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Abstract. New lower bounds for the connectivity degree of the r -hypergraph matching
and chessboard complexes are established by showing that certain skeleta of such complexes
are vertex decomposable, in the sense of Provan and Billera, and hence shellable. The bounds
given by Björner et al. [5] are improved for r ≥ 3. Results on shellability of the chessboard
complex due to Ziegler [16] are reproven in the case r = 2 and an affirmative answer to a
question raised recently by Wachs for the matching complex follows. The new bounds are
conjectured to be sharp.

1. Introduction and Results

We first define the main objects of study in this paper. Given integers n ≥ r ≥ 2, the
r-hypergraph matching complex Mn(r) is the simplicial complex on the vertex set Vn(r)
of all r -element subsets of [n] := {1, 2, . . . , n} with faces the subsets of Vn(r) having
pairwise disjoint elements. It is a pure simplicial complex of dimension �n/r� − 1 and
is referred to simply as the matching complex Mn when r = 2. Given positive integers
n1, n2, . . . , nr with r ≥ 2, the (n1, n2, . . . , nr )-chessboard complex Mn1,n2,...,nr is the
simplicial complex on the vertex set V = [n1]× [n2]×· · ·× [nr ] with faces the sets of r -
tuples from V with no two having a coordinate in common. This is again a pure simplicial
complex of dimension min{ni − 1 : 1 ≤ i ≤ r}. It can be described alternatively as the
complex of position sets of rooks placed on a chessboard of shape n1× n2× · · ·× nr so
that no two of them lie in the same (r − 1)-dimensional plane orthogonal to one of the
axes of the chessboard. It is referred to simply as a chessboard complex when r = 2.

Matching and chessboard complexes first appeared in group theory in connection to
Quillen complexes and Tits coset complexes [6], [8]. Since then they have turned out to
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be of importance in various mathematical contexts within algebra [11], combinatorics
[14], discrete and computational geometry [17], representation theory [7] and topology
[1]; see the recent survey [15] for a detailed historic account and a nice exposition of
the main results and techniques in the study of matching and chessboard complexes, as
well as for further references. Their hypergraph analogues were introduced and studied
mainly with respect to their connectivity properties in [5]. The main result of [5] is as
follows.

Theorem 1.1 [5].

(i) For n ≥ r and

νn(r) =
⌊

n − 2

2r − 1

⌋
,

the complex Mn(r) is (νn(r)− 1)-connected and its νn(r)-skeleton is homotopy
Cohen–Macaulay.

(ii) For 1 ≤ n1 ≤ n2 ≤ · · · ≤ nr and

νn1,n2,...,nr = min

{
n1 − 1,

⌊
n1 + n2 − 2

3

⌋
, . . . ,

⌊
n1 + · · · + nr − r

2r − 1

⌋}
,

the complex Mn1,n2,...,nr is (νn1,n2,...,nr − 1)-connected and its νn1,n2,...,nr -skeleton
is homotopy Cohen–Macaulay.

We improve the previous theorem to the following.

Theorem 1.2.

(i) For n ≥ r and

µn(r) =
⌊

n − r

r + 1

⌋
,

the complex Mn(r) is (µn(r)− 1)-connected and its µn(r)-skeleton is shellable.
(ii) For 1 ≤ n1 ≤ n2 ≤ · · · ≤ nr the complex Mn1,n2,...,nr is (νn1,n2 − 1)-connected

and its νn1,n2 -skeleton is shellable.

A few remarks on the previous theorems are in order. Theorem 1.2 was previously
known in the special case r = 2, in which the lower bounds on the connectivity appearing
in the two theorems coincide. Indeed, it was suggested in [5] that the skeleta appearing in
the statement of Theorem 1.1 are always shellable, a property which is stronger than that
of being homotopy Cohen–Macaulay. This was proved for the chessboard complex Mm,n

by Ziegler [16], who showed that the respective skeleton has the even stronger property of
being vertex decomposable, and for the matching complex Mn by Shareshian and Wachs
[12], who describe an explicit shelling order of the facets of the �(n − 2)/3�-skeleton
of Mn . The question whether this skeleton is vertex decomposable was raised by Wachs
[15, Problem 5.4].
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It was further conjectured in [5] that the lower bounds on the connectivity in Theorem
1.1 are sharp in part (i) and in the special case r = 2. In the latter case this follows for
the matching complex essentially from the work of Bouc [6] and was proved for the
chessboard complex by Shareshian and Wachs [12], see Theorem 5.2 of [15]. From the
result of [12] one can easily deduce that the bounds on the connectivity in Theorem 1.2(ii)
are sharp for all r ≥ 2 (see Section 5). However, the conjecture of [5] was disproved for
the complexes Mn(r)when r ≥ 3 is a prime by Ksontini [9], who improved the quantity
νn(r) in Theorem 1.1(i) to ν ′n(r) = �(n+ r − 4)/(2r − 1)� for n ≥ 3r + 2. The smallest
examples of matching and chessboard complexes for which Theorem 1.2 improves the
existing lower bounds on the connectivity are M15 (3) and M4,4,4, respectively.

This paper is organized as follows. We begin with the necessary background on
simplicial complexes in Section 2. In Section 3 we prove Theorem 1.2. More specifically,
we adopt the approach taken by Ziegler [16] and prove that the skeleta appearing in the
statement of Theorem 1.2 are always vertex decomposable. In the special case r = 2
this reproves the result of [16] on Mm,n and answers in the affirmative the question of
Wachs on the �(n − 2)/3�-skeleton of Mn , mentioned earlier. In Section 4 we give a
generalization of the r = 2 case to the matching complex of any finite graph. We conclude
in Section 5 with a few remarks and open problems. This includes a generalization of
Theorem 1.2 to the packing complexes, introduced by Björner and Eriksson [4].

2. Preliminaries

Let E be a finite set. An (abstract) simplicial complex on the ground set E is a collection
� of subsets of E such that F ⊂ F ′ ∈ � implies F ∈ �. The set V = {v ∈ E : {v} ∈ �}
is the set of vertices of �. The elements of � are called faces and those maximal with
respect to inclusion are called facets. The dimension of a face F is defined as one less
than the cardinality of F and the dimension of � as the maximum dimension of a face.
We call � pure if all its facets have the same dimension. The k-skeleton �≤k of � is
the simplicial complex formed by the faces of� of dimension at most k. The cone of�
over a new vertex v, denoted � ∗ v, is the simplicial complex on E ∪ {v} whose facets
are the sets F ∪ {v}, where F is a facet of �.

For A ⊆ E define the deletion of A from � as �\A = {F ∈ � : F ∩ A = ∅} and
for A ∈ � define the link of A as �/A = {F − A : A ⊆ F ∈ �}. Note that these two
operations commute. We write�\v for�\{v} and�/v for�/{v}. The restriction of�
on A ⊆ E is defined as �(A) = {F ∈ � : F ⊆ A}.

Definition 2.1 [2], [10]. A simplicial complex � is vertex decomposable if it is pure
and it is either empty or it has a vertex v such that�\v and�/v are vertex decomposable.

For instance, any zero-dimensional complex is vertex decomposable and a one-
dimensional complex is vertex decomposable if and only if it is connected. We use
the following consequence of the definition.

Lemma 2.2. Let � be a simplicial complex of dimension d and let v1, v2, . . . , vt be
distinct vertices of �. If � \{v1, . . . , vt } is vertex decomposable of dimension d and
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(�/vi ) \{v1, . . . , vi−1} is vertex decomposable of dimension d − 1 for each 1 ≤ i ≤ t ,
then � is vertex decomposable.

Proof. This follows by induction on t and the fact that a d-dimensional simplicial
complex � is pure if for some vertex v, �\v is pure of dimension d and �/v is pure of
dimension d − 1.

Induction on the number of vertices also gives the next lemma.

Lemma 2.3.

(i) If � is vertex decomposable, then so is its k-skeleton �≤k for any k.
(ii) [16, Lemma 1.2] If the k-skeleton of a simplicial complex � is vertex decom-

posable, then the (k + 1)-skeleton of the cone � ∗ v is vertex decomposable as
well.

When we talk about topological properties of an abstract simplicial complex � we
refer to those of its geometric realizaton ‖�‖ [3], which is unique up to linear home-
omorphism. In particular, � is k-connected if the homotopy groups πi (‖�‖, x) vanish
for all 0 ≤ i ≤ k and x ∈ ‖�‖. The connectivity degree of � is the largest integer k
such that � is k-connected.

3. Hypergraph Matching and Chessboard Complexes

In this section we prove Theorem 1.2. Note that the statement on the connectivity follows
from that on shellability, since a simplicial complex is (k − 1)-connected if and only
if so is its k-skeleton and any shellable k-dimensional complex is (k − 1)-connected;
see, e.g. [3]. Hence it suffices to prove that the skeleta which appear in the theorem are
shellable. As in [16], we will show that they are in fact vertex decomposable. We begin
with the complexes Mn(r).

Theorem 3.1. For n ≥ r and

µn(r) =
⌊

n − r

r + 1

⌋
,

the µn(r)-skeleton of Mn(r) is vertex decomposable.

Proof. We will prove a more general statement. For 1 ≤ k ≤ r , let Mn,k(r) be the
restriction of Mn(r) on the set of vertices u such that either {n, n−1, . . . , n−k+1} ⊆ u
or u and {n, n − 1, . . . , n − k + 1} are disjoint. Note that Mn,k(r) reduces to Mn(r)
for k = 1. We will prove that the µn(r)-skeleton of Mn,k(r) is vertex decomposable of
dimension µn(r) for all n ≥ r .

The statement is true for r ≤ n ≤ 2r , since then µn(r) = 0 and Mn,k(r) has at least
one vertex. Suppose n ≥ 2r+1 and proceed by double induction on n and r−k. Note that
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Mn,r (r) = Mn−r (r)∗v, where v = {n, n−1, . . . , n−r+1}. Sinceµn(r)−1 ≤ µn−r (r)
and n − r ≥ r , induction and Lemma 2.3 imply that the µn(r)-skeleton of Mn,r (r) is
vertex decomposable of dimension µn(r), which is the statement for k = r . Assume
now that 1 ≤ k < r and let S be the set of vertices of Mn,k(r) not in Mn,k+1(r), i.e. the
set of r -subsets u of [n] such that either max (u) = n − k or max ([n] \ u) = n − k. Let
S = {v1, v2, . . . , vt } be linearly ordered so that i < j whenever max (vi ) = n − k and
max ([n] \ vj ) = n−k. Let�0 = Mn,k(r) and�i = �i−1\vi for 1 ≤ i ≤ t . Observe that
the µn(r)-skeleton of �t = Mn,k+1(r) is vertex decomposable of dimension µn(r) by
induction. Moreover, the link �i−1/vi is isomorphic to either Mn−r,k(r) or Mn−r−1(r),
depending on whether max (vi ) = n − k or max ([n] \ vi ) = n − k, respectively. Since
n − r − 1 ≥ r and µn(r) − 1 = µn−r−1(r) ≤ µn−r (r), induction and Lemma 2.3(i)
imply that the (µn(r) − 1)-skeleton of �i−1/vi is vertex decomposable of dimension
µn(r)−1. It follows from Lemma 2.2 that the µn(r)-skeleton of�0 = Mn,k(r) is vertex
decomposable of dimension µn(r) and this completes the induction.

We now shift attention to the chessboard complexes Mn1,n2,...,nr .

Theorem 3.2. For 1 ≤ n1 ≤ n2 ≤ · · · ≤ nr and

νn1,n2 = min

{
n1 − 1,

⌊
n1 + n2 − 2

3

⌋}
,

the νn1,n2 -skeleton of Mn1,n2,...,nr is vertex decomposable.

Proof. Let γ = (n1, n2, . . . , nr ) and V = [n1]× [n2]× · · · × [nr ] be the vertex set of
Mγ = Mn1,n2,...,nr . Fix the vertex v = (n1, n2, . . . , nr ) ∈ V . For 1 ≤ k ≤ r , let Mγ,k be
the restriction of Mγ on the set of vertices (b1, b2, . . . , br ) ∈ V such that either bi = ni

for all 1 ≤ i ≤ k or bi �= ni for all 1 ≤ i ≤ k and note that Mγ,1 = Mγ . We will
prove that the νn1,n2 -skeleton of Mγ,k is vertex decomposable of dimension νn1,n2 for all
1 ≤ k ≤ r .

We proceed by double induction on n1 + n2 + · · · + nr and r − k. We may assume
that n1 ≥ 2 and n2 ≥ 3, since otherwise νn1,n2 = 0 and Mγ,k has at least one vertex.
Note first that Mγ,r = Mn1−1,...,nr−1 ∗ v. Since νn1,n2 − 1 ≤ νn1−1,n2−1, induction and
Lemma 2.3 imply that the νn1,n2 -skeleton of Mγ,r is vertex decomposable of dimension
νn1,n2 , which is the statement for k = r . Assume that 1 ≤ k < r and let S be the set of
vertices of Mγ,k not in Mγ,k+1, i.e. those of the form (b1, b2, . . . , br ) with either bi �= ni

for 1 ≤ i ≤ k and bk+1 = nk+1 or bi = ni for 1 ≤ i ≤ k and bk+1 �= nk+1. Let
S = {v1, v2, . . . , vt } be linearly ordered so that those vertices with bk+1 = nk+1 come
first and set�0 = Mγ,k and�i = �i−1\vi for 1 ≤ i ≤ t . Observe that the νn1,n2 -skeleton
of�t = Mγ,k+1 is vertex decomposable of dimension νn1,n2 by induction. Moreover, the
link�i−1/vi is isomorphic to either Mγ̄ ,k or Mγ ′ , where γ̄ = (n1−1, n2−1, . . . , nr−1)
and γ ′ = (m1,m2, . . . ,mr ) with

mj =
{

nj − 2, if j = k + 1,
nj − 1, otherwise.

Using Lemma 2.2 once again, to complete the induction we need to check that the
(νn1,n2−1)-skeleton of each of these two complexes is vertex decomposable of dimension
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νn1,n2 − 1. This is clear for Mγ̄ ,k by induction and Lemma 2.3(i), since νn1,n2 − 1 ≤
νn1−1,n2−1. For Mγ ′ we need to verify that νn1,n2−1 ≤ νm ′1,m

′
2
, where (m ′1,m ′2, . . . ,m ′r ) is

the increasing rearrangement of γ ′. This is clear if m ′1 = n1− 1 since then m ′2 ≥ n2− 2.
Otherwise we must have n1 = n2 = . . . = nk+1 = q and m ′1 = q − 2, m ′2 = q − 1 for
some q ≥ 3 and one can check that νn1,n2 − 1 = νm ′1,m

′
2
= �(2q − 5)/3�.

Theorem 1.2 implies that the skeleta of the complexes which appear there are Cohen–
Macaulay over any field k. As in [5], we can draw the following corollary on their
Stanley–Reisner rings; see [13] for relevant background.

Corollary 3.3. For any field k and 2 ≤ r ≤ n, 1 ≤ n1 ≤ n2 ≤ · · · ≤ nr we have

depth (k[Mn(r)]) ≥
⌊

n + 1

r + 1

⌋

and

depth (k[Mn1,n2,...,nr ]) ≥ min

{
n1,

⌊
n1 + n2 + 1

3

⌋}
.

In particular, k[Mn1,n2,...,nr ] is Cohen–Macaulay if n2 ≥ 2n1 − 1.

4. Matching Complexes of Graphs

Let G be a finite graph, meaning a pair (N , E) of a finite node set N and a set E of
2-element subsets of N , called edges. The matching complex of G, denoted by MG , is
the simplicial complex on the ground set E defined as follows. A set F of edges of G is
a face of MG if each node of G is contained in at most one edge in F . In graph-theoretic
terminology, the faces of MG are the sets of edges forming a partial matching of G. If G
is the complete graph Kn on the node set [n] or the complete bipartite graph Km,n on the
node set [m]∪ [n′], where [n′] := {1′, 2′, . . . , n′}, then MG is the matching complex Mn

or the chessboard complex Mm,n , respectively. The proof of Theorem 3.1 can be adapted
in this situation to give the following theorem.

Theorem 4.1. Let G be the class of pairs (G, k), where G is a graph and k is a
nonnegative integer, such that

(i) the k-skeleton of MG is pure of dimension k and, for k ≥ 1,
(ii) there exist nodes a, b of G connected by an edge, such that if H is obtained from

G by deleting a and any node connected by an edge to it, or a, b and any node
connected by an edge to b, then (H, k − 1) ∈ G.

Then for any (G, k) ∈ G, the k-skeleton of MG is vertex decomposable.

Proof. Let (G, k) ∈ G and proceed by induction on the number n of nodes of G, the
result being trivial for n ≤ 3. We may assume that k ≥ 1.

Let e be the edge {a, b} in assumption (ii) of the theorem and let H be the graph
obtained from G by deleting nodes a and b. Let v1, v2, . . . , vs be the edges of G other
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than e incident to a, listed in any order, and let vs+1, . . . , vt be the edges of G other than
e incident to b, listed in any order. Let �0 = MG and �i = �i−1\vi for 1 ≤ i ≤ t . By
assumption we have (H, k − 1) ∈ G and hence the (k − 1)-skeleton of MH is vertex
decomposable of dimension k−1. Clearly,�t is the cone MH ∗e and hence its k-skeleton
is vertex decomposable of dimension k, by Lemma 2.3(ii). Moreover, the link�i−1/vi is
isomorphic to the matching complex of the graph obtained from G by deleting a and the
endpoints of vi and hence its (k−1)-skeleton is vertex decomposable of dimension k−1
by assumption (ii) and induction. Lemma 2.2 implies that the k-skeleton of �0 = MG

is vertex decomposable and completes the proof.

The following corollary gives a simple solution to Problem 5.4 of [15] and another
proof to the result of [16] on Mm,n . Let νn = νn(2) = �(n − 2)/3� for n ≥ 2 and

νm,n = min

{
m − 1, n − 1,

⌊
m + n − 2

3

⌋}

for m, n ≥ 1.

Corollary 4.2.

(i) The νn-skeleton of the matching complex Mn is vertex decomposable for all n ≥ 2.
(ii) [16] The νm,n-skeleton of the chessboard complex Mm,n is vertex decomposable

for all m, n ≥ 1.

Proof. Let G be as in Theorem 4.1. It suffices to check that (G, k) ∈ G if G is the
complete graph Kn on the node set [n] and k ≤ νn or G is the complete bipartite graph
Km,n on the node set [m] ∪ [n′] and k ≤ νm,n , respectively. For this we proceed by
induction on the size of G. For (i) we may assume that n ≥ 5, since otherwise νn = 0.
Assumption (i) of Theorem 4.1 is clear. To verify assumption (ii) choose the nodes a,
b arbitrarily and note that the graphs H considered there are isomorphic to either Kn−2

or Kn−3. Since k − 1 ≤ νn − 1 = νn−3 ≤ νn−2, we have (H, k − 1) ∈ G by induction.
Similarly for (ii) we may assume that n ≥ m ≥ 2 and n ≥ 3. Assumption (i) of Theorem
4.1 is satisfied since Mm,n is pure of dimension m − 1. To verify assumption (ii) let a be
any node in [n′], let b be any node in [m] and note that any of the graphs H considered
there is isomorphic to either Km−1,n−1 or Km−1,n−2. Since k−1 ≤ νm,n−1 ≤ νm−1,n−2 ≤
νm−1,n−1, where the middle inequality has been verified in the proof of Theorem 3.2,
we have (H, k − 1) ∈ G by induction. It follows in both cases that (G, k) ∈ G, as
desired.

From the proofs in this section one can deduce explicit vertex decompositions of the
skeleta which appear in Corollary 4.2. For instance, if E is the set of vertices of Mn

and F is the facet {{1, 2}, {3, 4}, . . .}, then the linear ordering of E which first lists the
elements of E\F in the lexicographic order and then those of F in any order induces a
vertex decomposition of the νn-skeleton of Mn .
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5. Remarks

1. Let H̃∗(�) denote the reduced, integral homology of �. The next corollary follows
from Theorem 1.2(i).

Corollary 5.1. We have H̃i (Mn(r)) = 0 for i < µn(r) and n ≥ r ≥ 2.

In the case r = 2 it follows essentially from the work of Bouc [6, Section 3.3] that
H̃νn (Mn) �= 0 for n > 2. In view of Theorem 1.2(i), the following conjecture would
imply that the connectivity degree of Mn(r) is equal to µn(r)− 1 for all n > r ≥ 2.

Conjecture 5.2. For all n > r ≥ 2 we have H̃µn(r) (Mn(r)) �= 0.

For the chessboard complex the result H̃νn1 ,n2
(Mn1,n2) �= 0 for 2 ≤ n1 ≤ n2 has been

announced by Shareshian and Wachs [12], [15, Theorem 5.2]. Since H̃∗(Mn1,n2) is a direct
summand of H̃∗(Mn1,n2,...,nr ) [5, Proposition 3.4], this implies that H̃νn1 ,n2

(Mn1,n2,...,nr ) �=
0 and hence, in view of Theorem 1.2(i), that the connectivity degree of Mn1,n2,...,nr is
equal to νn1,n2 − 1 for 2 ≤ n1 ≤ n2 ≤ · · · ≤ nr .

2. Packing complexes were introduced by Björner and Eriksson [4] as a common
generalization to the hypergraph matching and chessboard complexes as follows. Let
N1, N2, . . . , Ns be mutually disjoint sets of cardinalities n1, n2, . . . , ns , respectively.
Fix integers 1 ≤ ri ≤ ni for 1 ≤ i ≤ s and let V be the set of r -element subsets of the
union of the Ni which contain exactly ri elements from Ni for each 1 ≤ i ≤ s, so that
r = r1 + · · · + rs . The packing complex M(n1

r1
)(n2

r2
)...(ns

rs )
is the simplicial complex on the

vertex set V whose faces are the subsets of V having pairwise disjoint elements. Björner
and Eriksson gave a lower bound on the connectivity of the packing complex which
reduces to those of Theorem 1.1 in the special cases in which s = 1 or r1 = · · · = rs = 1.
Theorem 1.2 can be generalized in this situation as follows.

Theorem 5.3. Let n1, n2, . . . , ns be ordered so that for some � ≥ 1 we have ri = 1
for i < � and ri ≥ 2 otherwise. If µ denotes the minimum of the set

{ni − 1 : i < �} ∪
{⌊

ni + nj − 2

3

⌋
: i < j < �

}
∪

{⌊
ni − ri

ri + 1

⌋
: i ≥ �

}
,

then the complex M(n1
r1
)(n2

r2
)...(ns

rs )
is (µ− 1)-connected and its µ-skeleton is shellable.

This can be proved by generalizing the proof of Theorem 1.2 given in Section 3 in a
fairly straightforward way. To be more precise, let P denote the packing complex which
appears in the statement of the theorem. It suffices again to show that the µ-skeleton of
P is shellable. Assume that n1 ≤ n2 ≤ · · · ≤ n�−1 and fix a vertex v = {a1, a2, . . . , ar }
of P such that a1 ∈ N1 if � ≥ 2. For 1 ≤ i ≤ r , let Pi be the restriction of P on the set
of vertices u such that either {a1, a2, . . . , ai } ⊆ u or u and {a1, a2, . . . , ai } are disjoint.
One can then show by induction that the µ-skeleton of Pi is vertex decomposable of
dimension µ for all 1 ≤ i ≤ r as in the proof of Theorems 3.1 and 3.2. We leave the
details to the interested reader.
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