BUCHSBAUM* COMPLEXES
CHRISTOS A. ATHANASIADIS AND VOLKMAR WELKER

ABSTRACT. A class of finite simplicial complexes, which we call Buchsbaum™ over a field,
is introduced. Buchsbaum* complexes generalize triangulations of orientable homology
manifolds as well as doubly Cohen-Macaulay complexes. By definition, the Buchsbaum*
property depends only on the geometric realization and the field. Characterizations in
terms of simplicial homology are given. It is proved that Buchsbaum™* complexes are
doubly Buchsbaum. Various constructions, among them one which generalizes convex ear
decompositions, are shown to yield Buchsbaum™ simplicial complexes. Graph theoretic
and enumerative properties of Buchsbaum™* complexes are investigated.

1. INTRODUCTION

A major theme in the study of finite simplicial complexes in the past few decades has
been the interplay between their algebraic, combinatorial, homological and topological
properties. Several classes of simplicial complexes, such as Buchsbaum, Cohen-Macaulay
or Gorenstein complexes, have been introduced and studied in order to isolate important
features of triangulations of fundamental geometric objects, such as balls, spheres and
various other manifolds. We refer the reader to [22] for a comprehensive introduction to
the subject. The objective of this paper is to introduce and develop the basic properties
of a new class of simplicial complexes, named Buchsbaum™* complexes, which generalize
triangulations of orientable homology manifolds.

In this introductory section we motivate our main definition and outline the remainder
of the paper (we refer the reader to [22, Chapter II] [4, Chapter 5] [23, Chapter II] for
any undefined terminology and to [13] for background on algebraic topology). A simplicial
complex over the ground set {2 is a collection A of subsets of €2 such that ¢ C 7 € A
implies o € A. Throughout this paper, we will always assume € to be finite (thus we will
only consider finite simplicial complexes). Given a field k, the face ring (or Stanley-Reisner
ring) k[A] of A over k is the quotient of the polynomial ring k[x, : w € Q] by the ideal
generated by the monomials [] 5 #. for all subsets N of © not in A. Recall (see [22]) that
A is called Buchsbaum (respectively, Cohen-Macaulay, Gorenstein) over k if the face ring
k[A] is a Buchsbaum (respectively, Cohen-Macaulay, Gorenstein) ring. Such a complex
A is called doubly Buchsbaum [12] (respectively, doubly Cohen-Macaulay [2] [22, p. T1])
over k if for every vertex v of A, the complex A \ v, obtained from A by removing all
faces which contain v, is Buchsbaum (respectively, Cohen-Macaulay) over k of the same
dimension as A.
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It is known that Buchsbaumness [20][22, Theorem 8.1]; see also Theorem 2.1 (respec-
tively, Cohen-Macaulayness; see [14] [22, Proposition 4.3]) of A is a topological property,
meaning that it depends only on the homeomorphism type of the geometric realization |A|
[5, Section 9] of A. For instance, all triangulations of manifolds (with or without bound-
ary) are Buchsbaum and all triangulations of balls and spheres are Cohen-Macaulay over
all fields. It was conjectured by Baclawski [2] and proved by Walker [25] as an immediate
consequence of the following theorem, that double Cohen-Macaulayness is a topological
property as well. In the sequel, we will write H;(X; k) for the reduced singular homology
of the space X and H;(X, A; k) for the singular homology of the pair of spaces (X, A).
We will also write H;(A; k) and H;(A,T'; k) for the (reduced) simplicial homology of the
simplicial complex A and of the pair of simplicial complexes (A, T).

Theorem 1.1. (Walker, [25, Theorem 9.8]) Let A be a (d—1)-dimensional Cohen-Macaulay
simplicial complex over a field k. The following conditions are equivalent:

(i) A is doubly Cohen-Macaulay over k.
(ii) Hy—2(JA| — p; k) = 0 holds for every p € |A|.

Examples of complexes which are doubly Cohen-Macaulay over all fields are all triangu-
lations of spheres. In contrast, no triangulation of a ball is doubly Cohen-Macaulay over
any field.

Double Buchsbaumness of a simplicial complex is also a topological property [12] and
thus doubly Buchsbaum complexes generalize homology manifolds (without boundary)
in a way analogous to the way doubly Cohen-Macaulay complexes generalize homology
spheres. However, in certain respects double Buchsbaumness turns out to be too weak
of an analogue of double Cohen-Macaulayness. For instance, it is known [22, p. 71] that
every doubly Cohen-Macaulay complex A has non-vanishing top-dimensional homology,
whereas this is not true for every doubly Buchsbaum complex (since it is not true for
every homology manifold without boundary). These considerations and condition (ii) in
Theorem 1.1 motivate the following definition.

Definition 1.2. Let A be a (d —1)-dimensional Buchsbaum simplicial complex over a field
k. The complex A is called Buchsbaum* over k if

(1.1) dimy, Hy_o(|A| — p; k) = dimy, Hy_o(|A; k)
holds for every p € |Al.

The results of this paper show that the notion of a Buchsbaum™® complex provides a
well behaved manifold analogue to that of a doubly Cohen-Macaulay complex in terms of
various homological, graph theoretic and enumerative properties. We summarize some of
these results as follows.

The class of Buchsbaum™® complexes is shown to be included in the class of doubly Buchs-
baum complexes (Corollary 2.9) with non-vanishing top-dimensional homology (Corollary
2.4), to include all triangulations of orientable homology manifolds (Proposition 2.7) and
to reduce to the class of doubly Cohen-Macaulay complexes, when restricted to the class of
all Cohen-Macaulay complexes (Proposition 2.5). Products of Buchsbaum™ complexes and
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proper skeleta of Buchsbaum complexes are shown to be Buchsbaum® (Propositions 3.1
and 3.6). A notion of higher Buchsbaum™ connectivity, generalizing that of higher Cohen-
Macaulay connectivity [2], is introduced in Section 3.3, where it is shown that passing to
proper skeleta increases the degree of connectivity (Theorem 3.7).

Partially extending results of Kalai [11] on homology manifolds and Nevo [16] on dou-
bly Cohen-Macaulay complexes, it is shown that the graph of a connected Buchsbaum*
complex of dimension d — 1 > 2 is generically d-rigid (Theorem 4.1). This implies that the
face numbers of such a complex satisfy the inequalities of Barnette’s lower bound theorem
(Proposition 5.5) and part of the conditions predicted by the g-conjecture for triangula-
tions of spheres (Proposition 5.6). An analogue of a recursive formula for the h-vector of a
pure simplicial complex, in terms of that of the deletion and the link of a vertex, is shown
to be valid for Buchsbaum™ complexes (Propositions 5.1 and 5.2) and an application to
the face enumeration of flag Buchsbaum* complexes is given (Corollary 5.4).

This paper is structured as follows. Section 2 gives characterizations of Buchsbaum*
complexes, deduces their basic properties and lists examples. Section 3 investigates the
behavior of the Buchsbaum™ property under standard operations on topological spaces and
constructs a large family of Buchsbaum™ complexes by suitably gluing orientable homology
manifolds with boundary to an orientable homology manifold without boundary (Corollary
3.11). Sections 4 and 5 focus on graph theoretic and enumerative properties. Section 6
briefly discusses some further properties of Buchsbaum® complexes which appeared in the
literature after the results of this paper were first publicized.

2. CHARACTERIZATIONS AND ELEMENTARY PROPERTIES

This section provides characterizations and discusses basic properties of Buchsbaum*
complexes. Throughout this paper, if not specified otherwise, k is an arbitrary field. We
recall the following characterization of Buchsbaum complexes.

Theorem 2.1 (Schenzel [20]). For a (d—1)-dimensional simplicial complex A, the follow-
ing conditions are equivalent:

(i) A is Buchsbaum over k.
(ii) A is pure and lka(o) is Cohen-Macaulay over k for every o € A\ {@}.
(iii) H;(|Al, |A] —p; k) =0 holds for alli <d—1 and p € |A|.

Remark 2.2. Let A be a (d—1)-dimensional simplicial complex. The following statements
are immediate consequences of Theorem 2.1 and Definition 1.2.
(i) A is Buchsbaum over k if and only if every connected component of A is Buchsbaum
over k of dimension d — 1.
(ii) Assume that d > 2. Then A is Buchsbaum® over £ if and only if every connected
component of A is Buchsbaum™ over & of dimension d — 1.

The following proposition provides equivalent versions of Definition 1.2.

Proposition 2.3. For a (d — 1)-dimensional simplicial complex A which is Buchsbaum
over k, the following conditions are equivalent:
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(i) A is Buchsbaum™ over k.
(ii) For every p € |Al, the inclusion map ¢ : |A] —p — |A| induces an injection

(18] = pi k) — Haa(AL B).
(iii) For every p € \A|, the inclusion map ¢ : |A| — p — |Al] induces an isomorphism
L Hoo(|A] = pik) — Hao(|A] ).
(iv) For every p € |Al, the canonical map
pot Hai 1 (|Al; ) — Haa(JA] |A] = p; k)
1S surjective.

Proof. Since A is Buchsbaum over k, we have Hy o(|Al,|A| — p; k) = 0 by condition (iii)
of Theorem 2.1. Hence, the long exact sequence of the pair (|A|,|A| — p) gives the exact
sequence

0 — Hy (|A| = pik) — Hy 1 (|Al; k) -2 Har (AL A = p3 k)
|

N v L~
Hy (Al = pi k) —> Ha—2(|A|; k) > 0.

It follows that ¢, is surjective. This proves that (ii) < (iii). Assuming that A is Buchs-
baum* over k, surjectivity of ¢, and (1.1) imply that ¢, is an isomorphism. This proves
that (i) = (iii). The reverse implication is trivial. The same exact sequence proves the
equivalence (iii) < (iv). O

Corollary 2.4. If A is a (d— 1)-dimensional Buchsbaum™* simplicial complex over k, then
ﬁd—l(A; k) # 0.

Proof. Let us choose p € |A| in the relative interior of a (d — 1)-dimensional face of A.
Clearly, we have Hy 1(|Al,|A| — p;k) = k. The desired statement follows by applying
condition (iv) of Proposition 2.3 to such a point p. O

We note that part (i) of the next proposition fails if Buchsbaum* is replaced by doubly
Buchsbaum (see, for instance, part (i) of Example 2.11).

Proposition 2.5. Let A be a simplicial complex.

(i) Assume that A is Cohen-Macaulay over k. Then A is Buchsbaum™ over k if and
only if A is doubly Cohen-Macaulay over k.

(ii) Assume that A is Gorenstein over k. Then A is Buchsbaum™ over k if and only if
A is Gorenstein™ over k.
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Proof. The assumption that A is Cohen-Macaulay over k implies that A is Buchsbaum
over k and that Hy o(A; k) = 0, where d — 1 is the dimension of A. Therefore, under this
assumption, Definition 1.2 implies that A is Buchsbaum* over k if and only if we have
Hyo(A —p; k) =0 for every p € |A|. Thus, part (i) follows from Theorem 1.1.

Assume that A is Gorenstein over k. This assumption also implies that A is Buchsbaum
over k. A Gorenstein simplicial complex I' of dimension d — 1 is Gorenstein™® if and only
if Hy_1(I';k) # 0. Thus if A is Buchsbaum™ over k, then A is Gorenstein®™ over k by
Corollary 2.4. Conversely, if A is Gorenstein®™ over k, then A is doubly Cohen-Macaulay
over k and hence it is Buchsbaum* over k by part (i). This proves part (ii). O

Example 2.6. A zero-dimensional simplicial complex is Buchsbaum™® over k if and only if
it has at least two vertices. Suppose A is one-dimensional, so that A is a graph. Then by
Remark 2.2 (ii), A is Buchsbaum™ over k if and only if so is each connected component of
A. Since a graph regarded as a one-dimensional simplicial complex is Cohen-Macaulay over
k if and only if it is connected, we conclude from Proposition 2.5 (i) that A is Buchsbaum*
over k if and only if each connected component of A is doubly connected as a graph. [

By the term homology manifold (without further specification) in this paper, we will
always mean one without boundary.

Proposition 2.7. Let A be a triangulation of a homology manifold X over k. Then A is
Buchsbaum™ over k if and only if X is orientable over k.

Proof. In view of Remark 2.2 (ii), we may assume that |A| is connected. Let d — 1 be
the dimension of A and let p € |A|. Our assumptions imply that A is Buchsbaum over
k, that Hy_y(|A| — p;k) = 0 and that Hy_,(|A],|A| — p;k) = k. Thus, the long exact
homology sequence considered in the proof of Proposition 2.3 shows that the canonical
map p. : Ho_1(|Al: k) — Ha—1(JA], |A| — p; k) is surjective if and only if Hy_1(|A]; k) = k.
Since the latter holds if and only if X is orientable over k, the proof follows from the
equivalence (i) < (iv) in Proposition 2.3. O

The following proposition provides another equivalent version of Definition 1.2. The
condition in part (ii) of this proposition is a stronger version of one which appeared in
[12] (see also the proof of Corollary 2.9 below). Recall that the contrastar of a face o of a
simplicial complex A is defined as the subcomplex costa(o) = {7 € A: 0 Z 7} of A.

Proposition 2.8. For a (d — 1)-dimensional simplicial complex A which is Buchsbaum
over k, the following conditions are equivalent:

(i) A is Buchsbaum™ over k.

(ii) For every pair of faces o C 17 of A, the map
(2.1) Je : Hy_1(A, costa(o); k) — Hg_1(A, costa(r); k),
mduced by inclusion, is surjective.

Proof. Recall that for p € |A| there is a deformation retraction of |A| — p onto [costa(T)|,
where 7 is the unique face of A such that p lies in the relative interior of |7|. As a result,
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condition (iv) of Proposition 2.3 is equivalent to the condition that for each 7 € A, the
canonical map

,0: : Iﬁ’jdfl(A; k') - del(Aa COStA(T); k')

is surjective. The commutative diagram of canonical maps

Hy 1(A costa(o); k)

Px
fz/[d,1 (A, k?) ]*
Px
Hy (A, costa(T); k)
for pairs o C 7 of faces of A shows that the latter condition is equivalent to (ii). O

Corollary 2.9. Every Buchsbaum* complex over k is doubly Buchsbaum over k.

Proof. This statement follows from the implication (i) = (ii) of Proposition 2.8 and the
fact (see [12, Theorem 4.3]|) that a (d — 1)-dimensional simplicial complex A is doubly
Buchsbaum over k if and only if A is Buchsbaum over k and the map (2.1) is surjective
for every pair of nonempty faces o C 7 of A. O

The following property of Buchsbaum™® complexes was proved for connected orientable
homology manifolds in [19, Theorem 2.1].

Corollary 2.10. Let A be a (d — 1)-dimensional Buchsbaum™® simplicial complex over k.
Then the socle of the local cohomology module of k[A] in homological dimension d with

respect to the irrelevant ideal satisfies (Soc Hd(k:[A])) =0 for all i # 0.

Proof. As noted in the proof of [19, Theorem 2.1], it follows from [10, Theorem 2] that the
conclusion of the corollary holds if the map

§*  H7YA, costa(T): k) — HP7HA, costa(r ~ {1}): k)

in simplicial cohomology, induced by the identity map, is injective for every 7 € A \ {@&}
and [ € 7. This holds if A is Buchsbaum* over k by Proposition 2.8. g

Example 2.11. Some examples of doubly Buchsbaum complexes which are not Buchs-
baum* are the following.

(i) The one-dimensional simplicial complex A on the vertex set {a, b, ¢, d, p} with facets
(edges) {p,a}, {p,b}, {a,b}, {p,c}, {p,d}, {c,d} is doubly Buchsbaum but not
Buchsbaum*, since Hy(|A; k) = 0 and Hy(|A| — p; k) = k (alternatively, since A is
not doubly connected as a graph).
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(ii) Condition (ii) of Theorem 2.1 and the fact that all homology spheres over k are
doubly Cohen-Macaulay over k imply that all homology manifolds over k are doubly
Buchsbaum over k. This fact and Proposition 2.7 imply that every non-orientable
homology manifold over k is doubly Buchsbaum but not Buchsbaum* over k.

(iii) Let I" be a triangulation of the two-dimensional torus for which some three edges of
I" of the form {a,b}, {b,c} and {c,a} are the support of a 1-cycle which represents
an element of a basis of H(I; k). Let A be the simplicial complex obtained from T'
by adding the two-dimensional face o = {a, b, c}. It is easy to check that A is doubly

Buchsbaum over all fields k. However, since Hy(A; k) = k and H;(|A| — p; k) = k2
for every point p in the relative interior of |o|, the complex A is not Buchsbaum*
over k.

Corollary 2.12. If A is a Buchsbaum™ simplicial complex over k, then lka(o) is doubly
Cohen-Macaulay over k for every nonempty face o of A.

Proof. This statement follows from Corollary 2.9 and the fact (see, for instance, [12, Lemma
4.2]) that the link of any nonempty face in a doubly Buchsbaum complex is doubly Cohen-
Macaulay. O

3. CONSTRUCTIONS

This section investigates the behavior of the Buchsbaum* property under taking prod-
ucts, joins and skeleta of simplicial complexes, studies a notion of higher Buchsbaum™
connectivity and shows that a large family of Buchsbaum™* complexes can be constructed
by gluing orientable homology manifolds with boundary to an orientable homology mani-
fold without boundary in a suitable way.

3.1. Products. This section shows that the Buchsbaum and Buchsbaum* properties are
preserved under direct products of simplicial complexes. We note that the corresponding
statement fails for both the Cohen-Macaulay and doubly Cohen-Macaulay properties.

Proposition 3.1. Let I" be a (d — 1)-dimensional simplicial complex and A be an (e —1)-
dimensional simplicial complex.

(i) If I and A are Buchsbaum over k, then every simplicial complex triangulating
IT| x |A| is Buchsbaum over k.

(ii) If ' and A are Buchsbaum™ over k, then every simplicial complex triangulating
IT| x |A| is Buchsbaum™ over k.

Proof. Let p € |I'| x |A]. There are unique faces o0 € I" and 7 € A such that p lies in the
relative interior of |o| x |7|. Then |costr(o)| x |A|U|T| X |costa(T)| is a deformation retract
of |T'| x |A] — p and hence

(3.1) (I, leostr(a)]) x (1A[ [eosta()]) = ([T x [A], [T x [A] = p)

is a deformation retraction.
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(i) By (3.1) and the Kiinneth formula we have:
i Hj(T', costr(0); k)
H(I0| x |AL L] x [A] = pi k) = ®
j=0 H;_j(A, costa(T); k).
For ¢ < d+e—2 we have either j <d—1ori—j < e—1. Thus by Buchsbaumness
of I' and A, either H;(I', costr(o); k) =0 or H,_;(A, costa(r); k) = 0. Thus

H(IT] % |ALL T % [A] = pik) = 0

for i < d+e—2. Hence every simplicial complex triangulating |I'| x |A| is Buchsbaum
over k.
(ii) By (3.1), the map
~ P
Hypes(IT] X |A; k) — = Harea(|T| X |A], L] x |A] = p; k)

from the exact sequence of the pair (|T'| x |A|, '] X |A| — p) equals the map

- N (T, |costr(a)])
Hd 6_2(’F| X ’A|k’) —>Hd+ef2 X 7k :
" ’ (JA], [costa(r)])

In turn, by the Kiinneth formula, this map can be written as
Hy 1 (T: k) @ Hooq (A E) P Hy (I, costr(o); k) @ He—1(A, costa(T); k).

From the fact that I" is Buchsbaum™® over k and Proposition 2.3 we deduce that
the projection from Hy_1(T;k) to Hy 1 (T, costr(o); k) is surjective. Analogously,
the projection from H,_1(A;k) to H._i(A, costa(r); k) is surjective. Hence p, is
surjective as well. This fact and Proposition 2.3 imply that every triangulation of
IT'| x |A] is Buchsbaum™ over k.

0

3.2. Joins. We recall that the join ' x A of two simplicial complexes I' and A on disjoint
ground sets is the simplicial complex whose faces are the sets of the form o U7, where 0 € T’
and 7 € A. The following proposition classifies the situations in which I'xA is Buchsbaum™.
A similar statement (with a similar proof) holds for the Buchsbaum property.

Proposition 3.2. Let ' and A be simplicial complezes, each having at least one vertew.
The following are equivalent:

(i) '« A is Buchsbaum™ over k.
(i) I' * A is doubly Cohen-Macaulay over k.
(iii) T" and A are doubly Cohen-Macaulay over k.

Proof. (i) = (iii): Since A contains at least one vertex, there exists a nonempty maximal
simplex o € A. Since I' * A is Buchsbaum™ over k and the link of o in I' * A is equal to
I', it follows from Corollary 2.12 that I" is doubly Cohen-Macaulay over k. It follows in a
similar way that A is doubly Cohen-Macaulay over k.



BUCHSBAUM* COMPLEXES 9

(iii) = (ii): It is well known that the join of two Cohen-Macaulay simplicial complexes over
k is Cohen-Macaulay over k. The implication follows from this statement, the definition
of double Cohen-Macaulayness and the fact that for every vertex v, say of I', the complex
(I'x A) \ v is equal to the simplicial join (I" \ v) * A.

(ii) = (i): This follows from Proposition 2.5 (i). O

3.3. Higher Buchsbaum* connectivity and skeleta. Given a subset 7 of the set of
vertices of A, we denote by A \ 7 the subcomplex {o¢ € A: o N7 = @} of A, consisting
of all faces of A which do not contain any element of 7. We define a notion of higher
Buchsbaum* connectivity for simplicial complexes as follows.

Definition 3.3. Let A be a simplicial complex and let m be a nonnegative integer. We
call A m-Buchsbaum™ over k if m = 0 and A is Buchsbaum over £ or m > 1 and A~ 7
is Buchsbaum™® over k of the same dimension as A for every set 7 of vertices of A of
cardinality less than m.

Thus the class of 0-Buchsbaum™ complexes coincides with that of Buchsbaum complexes
and the class of 1-Buchsbaum™® complexes coincides with that of Buchsbaum™* complexes.
Our notion of higher connectivity for Buchsbaum™® complexes is analogous to that already
existing for Buchsbaum and Cohen-Macaulay complexes: Given a positive integer m, a sim-
plicial complex A is called m-Buchsbaum over k in [12] (respectively, m-Cohen-Macaulay
over k in [2]) if A \ 7 is Buchsbaum over k (respectively, Cohen-Macaulay over k) of the
same dimension as A for every set 7 of vertices of A of cardinality less than m.

The following two statements generalize Proposition 2.5 (i) and Corollary 2.9, respec-
tively.

Proposition 3.4. For a Cohen-Macaulay simplicial compler A over k and a nonnegative
integer m, the following conditions are equivalent:

(i) A is m-Buchsbaum™ over k.
(ii) A is (m + 1)-Cohen-Macaulay over k.

Proof. (i) = (ii): The implication is trivial for m = 0 and follows from Proposition 2.5 for
m = 1. We assume that m > 2 and proceed by induction on m. Suppose that A is m-
Buchsbaum* over k. To verify (ii), it suffices to show that A\ v is m-Cohen-Macaulay over
k of the same dimension as A for every vertex v of A. Indeed, A is doubly Cohen-Macaulay
over k by the special case m = 1 already treated and hence A \ v is Cohen-Macaulay over
k of the same dimension as A. Since A \ v is (m — 1)-Buchsbaum™® over k by Definition
3.3, the desired statement follows from the induction hypothesis.

(ii) = (i): This follows from part (i) of Proposition 2.5 and the relevant definitions. [

Proposition 3.5. Let m be a nonnegative integer and A be a simplicial complex. If A is
m-Buchsbaum™ over k, then A is (m + 1)-Buchsbaum over k.

Proof. Let d — 1 be the dimension of A. The statement is a tautology for m = 0. Assume
that m > 1 and let 7 be a set of vertices of A of cardinality at most m. We need to show
that A ~ 7 is Buchsbaum over k of dimension d — 1. This is clear if 7 = &. Otherwise, let
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v be an element of 7 and let 0 = 7~ {v} and I' = A \ ¢. The complex I' is Buchsbaum*
over k by Definition 3.3 and hence it is doubly Buchsbaum over k& by Corollary 2.9. This
implies that ' \ v is Buchsbaum over £k of dimension d — 1. Since I' N\ v = A\ 7, the latter
complex is Buchsbaum over k of dimension d — 1. This completes the proof. U

Next we show that Buchsbaum* connectivity increases when passing to skeleta. Recall
that the i-skeleton of a simplicial complex A is defined as the simplicial complex A of all
faces of A of dimension < 7. It is known [12, Corollary 7.6] that if A is (d — 1)-dimensional
and Buchsbaum over k, then the i-skeleton of A is doubly Buchsbaum over k for every
1 < d— 2. In view of Corollary 2.9, the following is a stronger statement.

Proposition 3.6. Let A be a (d — 1)-dimensional simplicial complex which is Buchsbaum
over k. Then the i-skeleton A of A is Buchsbaum* over k for everyi < d — 2.

Proof. Tt suffices to prove the assertion for i = d — 2. We set I' = A2 For d = 2, the
0-skeleton of any (d — 1)-dimensional simplicial complex consists of at least two points and
therefore it is Buchsbaum™ over all fields. Assume that d > 3. It is known (and follows, for
instance, from condition (ii) of Theorem 2.1) that I is Buchsbaum over k. Thus we only
need to check that Hy_s(|T| — p; k) = Hy_5(|T|: k) for every p € |I'|. By condition (iii) of
Theorem 2.1 and the long exact homology sequence for the pair (JA[, |A|—p), we know that
Hy 5(|A|—=p; k) = Hy—3(|Al; k) holds for every p € |Al. Since p € |I'| C |A|, it follows from
the fact that the chains groups of I' and A in simplicial homology coincide in dimensions
< d—2 that Hy 3(|T'| — p; k) = Hy 3(|A| — p; k) and Hy 3(|T'|; k) = Hy 3(|Al; k). This
completes the proof. [l

The following result extends to Buchsbaum™ connectivity analogous statements on Buchs-
baum [12, Corollary 7.6] and Cohen-Macaulay [9, Corollary 2.7] connectivity.

Theorem 3.7. Let A be a (d—1)-dimensional simplicial complex which is m-Buchsbaum*

over k. Then the i-skeleton A® is (m+d—i—1)-Buchsbaum™ over k for every 0 <1i < d—1.

Proof. The statement is a tautology for ¢ = d — 1. By induction on d — i — 1, it suffices
to show that A“~2 is (m + 1)-Buchsbaum* over k. Let 7 be any set of vertices of A
of cardinality at most m and set I' = A ~ 7. Since A is (m + 1)-Buchsbaum over k by
Proposition 3.5, the complex I' is Buchsbaum over k£ of dimension d — 1. It follows from
Proposition 3.6 that I'*“~2 is Buchsbaum* over k. Since this skeleton is equal to A2 7,
we conclude that the latter complex is Buchsbaum™ over k of dimension d — 2. Since T was
arbitrary of cardinality at most m, the desired statement follows. Il

Remark 3.8. It is known by the results of Miyazaki [12] and Walker [25] that dou-
ble Buchsbaumness and double Cohen-Macaulayness (over a fixed field) are topological
properties. It is also known that for m > 3, neither m-Buchsbaumness nor m-Cohen-
Macaulayness is a topological property. In view of Proposition 3.4, it follows that for
m > 2, the m-Buchsbaum™ condition is not a topological property either.
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Remark 3.9. A different notion of a higher Buchsbaum™ property one may try is the
following. Let A be a (d — 1)-dimensional simplicial complex and let m be a nonnegative
integer. We consider the following condition:

(M) A is Buchsbaum over k and dimy Hy_o(|A| — P: k) = dimy, Hy_»(A: k) holds for
every set P C |A] of cardinality at most m.

This condition reduces to Buchsbaumness for m = 0 and to the Buchsbaum* condition
for m = 1. We claim, however, that no simplicial complex of positive dimension satisfies
(M) for m > 2. Clearly, it suffices to show that no such complex satisfies (M) for m = 2.
Suppose on the contrary that A is such a complex. We choose two points p, g € |A| which
lie in the relative interior of some (d — 1)-dimensional simplex, say 7, of A. We triangulate
7 by adding a vertex z and faces {z} U o for ¢ C 7. We realize the new complex in such
a way that p and ¢ lie in the relative interior of the realization of two distinct (d — 1)-
dimensional simplices 7, = {z} U o, and 7, = {#} U g,. We denote by A’ the simplicial
complex whose simplices are those of A other than 7 and the faces triangulating 7 in the
way just described. In particular, |A" \ {7,,7,}| is a deformation retract of |A| — {p, ¢}.
The assumption that A is Buchsbaum over £ and excision give

0= Hyo(|A|A| = ¢; k) = Hyo(|A] — p, |A| — {p, ¢} k).

The long exact sequence of the triple (|A[, |A|—p, |A|—{p, ¢}) then yields that H; »(|A[, |A|—
{p,q}; k) = 0. Thus, using the same arguments as in the proof of Proposition 2.3, it follows
from (M) that the inclusion map A’ \ {7,,7,} — A’ induces an isomorphism

(3.2) Hy oA N {7y, 7} k) — Hao(A'5K).

Clearly, 04-1(7,) is a boundary in A’. Since the map (3.2) is an isomorphism, dy_1(7,)
must be a boundary in A’ \ {7,,7,} as well. However, this is not possible since 7, N 7,
is a (d — 2)-dimensional simplex which lies in the support of 9;_1(7,) and which is not
contained in any (d — 1)-dimensional simplex of A’ other than 7, and 7,. This yields the
desired contradiction. O

3.4. A generalized convex ear decomposition. In the sequel we describe a class of
Buchsbaum™ complexes significantly larger than that provided by Proposition 2.7. The
construction is motivated by and generalizes the convex ear decomposition of simplicial
complexes, introduced by Chari [8].

Theorem 3.10. Let I' and A be two simplicial complexes such that:
(i) I is (d — 1)-dimensional and Buchsbaum™ over k.
(ii)) A is a (d — 1)-dimensional connected orientable homology manifold over k with
boundary OA which has the following properties:
(a) OA is a (d — 2)-dimensional connected orientable homology manifold over k.
(b) 0A =TNA.
(¢) The inclusion map induces the zero homomorphism Hy_o(0A; k) — Hy_o(T; k).
Then I' U A is Buchsbaum™ over k.

As a corollary we obtain an inductive construction as follows.
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Corollary 3.11. Suppose that A is a (d—1)-dimensional simplicial complex and that there
exist subcomplexes Ay, Ao, ..., A,, such that:

(i) A=A UAU---UA,,.
(ii) Ay is a (d — 1)-dimensional orientable homology manifold over k.
(iii) For2 <i<m, A; is a (d—1)-dimensional connected orientable homology manifold
over k with boundary 0A; which has the following properties:
(a) 0A; is a (d — 2)-dimensional connected orientable homology manifold over k.
(b) 0A; = A;N (AT U---UA; ).

(¢) The inclusion map induces the zero homomorphism
ﬁd_g(aAi; k?) - j‘.vld_Q(Al U---u Ai—l; k?)
Then A is Buchsbaum™ over k.

Proof. The complex A; is Buchsbaum* over k by Proposition 2.7. The theorem follows
from this statement and Theorem 3.10 by induction on m. U

Proof of Theorem 3.10. Since I' and A are Buchsbaum over k of dimension d — 1 and
I'N A is Buchsbaum over k of dimension d — 2, it follows by a standard argument (used, for
instance, in the proof of [7, Lemma 1]) that I'U A is also Buchsbaum over k. We consider
a point p € |[I'UA|. To show that (1.1) (or the equivalent condition (iv) of Proposition
2.3) holds for I' U A, we distinguish three cases.

Case 1: p € [I'| \ |A|. The naturality of the long exact homology sequence for pairs gives
the commutative diagram

Ao (TUALK) —2 H (PUA[TUA| - pik)

T |

Hoo (k) 2> Hea(TLIT] - pik).

Since I' is Buchsbaum* over k, the map p, is surjective. The map ¢, is an excision map
and hence an isomorphism. The commutativity of the diagram implies that p, is surjective
as well.

Case 2: p € |A|\|'|. The long exact homology sequences for the triples (|A|, |A|—p, 0|A])
and (]I’ UA|,|I'UA| — p,0|A|) and the naturality of such sequences yield the following
commutative diagram:
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0 — Hua([DUA| = p,0|A[K) —Haa(IDUALOIALK) & Ha y (DU AL DU A| = pik)

T | |

0.
Hyo(|A] = p,0|AL k) — Haa(JA[OJA[ k) —  Haa(JA[,[A] = ps k).

Our assumptions on A and p imply that Hy_; (|A|—p, 0| Al; k) = 0 and Hy_1(JA], 9| A[; k) =
Ha (Al |A] — p; k) = k. It follows that the map 4, is an isomorphism. Since €, is an
isomorphism by excision, the commutativity of the square on the right implies that the

map 9, is surjective. These facts and the exactness of the top row of the diagram imply
that

(3.3)  dimy Hy ([DUALS|ALK) = dimy, Hy ([T UA| — p,d|Af: k) + 1.

Our assumption (c) and the long exact homology sequences for the pairs (][I U Al, 9|A])
and (|[I'UA| — p,0|Al) yield exact sequences of the form

0 —> Hyy(TUA[E) — Hoo([TUALOIA k) — Hy (0| Al; k) —> 0

and

0 — Hy(JTUA| —pik) — Haa([PUA| = p,0|A[ k) — Hy5(9|Af; k) — 0.
These sequences and (3.3) imply that
(3.4) dimy, Hy_1 ([T UA|; k) = dimy, Hy (TUA| = p; k) + 1.

Finally, we consider the exact sequence
0 — Hia(TUA|—pik) = Hia(DUALE) B Hoa([DUALTUA| = pik) =k,

coming from the long exact homology sequence for the pair (|[I' U Al,|T"U |A| — p), where
Ho 1 (TUALITUA| —pyk) = Hi 1 (|A], |A] — p; k) = k. Equation (3.4) shows that p,
cannot be the zero map. This forces p, to be surjective.

Case 3: p € [I'NA] = J|A|. From the Mayer-Vietoris sequence for the pairs (|A[, |T']) and
(JA] = p,|T'] — p) and the naturality of such sequences, we get a commutative diagram as
follows:
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N o, Haa(Ulk) N -
dez(a‘A’,]i') - % B Hd,Q(’FUALk) — Hd,3(8|A‘,k)
Hyo(|Al; k)
2 % &
Hy (0| — p; k) N N
.9 — Hao(|[D UA[ = p; k) — Hy_3(0|A] — p; k).
Hyo(|A] = p; k)

We claim that the map «., induced by the inclusions of J|A| into |['| and |A|, is the zero

map. Indeed, for the map Hy_»(d|A|; k) — Hy_o(|T|; k) induced by inclusion, this holds
by condition ( ). For the other map, consider the exact sequence

~ o~ Jx =
Hy1(JA[ k) — Haa([A[OJA[ k) —— Hy 5(8|A k) —— Hys(|AL k),

obtained from the long exact homology sequence of the pair (|A[,0]Al]). Since A is a
(d—1)-dimensional connected orientable homology manifold with nonempty boundary 0A,
we have Hy_1(|Al; k) = 0 and Hy_1(JA],9|Al; k) = k. Since A is a . (d — 2)-dimensional
connected orientable homology manifold without boundary, we have Hy 2(8|A| k)= k. It
follows that , is an isomorphism and hence that j, : Hy_2(9|A|; k) — Hy_s(|A|; k) is the
zero map.

Finally, we note that the maps Hy o(|T| — p:k) — Hy o(|T|; k), Hyo(|A| — p;k) —
Hy o(|Al: k) and Hy_3(0|A| — p; k) — Hy_5(8|Al; k), induced by inclusions, are isomor-
phisms. This follows by our assumption (i) in the first case, by condition (a) of our
assumption (ii) and Proposition 2.7 in the third case and by the long exact homology se-
quence of the pair (|Al], |A| — p) in the second case, if one observes that p € J|A| implies
H;(|Al,|A| — p;k) = 0 for all <. Thus the vertical maps (. and 7, in the diagram are
isomorphisms.

Given the above, it follows by diagram chasing that the map 7, : Hy_o([T UA| — p; k) —
H,_5(|T' U Al; k) is injective and hence an isomorphism. Thus (1.1) holds in this case as
well. U

Remark 3.12. Example 2.11 (iii) shows that condition (c) in Theorem 3.10 and Corollary
3.11 cannot be dropped.

4. THE GRAPH OF A BUCHSBAUM* COMPLEX

The graph of a simplicial complex A is defined as the abstract graph G(A) whose nodes
are the vertices of A and whose edges are the one-dimensional simplices. This section shows
that a result of Nevo [16] on the rigidity of graphs of doubly Cohen-Macaulay complexes
extends easily to those of connected Buchsbaum* complexes. Since the proof follows from



BUCHSBAUM* COMPLEXES 15

that of [16] by minor modifications, we will only indicate those points in the proof where
some modification is actually needed.

Let G be an abstract graph (without loops or multiple edges) on the set of nodes V' and
let ||z|| denote the Euclidean length of z € R%. A map f: V — R%is called G-rigid if there
exists ¢ > 0 with the following property: if g : V — R%is a map satisfying || f(v)—g(v)|| < €
for every v € V and ||g(u) —g(v)|| = || f(u) — f(v)|| for every edge {u, v} of G, then we have
lg(u) — g(v)|| = || f(uw) — f(v)] for all w,v € V. The graph G is called generically d-rigid
if the set of all G-rigid maps f : V — R? is open and dense in the topological vector space
of all maps f:V — R%

Theorem 4.1. Let A be a (d — 1)-dimensional connected simplicial complex which is
Buchsbaum™ over some field k. If d > 3, then the graph G(A) is generically d-rigid.

Proof. As in the proof of [16, Theorem 1.3], it suffices to show that for d > 2 every such
complex A admits a decomposition into minimal (d—1)-cycle complexes, as in [16, Theorem
3.4]. The case d = 2 is covered by [16, Theorem 3.4], since every one-dimensional connected
Buchsbaum* complex is doubly Cohen-Macaulay (see Example 2.6). Thus we may assume
that d > 3 and proceed by induction on d. Let v be any vertex of A and note that the
induction hypothesis applies to the complex lka(v), which is doubly Cohen-Macaulay over
k by Corollary 2.12. Note also that if s is a minimal (d — 2)-cycle for lka(v), then there
exists a (d — 1)-chain ¢ for A\ v such that d;_1(c) = s. Indeed, this follows from condition
(ii) of Proposition 2.3, since s is trivial as an element of Hy_5(A; k). The remainder of the
proof follows that of [16, Theorem 3.4] without change. O

Given a positive integer m, an abstract graph G is said to be m-connected if G has at
least m+1 nodes and any graph obtained from G by deleting m —1 or fewer nodes and their
incident edges is connected (necessarily with at least one edge). Part (i) of the following
corollary is a special case of a result independently found by Bjorner [6]. Example 2.11 (i)
shows that part (ii) is not valid if Buchsbaum* is replaced by doubly Buchsbaum.

Corollary 4.2. Let A be a connected simplicial complex of dimension d —1 > 1.

(i) If A is Buchsbaum over some field, then the graph G(A) is (d — 1)-connected.
(i1) If A is Buchsbaum™ over some field, then the graph G(A) is d-connected.

Proof. Proposition 3.4 implies that a one-dimensional connected simplicial complex I' is
m-Buchsbaum™ if and only if I is (m + 1)-connected as a graph. Therefore, both parts of
the corollary follow from the special case i = 1 of Theorem 3.7. Part (ii) also follows from
Theorem 4.1 for d > 3, since every generically d-rigid graph is d-connected, and from the
discussion in Example 2.6 for d = 2. U

5. FACE ENUMERATION

This section is concerned with enumerative properties of Buchsbaum* complexes. Let
A be a (d — 1)-dimensional simplicial complex. For 0 < i < d, we denote by f;_1(A) the
number of faces of A of dimension i — 1 (in particular, we have f_1(A) = 1 unless A = &).
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The h-vector of A is the sequence h(A) = (ho(A), h1(A), ..., ha(A)) defined by

51 @) = 3 1 () )

We refer the reader to [22, Chapter II] for the importance of this concept and recall that
the numbers h;(A) are nonnegative integers, if A is Cohen—Macaulay over k.
The b'-vector of A is the sequence §'(A) = (hi(A), hi(A), ..., b, (A)) defined by
1

d - j—i—173
. (=177 Bia (),
U

where Bi,l(A) = dimy, ﬁi,l(A; k). We note that b/,(A) = gd,l(A) and that if A is Cohen-
Macaulay over k, then h’'(A) = h(A). It was proved by Schenzel [20] that if A is Buchsbaum
over an infinite field k&, then

(5.3) h;(A) = dimy (k[A]/(O1,...,04)),

]

(5. 0 (A) = by(A) + (

for 0 <i < d, where (©1,...,0,) is a linear system of parameters for k[A] (here we denote
by A; the ith graded component of a graded algebra A). Thus if A is Buchsbaum over k,
then the h’'(A) are nonnegative integers which may depend on the characteristic of k.
The following proposition gives an analogue for the h’-vector of a Buchsbaum* complex
to a well-known recursive formula for the h-vector of a pure simplicial complex; see (5.6)
below. We will write A/v = {0~ {v}:0 € A, v € g} for the link of a vertex v of A.

Proposition 5.1. Let A be a (d — 1)-dimensional Buchsbaum™ simplicial complex over k.
For each vertex v of A and 0 < j < d we have

(5.4) b5(A) = Bi(ANwv)+b_1(A/v),
where h_1(A/v) = 0 by convention.
Proof. Applied to A \ v, equation (5.2) yields

(5.5) AN = B(Au)+ ()Z RN}

1=0

It is well known (see, for instance, [1, Lemma 4.1]) that

(5.6) hi(A) = Bi(ANw)+b;-1(A/v)
holds for 0 < j < d. Combining equations (5.5) and (5.6), we get

57 L@ = 5+ (1) T i

1=0

Since A is Buchsbaum* over k, we have 3;_1(A ~ v) = B;_1(A) for i < d — 1. Hence the
right-hand side of (5.7) is equal to that of (5.2) and the result follows. O
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The h”-vector of A is the sequence h”(A) = (hy(A), b1 (A),...,05(A)) defined by

" / d > d J i1
55 150 = 5O - (5@ = 5@+ () Tev i@
=0
for 0 < j < d—1 and hj(A) = Ba1(A) = b, (A). The h”-vector was introduced by
Kalai (see [17, Section 7]) as the “correct” h-vector for orientable homology manifolds and

shown to have nonnegative entries for every Buchsbaum simplicial complex A over k in
[18, Theorem 3.4].

Proposition 5.2. Let A be a (d — 1)-dimensional Buchsbaum™ simplicial complex over k.
For each vertex v of A and 0 < j < d we have

(5.9) b7 (A) = Bi(ANv)+b;1(Av),

j
where h_1(A/v) = 0 by convention.

Proof. The proposed equation is equivalent to (5.4) for j = d and follows as in the proof
of Proposition 5.1 for 0 < j <d —1. O

Recall that a simplicial complex A is called flag if every minimal non-face of A has at
most two elements. As an application of Proposition 5.1, we will show (Corollary 5.4) that
among all Buchsbaum* flag simplicial complexes of dimension d — 1, the simplicial join of
d copies of the zero-dimensional sphere has the minimum h’-vector. This result generalizes
one of [1] on Cohen-Macaulay complexes to the setting of Buchsbaum complexes. The
question of formulating such a generalization provided the initial motivation for introducing
the class of Buchsbaum™® complexes.

The following proposition extends [21, Theorem 2.1] (see also [22, Theorem 9.1]) in the
setting of Buchsbaum complexes.

Proposition 5.3. Let A be a simplicial complex of dimension d—1 and I' be a subcomplex
of dimension e — 1. Assume that no set of e+ 1 vertices of I' is a face of A (this condition
holds automatically if d = e). If both T and A are Buchsbaum over k, then b(I') < bhi(A)
holds for all 0 <17 < d.

Proof. By equation (5.3), a proof of the proposition can be given by simply replacing the
term h-vector with h’-vector in the proof of [21, Theorem 2.1]. O

Corollary 5.4. If A is a (d—1)-dimensional flag simplicial complex which is Buchsbaum*

over k, then the inequalities

(5.10) hi(A) > (d>

1

hold for 0 < i <d.

Proof. In view of Propositions 5.1 and 5.3, this follows by replacing h-vectors by h’-vectors
in the argument of [1, Section 4] and using the fact (Corollary 2.9) that A is doubly
Buchsbaum over k. U
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We note that by the result of [18] on the nonnegativity of h”(A), mentioned earlier, we
have h;(A) > (‘j) Bi—1(A) for every (d — 1)-dimensional Buchsbaum complex A.

We conclude this section with two results on the face enumeration of Buchsbaum™® com-
plexes. They both extend results of Nevo [16] on doubly Cohen-Macaulay complexes and
rely heavily on Theorem 4.1.

Proposition 5.5. Let A be a (d — 1)-dimensional Buchsbaum™® simplicial complex over

some field and let n be the number of vertices of A. If d > 3, then f;(A) > fi(n,d) holds
for 0 <1< d—1, where

_ O = ()i if0<i<d-—2
fi(n’d)_{(d—l)n—(d+1)(d—2), if i=d—1

is the number of i-dimensional faces of a stacked (d—1)-dimensional sphere with n vertices.

Proof. The assertion follows from Theorem 4.1 and the discussion in [16, Section 1]. [

The g-vector of A is the sequence (go(A),g1(A), ..., 8a2)(4A)), defined by g;(A) =
hi(A) — h—1(A) for i > 1 and go(A) = ho(A) = 1. Recall that a sequence (ag,...,a,)
of nonnegative integers is called an M -vector if there exists a standard graded k-algebra
A=Ay® - ® A, such that dimy A; = a; for every i; see [4, Section 4.2] for details and
for further information.

Proposition 5.6. Let A be a connected (d — 1)-dimensional simplicial complex which is
Buchsbaum™ over some field. If d > 4, then (go(A), g1(A), g2(A)) is an M -vector.

Proof. Since A is connected, we have bhi(A) = h;(A) for i < 2. Therefore (5.3) continues
to hold for ¢ < 2, if hi(A) is replaced by h;(A). Thus the assertion follows from Theorem
4.1 as in the discussion in [16, Section 2]. O

The following question is an extension to Buchsbaum* complexes of a question posed by
A. Bjorner and E. Swartz (see [24, Problem 4.2]) for doubly Cohen-Macaulay complexes.
An example pointed out by E. Swartz (personal communication with the authors) shows
that for d = 7, the analogous question with the numbers b7 (A) replaced by the h7(A) has
a negative answer.

Question 5.7. Are the following true for every (d —1)-dimensional Buchsbaum* simplicial
complex A over k?
() B7(A) < b ,(A) for 0 < < [d/2).
(ii) (95(A), ..., 942 (A)) is an M-vector, where g/(A) = b7 (A) — bi_ (A) for i > 1
and g{(A) = 1.

6. FURTHER RESULTS

This section summarizes some interesting results which appeared in the literature after
this paper was publicized, giving further important properties of Buchsbaum® complexes.
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1. Let A be a (d — 1)dimensional Buchsbaum simplicial complex over an infinite field k
and let © = (01,0,,...,0,) be a linear system of parameters for k[A]. Consider the ring
k[A] = (k[A]/©)/1, where I = @} Soc(k[A]/0);. Tt was proved by Novik and Swartz
in [18, Theorem 3.5] that we have

(6.1) dimy, (Soc(k[A]/©)); > (f) Bio1(A)

or, equivalently,

(6.2) hY(A) > dimy, k[A],,

(2

for 0 <i < d and in [19, Theorem 1.3] that equality holds in (6.1) if A is a connected ori-
entable homology manifold over k. Nagel [15, Theorem 1.1] showed that equality holds in
(6.1) for every Buchsbaum* complex A over k and all 0 < i < d. He also showed [15, The-

orem 1.2] that if A is Buchsbaum® over k, then k[A] is a level ring of Cohen-Macaulay type
Bi—1(A) and socle degree d. This result provides an analogue to [19, Theorem 1.4], which

states that k[A] is a Gorenstein ring for every connected orientable homology manifold A
over k.

2. One of the standard constructions on simplicial complexes is rank selection on balanced
complexes; see [22, Section II1.4] for an exposition of these concepts. Responding to a
question raised in an earlier version of this paper, Browder and Klee [3] have shown that
if a balanced simplicial complex A is Buchsbaum* over k&, then so is every rank selected
subcomplex of A. Among other results, they have also generalized the inequalities (5.10)
to m-Buchsbaum™ complexes and treated the case of equality.

3. It was shown by I. Novik (personal communication with the authors) that, under the
assumptions of Corollary 5.4, the inequalities (5.10) can be strengthened to

d
(63 ANELS

i
for 0 < i < d— 2. The proof uses results from [18] and then follows the general outline of

the proof of Corollary 5.4.
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