-induced sub-
divisionsof Q [15, Definition 9.1] (see also [4, 8§3]). In the special case @m= 1
we are considering, this is the poset of cellular string®pinduced byr [4, 81]. The
r-induced subdivisions in the lower patt= P4.1(1) form an interesting poset, which
we denote by2 (1). It is the set of alproperordered partitions of the multis#, , par-
tially ordered by refinement. An ordered partitiondf, is proper if none of its blocks
contains repeated elements. The subdivision defined By(By, By, ..., Bk) € Q1)
has as maximal faces the lifts of the faces

j—1
Yes+y [0el, 1=<j<k
i=1

reB;
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.
u

Fig. 5. The subdivision defined b§d, 12, 2, 12, 1).

of Pq(1), whereeg = ;g &. Figure 5 shows the facesB$(4, 3) which correspond to
the proper ordered partitiad, 12, 2, 12, 1)of M; = {1,1, 1, 1, 2, 2, 2}, withx = (4, 3).
The minimal elements of2(1) are thei-permutations, which give rise to the lifted
monotonei-paths.

The argumentin the proof of Corollary 2.2 in Section 4 yields the following description
of the subposet of -coherent lower subdivisions: Let = (B, By, ..., By) € Q(1),
as before. For each £ i < d replace the entries in the blocks pfequal toi, from
left to right, withxi, xi + 1, ..., X +A; — 1, respectively, to ggt’ = (B, By, ..., By).
The r-induced subdivision defined hyis coherent if and only if the following linear
system in the variables, xo, ..., Xq is feasible:

(i) u= v whenevew, v are in the same blocB’; and
(i) u<vwheneveu e B/,v e B andj <.

In this case, the set of solutions forms exactly a facdgf.). The subdivision of Fig. 5
is not coherent because the system

X1<Xi+1l=X<Xo+l<Xi+2=X+2<X1+3

has no solution. The only coherent atom@ft4, 3) smaller than this subdivision is
1,2,1,2,1,2,1).

3. There is a notion of “flip” on the set of all maximal monotone edge ppths P
with respect to the affine functiom. Two such paths are said to be related Hipaif
they have a common cover in the poagt, Q) of w-induced subdivisions o). We
call the minimum number of flips required to makecoherent thencoherencyof p.

In the case of lifted monotonepathsy ™, the operation of flipping swaps two distinct
successive entrigg of w. Therefore the incoherency o’ is the minimum number of
swappings needed to makenonnesting. To get a feeling for this number, we compute
the maximum incoherency that can occurfoe (2,2, ..., 2).

Proposition 5.1. Leti = (2, 2,..., 2). The maximum incoherency of a path is (g)
and is attained by the-permutations of the form, = 010,04 04 - - - 02 01, Where
o = 0107+ -0q IS a permutation ofl, ..., d}.

Proof. Every flip can reduce the number of “nestings’uoby at most one and,, has
the maximum numbe(fzi) of nestings. On the other hand, any= wyw; - - - wyg can be
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made nonnesting by at mc@) flips in the following way: Suppose that, ..., w; are
mutually distinct butwj, 1 = wy for some 1< k < i. Let | be the smallest index with

j > i for whichwj # ws, ..., wi. Move w; to the left until it occupies position+ 1.
Continue in the same way until the fidentries of the permutation are all distinct, say

o1, 02, . .., og. Now continue flipping in the second half of the permutation, in an obvious
way, to getoy o7 - - - 04 01 02 - - - 04, Which is honnesting. Any two distinct integetsj

are flipped at most once during the whole process, so the total number of flips is at most
(9), as desired. 0

4. The extended Catalan arrangements form one of the two families of deformations of
Aqg for which explicit formulas have been obtained for the number of faces of any given
dimension [2, Chapter 8]. The other family consists ofeélkeended Shi arrangements

X —Xj=—-a+1-a+2...,a for 1<i<j<d,

wherea > 1 is an integer. The number of faces in each dimension was shown to have a
surprisingly simple combinatorial interpretation [2, Theorem 8.2.1]. We don’t know if a
fiber polytope construction for the polar complexes exists in this case.

5. The cones of the extended Catalan arrangemféflféwere shown to bductively
free[10, Chapter 4] by Edelman and Reiner (see the proof of Theorem 3.2 in [9]). Other
classes of deformations ofy, including the extended Shi arrangements, were shown
to be inductively free in [3]. Proposition 4.2 suggests that the same is true for the
arrangementsly(1).
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