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Abstract. It is proved that for a certain class of integer polytopes P the polynomial
hðtÞ which appears as the numerator in the Ehrhart series of P, when written as a rational
function of t, is equal to the h-polynomial of a simplicial polytope and hence that its co-
e‰cients satisfy the conditions of the g-theorem. This class includes the order polytopes
of graded posets, previously studied by Reiner and Welker, and the Birkho¤ polytope of
doubly stochastic n� n matrices. In the latter case the unimodality of the coe‰cients of
hðtÞ, which follows, was conjectured by Stanley in 1983.

1. Introduction

Let P be an m-dimensional convex polytope in Rq having integer vertices. We will be
concerned with the function iðP; rÞ counting integer points in the r-fold dilate of P. It is a
fundamental result due to Ehrhart [3], [4] that iðP; rÞ is a polynomial in r of degree m, called
the Ehrhart polynomial. Thus one can write

P
rf0

iðP; rÞtr ¼ h0 þ h1tþ � � � þ hdt
d

ð1 � tÞmþ1
ð1Þ

for certain integers h0; h1; . . . ; hd . It was proved by Stanley [15] that the integers hi are
nonnegative. In this paper we describe simple conditions on P which imply that the se-
quence ðh0; h1; . . . ; hdÞ is equal to the h-vector of a d-dimensional simplicial polytope.
Such vectors are characterized by McMullen’s g-theorem; see [1], [9], [14] and Section 2.
In particular, they are symmetric and satisfy the inequalities

h0 e h1 e � � �e hbd=2c:ð2Þ

Our main result (Theorem 3.5) applies to the Birkho¤ polytope of doubly stochastic n� n

matrices and to order polytopes of graded posets. In the former case iðP; rÞ is equal to the



number of n� n integer stochastic matrices, or magic squares, having line sums equal to r

and the inequalities (2) prove a long-standing conjecture of Stanley [16], Section I.1. In the
latter case the integers hi count linear extensions of a naturally labeled poset by the number
of descents and our result specializes to a recent result of Reiner and Welker [12]. Our
method extends that in the work [12], which provided one of the main motivations for this
paper. New elements in our approach are the concept of a ‘special simplex’, introduced
in Section 3, and the employment of reverse lexicographic triangulations, which are com-
bined to produce simplicial decompositions of integer polytopes more general than order
polytopes of graded posets and to construct from these decompositions, as in [12], explicitly
simplicial polytopes with prescribed h-vectors. In Section 4 we state several corollaries of
our main result in the context of a‰ne semigroup rings.

I am grateful to Volkmar Welker for encouraging e-discussions and to Jesús DeLoera,
Victor Reiner, Francisco Santos, Richard Stanley and Bernd Sturmfels for helpful com-
ments.

2. Background

In this section we review some basic definitions and background on convex polytopes
and their face numbers, triangulations and Ehrhart polynomials. We refer the reader to the
texts by Stanley [16], [17], Sturmfels [20] and Ziegler [21] for more information on these
topics. We denote by N the set of nonnegative integers.

Face enumeration. Given a finite (abstract or geometric) simplicial complex D
of dimension d � 1, let fi denote the number of i-dimensional faces of D, so that
ð f0; f1; . . . ; fd�1Þ is the f -vector of D. The polynomial

Pd
i¼0

fi�1ðx� 1Þd�i ¼
Pd
i¼0

hix
d�i;ð3Þ

where f�1 ¼ 1 unless D is empty, is the h-polynomial of D, denoted hðD; tÞ. The h-vector of
D is the sequence ðh0; h1; . . . ; hdÞ defined by (3).

A polytopal complex F [21], Section 8.1, is a finite, nonempty collection of convex
polytopes such that (i) any face of a polytope in F is also in F and (ii) the intersection of
any two polytopes in F is either empty or a face of both. The elements of F are its faces

and those of dimension 0 are its vertices. The dimension of F is the maximum dimension
of a face. The complex F is pure if all maximal faces of F have the same dimension. The
collection FðPÞ of all faces of a polytope P and the collection FðqPÞ of its proper faces
are pure polytopal complexes called the face complex and boundary complex of P, respec-
tively. Thus P is simplicial if FðqPÞ is a simplicial complex. The h-vectors of boundary
complexes of simplicial polytopes are characterized by McMullen’s g-theorem [9], [16],
Section III.1, [21], Section 8.6, as follows. A sequence ðg0; g1; . . . ; glÞ of nonnegative in-
tegers is said to be an M-vector if

(i) g0 ¼ 1 and

(ii) 0e giþ1 e ghiii for 1e ie l� 1,
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where 0hii ¼ 0 and

nhii ¼ ki þ 1

i þ 1

� �
þ ki�1 þ 1

i

� �
þ � � � þ kj þ 1

j þ 1

� �

for the unique representation

n ¼ ki

i

� �
þ ki�1

i � 1

� �
þ � � � þ kj

j

� �

with ki > ki�1 > � � � > kj f jf 1, if nf 1. A sequence ðh0; h1; . . . ; hdÞ of nonnegative in-
tegers is the h-vector of the boundary complex of a d-dimensional simplicial polytope if and
only if

(i) hi ¼ hd�i for all i and

(ii) ðh0; h1 � h0; . . . ; hbd=2c � hbd=2c�1Þ is an M-vector.

In particular ðh0; h1; . . . ; hdÞ is symmetric and unimodal and hence satisfies the inequalities
(2), known as the Generalized Lower Bound Theorem for simplicial polytopes.

Triangulations and Ehrhart polynomials. A triangulation of a polytopal complex F
is a geometric simplicial complex D with vertices those of F and underlying space equal
to the union of the faces of F, such that every maximal face of D is contained in a face of
F. A triangulation of the face complex FðPÞ of a polytope P is simply called a triangula-
tion of P.

For any set s consisting of vertices of the polytopal complex F we denote by Fns
the subcomplex of faces of F which do not contain any of the vertices in s and write Fnv
for Fns if s consists of a single vertex v. Given a linear ordering t ¼ ðv1; v2; . . . ; vpÞ of the
set of vertices of F we define the reverse lexicographic triangulation or pulling triangulation

DðFÞ ¼ DtðFÞ with respect to t [15], [8], [20], p. 67, as DðFÞ ¼ fvg if F consists of a
single vertex v and

DðFÞ ¼ DðFnvpÞW
S
F

�
convðfvpgWGÞ : G A D

�
FðFÞ

�
W fjg

�

otherwise, where the union runs through the facets F not containing vp of the maximal
faces of F which contain vp and DðFnvpÞ and D

�
FðFÞ

�
are defined with respect to the

linear orderings of the vertices of Fnvp and F , respectively, induced by t. Equivalently, for
i0 < i1 < � � � < it the set fvi0 ; vi1 ; . . . ; vitg is the vertex set of a maximal simplex of DtðFÞ if
there exists a maximal flag F0 HF1 H � � �HFt of faces of F such that vij is the last vertex
of Fj with respect to t for all j and vij is not a vertex of Fj�1 for jf 1. A di¤erent way to
define DtðFÞ is the following. For any vertex v of F let

pullvðFÞ ¼ ðFnvÞW
S
F

fconvðfvgWGÞ : G A FðFÞW fjgg;

where the union runs through the facets F not containing v of the maximal faces of F
which contain v. If F0 ¼ F and Fi ¼ pullvp�iþ1

ðFi�1Þ for 1e ie p then Fp is a triangula-
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tion of F which coincides with DtðFÞ. It follows from [10], Theorem 2.5.23 (see also [6],
p. 80) that if F is the boundary complex of a polytope P then pullvðFÞ is the boundary
complex of another polytope, obtained from P by moving its vertex v beyond the hyper-
planes supporting exactly those facets of P which contain v. This observation implies the
following lemma.

Lemma 2.1. The reverse lexicographic triangulation of the boundary complex of a

polytope with respect to any ordering of its vertices is abstractly isomorphic to the boundary

complex of a simplicial polytope of the same dimension.

A convex polytope PLRq is said to be a rational or an integer polytope if all its
vertices have rational or integer coordinates, respectively. It is called a 0/1 polytope if all
its vertices are 0/1 vectors in Rq. If P is rational then the function defined for nonnegative
integers r by the formula

iðP; rÞ ¼KðrPXZqÞ

is a quasi-polynomial in r, called the Ehrhart quasi-polynomial of P [17], Section 4.6. If P
is an integer polytope then this quasi-polynomial is actually a polynomial in r. Let ALRq

be the a‰ne span of the integer polytope P. A triangulation D of P is called unimodular if
the vertex set of any maximal simplex of D is a basis of the a‰ne integer lattice AXZq.
We denote by Dt the reverse lexicographic triangulation of an arbitrary polytope P with
respect to the ordering t of its vertices. Following [15] we call such an ordering of the ver-
tices of an integer polytope P compressed if Dt is unimodular and call P itself compressed

if so is any linear ordering of its vertices. The following lemma holds for any unimodular
triangulation of P, although we will not need this fact here.

Lemma 2.2 ([15], Corollary 2.5). If P is an m-dimensional integer polytope in Rq and

t is a compressed ordering of its vertices then

P
rf0

iðP; rÞtr ¼ hðDt; tÞ
ð1 � tÞmþ1

:

Two compressed polytopes. (a) A real n� n matrix is said to be doubly stochastic if
all its entries are nonnegative and all its rows and columns sum to 1. The set P of all real
doubly stochastic n� n matrices is a convex polytope in Rn�n of dimension ðn� 1Þ2, called
the Birkho¤ polytope [21], Example 0.12. It follows from the classical Birkho¤-von Neu-
mann theorem that the vertices of P are the n� n permutation matrices, so that P is a 0/1
polytope. The Birkho¤ polytope was shown to be compressed by Stanley [15], Example 2.4
(b) (see also [20], Corollary 14.9).

(b) Let W be a poset (short for partially ordered set) on the ground set
½m� :¼ f1; 2; . . . ;mg. Recall that an (order) ideal of W is a subset I LW for which i <W j

and j A I imply that i A I . Let W0 be the poset obtained from W by adjoining a minimum
element 0. The order polytope [18] of W, denoted OðWÞ, is the intersection of the hyperplane
x0 ¼ 1 in Rmþ1 with the cone defined by the inequalities xi f xj for i < j in W0 and xi f 0
for all i. Thus OðWÞ is an m-dimensional convex polytope. The vertices of OðWÞ are the
characteristic vectors of the nonempty ideals of W0 [18], Corollary 1.3, so, in particular,
OðWÞ is a 0/1 polytope (see [18], Theorem 1.2, for a complete description of the facial struc-
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ture of OðWÞ). Order polytopes were shown to be compressed by Ohsugi and Hibi [11],
Example 1.3 (b).

Quotient polytopes. If PLRm is an m-dimensional polytope and V is any linear
subspace of Rm then the quotient polytope P=V LRm=V is the image of P under the ca-
nonical surjection Rm ! Rm=V . This is a convex polytope in Rm=V linearly isomorphic

to the image pðPÞ of P under any linear surjection p : Rm ! Rm�dimV with kernel V . Re-
call that the simplicial join D1 � D2 of two abstract simplicial complexes D1 and D2 on dis-
joint vertex sets has faces the sets of the form s1 W s2, where s1 A D1 and s2 A D2 and that
hðD1 � D2; tÞ ¼ hðD1; tÞhðD2; tÞ. The following proposition is essentially Proposition 3.12 in
[12].

Proposition 2.3. Let P be an m-dimensional polytope in Rm having a triangulation

abstractly isomorphic to s � D, where s is the vertex set of a simplex not contained in the

boundary of P. Let V be the linear subspace of Rm parallel to the a‰ne span of s.

The boundary complex of the quotient polytope P=V LRm=V is abstractly isomorphic

to FðPÞns and inherits a triangulation abstractly isomorphic to D.

3. Special simplices

Throughout this section P denotes an m-dimensional convex polytope in Rq with face
complex FðPÞ. Let S be a simplex spanned by n vertices of P. We call S a special simplex

in P if each facet of P contains exactly n� 1 of the vertices of S. Note that, in particular, S
is not contained in the boundary of P.

Example 3.1. Let P be the polytope of real doubly stochastic n� n matrices. If
v1; v2; . . . ; vn are the n� n permutation matrices corresponding to the elements of the cyclic
subgroup of the symmetric group generated by the cycle ð1 2 � � � nÞ (or any n permu-
tation matrices with pairwise disjoint supports) then v1; v2; . . . ; vn are the vertices of a spe-
cial simplex in P. Indeed, each facet of P is defined by an equation of the form xij ¼ 0 in
Rn�n and misses exactly one of v1; v2; . . . ; vn.

Example 3.2. Let W be a poset on the ground set ½m� :¼ f1; 2; . . . ;mg which is graded
of rank n� 2 (we refer to [17], Chapter 3, for basic background and terminology on par-
tially ordered sets) and P ¼ OðWÞ be the order polytope of W in Rmþ1. Let W0 be the poset
obtained from W by adjoining a minimum element 0 and for 1e ie n let vi be the char-
acteristic vector of the ideal of elements of W0 of rank at most i � 1, so that vi is a vertex of
P. Since a facet of P is defined either by an equation of the form xi ¼ xj with i < j in W0

and i, j in successive ranks or by one of the form xi ¼ 0 for i A W0 of rank n� 1, it follows
that v1; v2; . . . ; vn are the vertices of a special simplex in P.

Lemma 3.3. Suppose that v1; v2; . . . ; vn are the vertices of a special simplex in P. If
F is a face of P of codimension k for some 1e ke n� 1 and F does not contain any of

v1; v2; . . . ; vk then F must contain vi for all k þ 1e ie n.

Proof. Let S be the special simplex with vertices v1; v2; . . . ; vn. Any codimension
k face of a polytope can be written as the intersection of k facets, so we can write
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F ¼ F1 XF2 X � � �XFk where the Fj are facets of P. For each 1e ie k we have vi B F and
hence vi B Fj for some j ¼ ji. Since S is special the integers j1; j2; . . . ; jk are all distinct
and hence for each 1e je k we have vi B Fj for some 1e ie k, which in turn implies
that vi A Fj for all k þ 1e ie n. It follows that vi A F1 XF2 X � � �XFk ¼ F for all
k þ 1e ie n. r

Lemma 3.4. Suppose that t ¼ ðvp; vp�1; . . . ; v1Þ is an ordering of the vertices of P such

that s ¼ fv1; v2; . . . ; vng is the vertex set of a special simplex in P. Let D be the abstract

simplicial complex on fvnþ1; . . . ; vpg defined by the reverse lexicographic triangulation of

FðPÞns with respect to ðvp; vp�1; . . . ; vnþ1Þ.

(i) The reverse lexicographic triangulation Dt of P is abstractly isomorphic to the sim-

plicial join s � D.

(ii) D is abstractly isomorphic to the boundary complex of a simplicial polytope of

dimension m� nþ 1.

Proof. (i) Let si ¼ fv1; . . . ; vig for 0e ie n, so that s0 ¼ j and sn ¼ s, and let Di

denote the abstract simplicial complex on the set fviþ1; . . . ; vpg defined by the reverse lexi-
cographic triangulation of FðPÞnsi with respect to the ordering ðvp; vp�1; . . . ; viþ1Þ. To
prove that D0 ¼ sn � Dn, which is the assertion in the lemma, we will prove that FðPÞnsi
is pure ðm� iÞ-dimensional and that D0 ¼ si � Di for all 0e ie n by induction on i. This
is obvious for i ¼ 0 so let 1e ie n. By induction, any maximal face F of FðPÞnsi�1 is a
codimension i � 1 face of P. Since F does not contain any of the vertices v1; . . . ; vi�1, by
Lemma 3.3 we have vi A F . This implies that FðPÞnsi is pure ðm� iÞ-dimensional and that
Di�1 ¼ vi � Di. The last equality and the induction hypothesis D0 ¼ si�1 � Di�1 imply that
D0 ¼ si � Di, which completes the induction.

(ii) Let V be the linear subspace of Rq parallel to the a‰ne span of the vertices in
s and P=V be the corresponding quotient polytope of P, so that P=V has dimension
m� nþ 1. Part (i) and Proposition 2.3 imply that D is abstractly isomorphic to a reverse
lexicographic triangulation of the boundary complex of P=V . This is in turn isomorphic
to the boundary complex of a simplicial polytope of dimension m� nþ 1 by Lemma 2.1.

r

The following theorem is the main result in this paper.

Theorem 3.5. Suppose that P is an integer polytope and t ¼ ðvp; vp�1; . . . ; v1Þ is an

ordering of its vertices such that:

(i) t is compressed and

(ii) fv1; v2; . . . ; vng is the vertex set of a special simplex in P.

Then

P
rf0

iðP; rÞtr ¼ hðtÞ
ð1 � tÞmþ1
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where hðtÞ ¼ h0 þ h1tþ � � � þ hdt
d is the h-polynomial of the boundary complex of a sim-

plicial polytope Q of dimension d ¼ m� nþ 1, so that hðtÞ satisfies the conditions in the

g-theorem.

In particular hi ¼ hd�i for all i and 1 ¼ h0 e h1 e � � �e hbd=2c.

Moreover, Q can be chosen so that its boundary complex is abstractly isomorphic to

the reverse lexicographic triangulation of FðPÞnfv1; . . . ; vng with respect to the ordering

ðvp; vp�1; . . . ; vnþ1Þ.

Proof. Let s ¼ fv1; v2; . . . ; vng and let D denote the reverse lexicographic triangula-
tion of FðPÞns with respect to the ordering ðvp; vp�1; . . . ; vnþ1Þ. Lemma 2.2 guarantees that
the proposed equation holds with hðtÞ ¼ hðDt; tÞ. Part (i) of Lemma 3.4 implies that

hðDt; tÞ ¼ hðs � D; tÞ ¼ hðs; tÞhðD; tÞ ¼ hðD; tÞ;

since face complexes of simplices have h-polynomial equal to 1, and the result follows from
part (ii) of the same lemma. r

We now apply Theorem 3.5 to the Birkho¤ polytope and to order polytopes of graded
posets. Observe that our theorem does not apply to all integer polytopes, for instance to
nonunimodular integer simplices.

Magic squares and the Birkho¤ polytope. An integer stochastic matrix, or magic

square, is a square matrix with nonnegative integer entries having all line sums equal to
each other, where a line is a row or a column. Let HnðrÞ be the number of n� n magic
squares with line sums equal to r. The fact that for any fixed positive integer n the quantity
HnðrÞ is a polynomial in r of degree ðn� 1Þ2 was first proved by Stanley [13] (see also [5],
[16], Section I.5, and [17], Section 4.6). Let P be the polytope of real doubly stochastic
n� n matrices and observe that HnðrÞ coincides with the Ehrhart polynomial iðP; rÞ. Since
P is a compressed integer polytope of dimension ðn� 1Þ2, Theorem 3.5 and Example 3.1
imply immediately the following corollary.

Corollary 3.6. For any positive integer n we have

P
rf0

HnðrÞtr ¼
hðtÞ

ð1 � tÞðn�1Þ2þ1

where hðtÞ ¼ h0 þ h1tþ � � � þ hdt
d is the h-polynomial of the boundary complex of a sim-

plicial polytope of dimension d ¼ n2 � 3nþ 2, so that hðtÞ satisfies the conditions in the

g-theorem.

In particular hi ¼ hd�i for all i and 1 ¼ h0 e h1 e � � �e hbd=2c.

In view of the last statement in Theorem 3.5, the polytope in the previous corollary
can be constructed by pulling in an arbitrary order the vertices of the quotient of P with
respect to the a‰ne span of the vertices v1; v2; . . . ; vn, chosen explicitly as in Example 3.1.
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Eulerian polynomials and equatorial spheres. Let W be a graded poset on the ground
set ½m� :¼ f1; 2; . . . ;mg of rank n� 2. Let Wi be the set of elements of W of rank i � 1 for
1e ie n� 1 and LðWÞ be the set of linear extensions of W, meaning the set of permuta-
tions w ¼ ðw1;w2; . . . ;wmÞ of ½m� for which wi <W wj implies i < j. We assume that W is
naturally labeled, meaning that the identity permutation ð1; 2; . . . ;mÞ is a linear extension.
The W-Eulerian polynomial is defined as

WðW; tÞ ¼
P

w ALðWÞ
tdesðwÞ

where

desðwÞ ¼Kfi A ½m� 1� : wi > wiþ1g

is the number of descents of w. Following [12] we call a function g : W ! R equatorial

if min
a AW

gðaÞ ¼ 0 and for each 2e ie n� 1 there exist ai�1 A Wi�1 and ai A Wi such that

ai�1 <W ai and gðai�1Þ ¼ gðaiÞ. An ideal I or, more generally, a strictly increasing chain
of ideals I1 H I2 H � � �H Ik in W is equatorial if the characteristic function wI of I or the
sum wI1

þ wI2
þ � � � þ wIk , respectively, is equatorial. The equatorial complex DeqðWÞ, in-

troduced in [12], is the abstract simplicial complex on the vertex set of equatorial ideals
of W whose simplices are the equatorial chains of ideals in W.

The following theorem is proved in Corollary 3.8 and Theorem 3.14 of [12].

Theorem 3.7 (Reiner-Welker [12]). Let W be a naturally labeled, graded poset on ½m�
having n� 1 ranks. The equatorial complex DeqðWÞ is abstractly isomorphic to the boundary

complex of a simplicial polytope of dimension d ¼ m� nþ 1 which has h-polynomial equal

to the W-Eulerian polynomial WðW; tÞ.

Hence WðW; tÞ satisfies the conditions in the g-theorem and, in particular, it has sym-

metric and unimodal coe‰cients.

Let P be the order polytope of W and W0 be the poset obtained from W by adjoining
a minimum element 0. Recall that the vertices of P are the characteristic vectors of the
nonempty ideals of W0. The order polytope comes with its canonical triangulation [18], [12],
Proposition 2.1, which is a unimodular triangulation with maximal simplices bijecting to
the linear extensions of W. This canonical triangulation is in fact the reverse lexicographic
triangulation of OðWÞ with respect to any ordering ðup; up�1; . . . ; u1Þ of its vertices such that
i < j whenever the ideal of W0 defined by ui is strictly contained in that defined by uj. We
will use the following lemma.

Lemma 3.8. Let vi be the characteristic vector of the ideal of elements of W0 of rank

at most i � 1 for 1e ie n. Let s ¼ fv1; . . . ; vng and t ¼ ðvp; . . . ; vnþ1Þ be an ordering of the

remaining vertices of P such that i < j whenever i; jf nþ 1 and the ideal defined by vi is

strictly contained in that defined by vj.

The equatorial complex DeqðWÞ is the abstract simplicial complex defined by the reverse

lexicographic triangulation of FðPÞns with respect to t.
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Proof. Let F denote the face complex of P and let x1̂1 ¼ 0 by convention. The maxi-
mal faces of Fns are the faces of P defined by systems of equations of the form xis ¼ xjs
for 0e se n� 1 where (i) i0 ¼ 0 and jn�1 ¼ 1̂1, (ii) is A Ws for 1e se n� 1, js A Wsþ1

for 0e se n� 2 and is <W js for 1e se n� 2 and (iii) if js ¼ isþ1 for consecutive values

s ¼ a; aþ 1; . . . ; b� 1 of s then the interval ½ia; jb� in ŴW consists only of the elements of the
chain ia < iaþ1 < � � � < ib < jb. The statement of the lemma follows from the description
of the maximal faces of a reverse lexicographic triangulation DðFÞ (see Section 2) and that
of the maximal faces of DeqðWÞ (see [12], Proposition 3.5). We omit the details. r

Proof of Theorem 3.7. Let P be the order polytope of W, as before. Observe that
iðP; rÞ is equal to the number of order reversing maps r : W ! f0; 1; . . . ; rg. It follows from
[17], Theorem 4.5.14, that

P
rf0

iðP; rÞtr ¼ W ðW; tÞ
ð1 � tÞmþ1

:ð4Þ

Let the vertices v1; v2; . . . ; vp of P and t ¼ ðvp; . . . ; vnþ1Þ be as in Lemma 3.8. We checked
in Example 3.2 that v1; v2; . . . ; vn are the vertices of a special simplex in P. Since P is a
compressed integer polytope (see Section 2) Theorem 3.5 applies and we have

P
rf0

iðP; rÞtr ¼ hðtÞ
ð1 � tÞmþ1

;

where hðtÞ ¼ h0 þ h1tþ � � � þ hdt
d is the h-polynomial of a simplicial polytope of dimen-

sion d ¼ m� nþ 1 having, in view of Lemma 3.8, boundary complex abstractly isomorphic
to DeqðWÞ. Comparison with (4) yields hðtÞ ¼ WðW; tÞ and completes the proof. r

4. Rational polyhedral cones and semigroup rings

In this section we consider the a‰ne semigroup ring corresponding to an integer
polytope and state several corollaries of Theorem 3.5, including a generalization of Corol-
lary 3.6 to magic labelings of bipartite graphs. For terminology and background related to
semigroup rings we refer the reader to [2], Chapter 6.

Let P be an m-dimensional integer polytope in Rq. We denote by RP the subalgebra
of the algebra k½x1; . . . ; xq; x

�1
1 ; . . . ; x�1

q ; t� of Laurant polynomials over a field k generated
by the monomials xatr for positive integers r and a A Zq such that a=r A P. The algebra RP

can be graded by letting xatr have degree r. With this grading RP is a normal, Cohen-
Macaulay, graded commutative ring whose Hilbert series is the Ehrhart series of P. Let
~PP ¼ fð1; xÞ : x A Pg be the lift of P in the hyperplane x0 ¼ 1 in Rqþ1. We denote by CP the
cone in Rqþ1 generated by ~PP and by EP the semigroup of integer points in CP. We also
denote by EP the set of points of EP which lie in the relative interior of CP. It is known that
the ring RP is Gorenstein if and only if EP has a unique minimal element, meaning an ele-
ment b A EP such that EP ¼ b þ EP; see for instance [2], Corollary 6.3.8.

Corollary 4.1. Let P be an m-dimensional integer polytope in Rq. If

(i) RP is Gorenstein and

Athanasiadis, Ehrhart polynomials, simplicial polytopes and magic squares 171



(ii) there exists a compressed ordering t ¼ ðvp; vp�1; . . . ; v1Þ of the vertices of ~PP such

that v1 þ v2 þ � � � þ vn is equal to the unique minimal element b of EP for some n,

then the conclusion of Theorem 3.5 holds.

Proof. We denote by L the linear span of CP in Rqþ1 and by A a set of integer
linear forms in Rqþ1, one for each facet of P, defining the cone CP as the set of points
x A L satisfying gðxÞf 0 for all g A A. In view of Theorem 3.5 it su‰ces to show that
fv1; v2; . . . ; vng is the vertex set of a special simplex in ~PP. Let F be a facet of ~PP and let f be
the linear form in A corresponding to F . We need to show that exactly one of v1; v2; . . . ; vn
satisfies f ðviÞ > 0. Clearly at least one of them has this property, since f ðbÞ > 0. Assume
that at least two of v1; v2; . . . ; vn satisfy f ðviÞ > 0, say vj is one of them, and let f ðbÞ ¼ b

and f ðvjÞ ¼ c, so that 1e c < b. Since F is a facet of ~PP there exists a point x in the a‰ne
span of ~PP, which we may assume to have rational coordinates, satisfying f ðxÞ < 0 and
gðxÞ > 0 for all g A A other than f . By replacing x with a suitable positive integer multiple
we find an integer point a in L satisfying f ðaÞ < 0 and gðaÞ > 0 for all g A A other than
f . Letting a ¼ f ðaÞ, we may choose a nonnegative integer t so that 0 < aþ bþ tc < b.
Then g ¼ aþ b þ tvj is in EP and satisfies f ðgÞ < f ðbÞ, which contradicts the minimality
of b. r

Recall that RP is standard if it is generated by its homogeneous elements of degree
one or, equivalently, if EP is generated as a semigroup by the integer points in ~PP. Clearly
this holds if P has a unimodular triangulation. The next corollary provides an instance in
which a conjecture of Hibi [7], Conjecture 1.5, and Stanley (see [19], Conjecture 4a), stating
that the h-vector of a standard, graded, Gorenstein domain has unimodal coe‰cients, can
be answered in the a‰rmative.

Corollary 4.2. Let P be an m-dimensional integer polytope in Rq. If

(i) P is compressed and

(ii) RP is Gorenstein,

then the conclusion of Theorem 3.5 holds where, in the statement of the theorem, n is the

x0-coordinate of the unique minimal element of EP.

Proof. Let b be the unique minimal element of EP, whose existence is guaranteed
by (ii). Since ~PP has unimodular triangulations (having vertex set that of ~PP), the vertices

of ~PP must be its only integer points. Hence the fact that RP is standard implies that
b ¼ v1 þ v2 þ � � � þ vn for some vertices v1; v2; . . . ; vn of ~PP, which must be pairwise distinct
by the minimality of b. Because of (i) any ordering ðvp; vp�1; . . . ; v1Þ of the vertices of ~PP
satisfies the assumptions of Corollary 4.1. The result follows from this corollary observing
that b has x0-coordinate equal to n. r

General conditions on P which guarantee that P is compressed were given by Ohsugi
and Hibi [11]. Let F be a p� q matrix with integer entries. Let u A Zp and suppose that P is
defined by the linear equalities and inequalities

Fx ¼ u and 0e xi e 1 for 1e ie q;ð5Þ

where x ¼ ðx1; x2; . . . ; xqÞ A Rq.
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Corollary 4.3. Let P be an m-dimensional polytope, as in (5). If P is a 0/1 polytope

and RP is Gorenstein then the conclusion of Corollary 4.2 holds.

Proof. Since P is a 0/1 polytope, Theorem 1.1 in [11] implies that P is compressed.
Thus the assumptions of Corollary 4.2 hold. r

Magic labelings of graphs. Let G be a graph (multiple edges and loops allowed) with
p vertices and q edges and edge set E. A magic labeling [13] of G of index r is an assignment
l : E ! N of nonnegative integers to the edges of G such that for each vertex v of G the
sum of the labels of all edges incident to v is equal to r, in other words,

P
e:v A e

lðeÞ ¼ r:

Let RE denote the real vector space with basis E and let xe be the linear functional on RE

dual to the basis element e A E. Let P be the set of points x A RE satisfying xe f 0 for all
e A E and

P
e:v A e

xe ¼ 1ð6Þ

for all vertices v of G. Thus P is a convex polytope in RE and iðP; rÞ counts the number
HGðrÞ of magic labelings of G of index r. It follows from [13], Proposition 2.9, and either
[15], Theorem 2.3 (applied as in [15], Example 2.4 (b), in the case of the Birkho¤ polytope)
or [11], Theorem 1.1, that P is a compressed integer polytope, if the graph G is bipartite (or,
more generally, if it satisfies condition (iii) of [13], Proposition 2.9). Clearly RP is Goren-
stein if G is regular of degree n, since then ðn; 1; 1; . . . ; 1Þ is the unique minimal element of
EP. Assuming further that G is connected, P has dimension m ¼ q� pþ 1. The following
corollary specializes to Corollary 3.6 when G is the complete bipartite graph on two sets of
vertices, each of size n.

Corollary 4.4. For nf 1 and for any connected regular bipartite graph G with p ver-

tices and q ¼ np=2 edges we have

P
rf0

HGðrÞtr ¼
hðtÞ

ð1 � tÞmþ1

where m ¼ q� pþ 1 and hðtÞ ¼ h0 þ h1tþ � � � þ hdt
d is the h-polynomial of the boundary

complex of a simplicial polytope of dimension d ¼ m� nþ 1, so that hðtÞ satisfies the con-

ditions in the g-theorem.

In particular hi ¼ hd�i for all i and 1 ¼ h0 e h1 e � � �e hbd=2c.
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