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GENERALIZED CATALAN NUMBERS, WEYL GROUPS AND
ARRANGEMENTS OF HYPERPLANES

CHRISTOS A. ATHANASIADIS

Abstract

For an irreducible, crystallographic root system Φ in a Euclidean space V and a positive integer
m, the arrangement of hyperplanes in V given by the affine equations (α, x)= k, for α∈Φ and
k =0, 1, . . . , m, is denoted here by Am

Φ . The characteristic polynomial of Am
Φ is related in the paper

to that of the Coxeter arrangement AΦ (corresponding to m = 0), and the number of regions into
which the fundamental chamber of AΦ is dissected by the hyperplanes of Am

Φ is deduced to be
equal to the product

∏�
i=1(ei + mh +1)/(ei +1), where e1, e2, . . . , e� are the exponents of Φ and h

is the Coxeter number. A similar formula for the number of bounded regions follows. Applications
to the enumeration of antichains in the root poset of Φ are included.

1. Introduction and results

Let V be an �-dimensional Euclidean space, with inner product ( , ), and let Φ be
an irreducible, crystallographic root system [12, Section 2.9] spanning V . For a
nonnegative integer m, we denote by Am

Φ the collection of hyperplanes in V defined
by the affine equations

(α, x) = k

for α∈Φ and k = 0, 1, . . . ,m (see Figure 1). Thus Am
Φ is a deformation of the Coxeter

hyperplane arrangement AΦ, in the sense of [4, 17], which is invariant under the
action of the Weyl group W associated to Φ. It reduces to AΦ for m = 0.

In the case m = 1, Am
Φ is referred to as a Catalan arrangement [4, Section 3],

denoted CatΦ. Much of the interest in the combinatorics of Am
Φ comes from this

case, for the following reason. The regions into which the fundamental chamber
of AΦ is dissected by the hyperplanes of CatΦ are in bijection with a number of
different kind of objects of interest in representation theory, combinatorics and
algebra, most notably the admissible positive sign types of Φ, introduced by Shi
[19, 20] in his study of left cells for the affine Weyl groups, the antichains in the
root poset of Φ [21, 18, 2] and the ad-nilpotent ideals of the Borel subalgebra
of the corresponding simple Lie algebra [13]. The number of these objects is the
nth Catalan number for the root system An−1, which explains the terminology for
CatΦ. The arrangements Am

Φ have also appeared in a variety of contexts within
combinatorics and discrete geometry; see, for instance, [9, 23, 2] and [4, Section 3].

We denote by χ(A, q) the characteristic polynomial (see Section 2) of an arrange-
ment A of affine hyperplanes in V . The characteristic polynomial of AΦ admits the
following well-known, remarkable factorization.
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Figure 1. The arrangement A1
Φ for Φ = A2.

Theorem 1.1 (Orlik and Solomon [15]). We have

χ(AΦ, q) =
�∏

i=1

(q − ei),

where � is the rank and e1, e2, . . . , e� are the exponents of Φ.

It is the main purpose of this paper to give an elementary, case-free proof of the
following theorem (see Section 3).

Theorem 1.2. For any irreducible crystallographic root system Φ and positive
integer m, we have

χ
(
Am

Φ , q
)

= χ(AΦ, q − mh),

where h is the Coxeter number of Φ. Equivalently, we have

χ
(
Am

Φ , q
)

=
�∏

i=1

(q − mh − ei), (1)

where � is the rank and e1, e2, . . . , e� are the exponents of Φ.

The following result is an immediate corollary of Theorem 1.2. In the case m = 1,
the first statement is equivalent to the results of Shi [21], as we explain below.

Corollary 1.3. The number of regions into which the fundamental chamber
of the Coxeter arrangement AΦ is dissected by the hyperplanes of Am

Φ is equal to

�∏
i=1

ei + mh + 1
ei + 1

, (2)

where h is the Coxeter number, � is the rank and e1, e2, . . . , e� are the exponents of
Φ. The number of those regions that are bounded is equal to

�∏
i=1

ei + mh − 1
ei + 1

. (3)

We remark in Section 4 that the bounded regions referred to in the previous
corollary are exactly the regions of Am

Φ inside the parallelepiped defined by the
inequalities 0< (α, x)< m, where α runs through the set of simple roots of Φ.

The root poset of Φ is the set of positive roots Φ+, partially ordered by letting
α �β if β −α is a nonnegative linear combination of simple roots.
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The following corollary will be deduced in Section 4.

Corollary 1.4.

(i) The number of antichains in the root poset of Φ is equal to
�∏

i=1

ei + h + 1
ei + 1

(4)

(see [21, 18, 8]).
(ii) The number of those antichains that do not contain any simple root is

equal to

�∏
i=1

ei + h − 1
ei + 1

. (5)

We conclude this section with some remarks on Theorem 1.2 and its corollaries.
Theorem 1.2 has previously been verified for the root systems of type A by Edelman
and Reiner [9, Section 3], and by Postnikov and Stanley [17, Proposition 9.8], and
for those of types A, B, C and D by the author [1, Theorem 5.5] (see also [4,
Theorem 4.6]). A stronger assertion has been conjectured in [9, Conjecture 3.3],
namely that the homogenized cone of Am

Φ is free, in the sense of Terao [25], with
exponents 1, e1 + mh, . . . , e� +mh. The proof of Theorem 1.2, given in Section 3, is
inspired by the general method of [1], used to compute characteristic polynomials
of hyperplane arrangements.

The numbers that appear in Corollary 1.3 may be considered as generalizations
of the Catalan numbers for the Weyl groups. The product (2) is also known to
count the number of orbits of the action of W on Q̌/(mh + 1)Q̌, where Q̌ denotes
the coroot lattice of Φ; see [11, Theorem 7.4.2]. It has also appeared in [22], in a
more general form, as the Euler characteristic of a certain space of partial flags in
an affine Lie algebra. A bijection between regions of CatΦ inside the fundamental
chamber of AΦ and antichains in the root poset of Φ was given by Shi [21], and will
be reviewed in Section 4. Corollary 1.4(i) was verified, case by case, by Shi [21],
and independently by Postnikov (in unpublished work) for types A, B, C and D,
although it seems that the uniform formula (4) appeared for the first time in [18].
A case-free proof was given recently by Cellini and Papi [8], via a bijection with
the W -orbits of Q̌/(h + 1)Q̌, thus answering a question raised by Krattenthaler
et al. [14]. Our approach via the characteristic polynomial gives a different, case-
free proof. Part (ii) of Corollary 1.4 is new. It is striking that, apart from regions of
CatΦ, antichains in the root poset of Φ, and W -orbits of Q̌/(h + 1)Q̌, the product
(4) is also known to count noncrossing partitions associated to W (see [5, 18])
and the clusters associated to Φ by Fomin and Zelevinsky [10] or, equivalently,
vertices of their (simple) generalized associahedron; see [5, Proposition 5.2.1] and
[10, Theorem 1.9], respectively. Moreover, the product (5) appears as the number
of positive clusters associated to Φ; see [10, Proposition 3.9].

2. Background

In this section we introduce notation and background related to arrangements of
hyperplanes and root systems. We refer the reader to the texts by Orlik and Terao
[16] and Humphreys [12] for undefined terminology, and for more information on
these topics.
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Convention. For the sake of convenience, in the rest of the paper we identify
the Euclidean space V , considered in Section 1, with R

�, equipped with the standard
inner product ( , ).

We use the notation [a, b] = {a, a+ 1, . . . , b} for integers a� b, and we denote by
#A the cardinality of a finite set A.

Arrangements of hyperplanes. Let A be an arrangement of hyperplanes in
R

�; that is, a finite collection of affine subspaces of R
� of codimension one. The

intersection poset of A is the set LA = {∩F : F ⊆A}, partially ordered by reverse
inclusion. It has a unique minimal element 0̂ = R

�, corresponding to the empty
family F . The characteristic polynomial of A is a fundamental combinatorial and
topological invariant of A, defined by

χ(A, q) =
∑

x∈LA

µ(x) qdim x,

where µ stands for the Möbius function on LA, defined by

µ(x) =




1, if x= 0̂,
−

∑
y<x

µ(y), otherwise.

The connected components of the space obtained from R
� by removing the hy-

perplanes of A are called regions of A. A region is bounded if it is bounded as a
subset of R

� with the usual Euclidean metric. We call A essential if the normal
vectors to the hyperplanes of A span R

�. The number of regions and the number
of bounded regions of A can be expressed in terms of the characteristic polynomial
as follows.

Theorem 2.1 (Zaslavsky [26]). The number of regions into which A dissects
R

� is equal to (−1)�χ(A,−1). If A is essential, then the number of those regions of
A that are bounded is equal to (−1)�χ(A, 1).

Let Zq denote the abelian group of integers modulo q. We call an arrangement A
in R

� a Z-arrangement if the hyperplanes of A are given by equations with integer
coefficients. Such equations define subsets of the finite set Z

�
q if we reduce their co-

efficients modulo q. We denote by VA the union of these subsets, suppressing q in the
notation. The following result, stated as in [3, Theorem 2.1] and [4, Theorem 4.2],
will be used to prove Theorem 1.2. It was discovered independently by Björner
and Ekedahl [6]; see [4, Section 4] for an overview of other applications, and more
references.

Theorem 2.2 [1, 3, 4, 6]. Let A be a Z-arrangement in R
�. Then there exist

positive integers r and k that depend only on A, such that for all q relatively prime
to r, with q >k,

χ(A, q) = #
(
Z

�
q − VA

)
.

The next remark follows, for instance, from the proof of this theorem that is to
be found in [3, Section 2].
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Remark 2.3. The integer r that appears in the theorem can be specifically
chosen as follows. Suppose that the hyperplanes of A are given by the equations
(αi, x)= bi for 1� i� n, where αi ∈Z

� and bi ∈Z. It suffices that r be the product
of the orders of the torsion subgroups of Z

�/ ZE for E ⊆{α1, . . . , αn}, where ZE
denotes the Z-span of E in Z

�.

Root systems and Weyl groups. Let Φ be an irreducible, crystallographic root
system spanning R

�, endowed with the standard inner product ( , ). We fix a positive
system Φ+ ⊆Φ and the corresponding (ordered) set of simple roots ∆= (σ1, . . . , σ�).
Thus ∆ is a basis of R

�, and any root α∈Φ can be expressed as an integer linear
combination

α =
�∑

i=1

ci(α)σi,

where the coefficients ci(α) are all nonnegative if α∈Φ+, and all nonpositive
otherwise. We let:

(i) (�∨
1 ,�∨

2 , . . . , �∨
� ) be the dual basis to ∆, with respect to the inner product

( , ),
(ii) e1, e2, . . . , e� be the exponents of Φ,
(iii) h be its Coxeter number, and
(iv) α̃ be the highest root, characterized by the condition that ci(α̃)� ci(α) for

all α∈Φ and 1� i� �.
The following lemma can be checked directly, for instance, from the tables given in
[12, Sections 3.18 and 4.9].

Lemma 2.4.

(i) We have
∑�

i = 1 ci (α̃)= h− 1.
(ii) If a prime p divides ci (α̃) for some 1� i� �, then p divides h.

We denote by AΦ the Coxeter arrangement associated to Φ (that is, the collection
of linear hyperplanes in R

� that are orthogonal to the roots), and by W the
corresponding Weyl group, generated by the reflections in these hyperplanes. Thus
W is finite, leaves Φ invariant, and acts simply transitively on the set of regions
of AΦ, also called chambers. The fundamental chamber is the region defined by
the inequalities (σi, x)> 0 for 1� i� �. The set Z(Φ) of vectors x∈R

� satisfying
(α, x)∈Z for all α∈Φ is the coweight lattice associated to Φ. The coroot lattice
Q̌(Φ) is the Z-span of the set of coroots

Φ∨ =
{

2α

(α, α)
: α ∈ Φ

}
.

Since Φ is crystallographic, we have Q̌(Φ) ⊆ Z(Φ). The index of Q̌(Φ) as a subgroup
of Z(Φ) is denoted by f .

For any real k and α∈Φ, we let Hα,k be the hyperplane in R
� defined by the

equation (α, x)= k. We denote by ÃΦ the affine Coxeter arrangement, which is
the infinite hyperplane arrangement in R

� consisting of the hyperplanes Hα,k for
α∈Φ and k∈Z, and by Wa the affine Weyl group, generated by the reflections
in the hyperplanes of ÃΦ. The group Wa is the semidirect product of W and the
translation group in R

� corresponding to the coroot lattice Q̌(Φ). Its action on ÃΦ

is determined by the following elementary lemma.
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Lemma 2.5 [12, Section 4.1]. For w∈W , α∈Φ, λ∈ Q̌(Φ) and k∈R, we have:

(i) wHα,k = Hwα,k;
(ii) Hα,k +λ = Hα,k + (α,λ).

The group Wa acts simply transitively on the set of regions of ÃΦ, also called
alcoves. The fundamental alcove of ÃΦ can be defined as

A◦ = {x ∈ R
� : 0 < (α, x) for allα ∈ ∆ and (α̃, x) < 1}.

For any subset Φ′ ⊆Φ, let L(Φ′) denote the Z-span of Φ′, so that L(Φ) is the
root lattice of Φ. The following result appears in [24, Section 1].

Lemma 2.6. A prime p divides the order of the torsion subgroup of L(Φ)/L(Φ′)
for some Φ′ ⊆Φ if and only if p divides a coefficient ci(α̃) for 1� i� �.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we will show under assumptions on the positive integer
t, that χ(Am

Φ , t) counts, up to a factor, the number of elements of the coweight
lattice Z(Φ) inside a dilation of the fundamental alcove of ÃΦ. For the Coxeter
arrangement AΦ, such interpretations have appeared many times in the literature;
see the papers by Blass and Sagan [7], Haiman [11, Section 7.4] and Sommers [22].
The next result directly generalizes [7, Theorem 4.1]. Our proof generalizes the
proof of this theorem given in [1, Section 2].

Theorem 3.1. Let Φ and a nonnegative integer m be given. If t is an integer
relatively prime to ci(α̃) for all 1� i� � and t > mh, then

χ
(
Am

Φ , t
)

=
#W

f
#((t − mh)A◦ ∩ Z(Φ)). (6)

Before we prove Theorem 3.1, we establish some more notation. For any positive
real t, we let

Zt(Φ) =
1
t
Z(Φ).

For a positive integer t and a nonnegative integer m, we denote by V m
Φ,t the union

of the hyperplanes Hα,k + s/t, where α∈Φ and s and k are integers with |s|� m. It
follows from Lemma 2.5 that the set V m

Φ,t is invariant under the action of the affine
Weyl group Wa on R

�.

Proof of Theorem 3.1. For x∈R
�, let x∗ = (x∗

1, x
∗
2, . . . , x

∗
� ), where x∗

i = (x, σi). In
other words, x∗ is the �-tuple of coordinates of x in the dual basis (�∨

1 ,�∨
2 , . . . , �∨

� )
to ∆. Note that x ∈ Z(Φ) if and only if x∗ ∈Z

�, and hence the map x �→x∗ defines
a linear isomorphism of R

� under which the lattice Z(Φ) corresponds to Z
�. Since

(α, x) =

(
�∑

i=1

ci(α)σi, x

)
=

�∑
i=1

ci(α)x∗
i ,

the arrangement Am
Φ corresponds, under the isomorphism, to a Z-arrangement

in R
�.
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In view of Remark 2.3 and Lemma 2.6, Theorem 2.2 implies that there exists
a positive integer k such that for any integer t> k with t relatively prime to the
coefficients ci(α̃),

χ
(
Am

Φ , t
)

= #{x∗ ∈ [0, t − 1]� : (α, x) �= 0, 1, . . . ,m mod t for all α ∈ Φ}

= #
{

x∗ ∈ [0, t − 1]� :
x

t
is not in V m

Φ,t

}
= #

(
Pt − V m

Φ,t

)
,

where Pt = P ∩Zt(Φ) and P is the parallelepiped{
n∑

i=1

yi�
∨
i : 0 � yi � 1

}
.

Let VÃΦ
be the union of the hyperplanes of ÃΦ. It is known that P −VÃΦ

has
#W/f connected components [12, p. 99], and that Wa acts transitively on them.
Clearly, Wa preserves the points of Zt(Φ) and, as we noted earlier, it preserves V m

Φ,t

as well. It follows that each connected component of P −VÃΦ
has the same number

of points belonging to Pt −V m
Φ,t. Hence

χ
(
Am

Φ , t
)

=
#W

f
#

(
A◦ ∩ Zt(Φ) − V m

Φ,t

)
or, equivalently,

χ
(
Am

Φ , t
)

=
#W

f
#

(
tA◦ ∩ Z(Φ) − t V m

Φ,t

)
.

Note that t A◦ ∩Z(Φ)− t V m
Φ,t is the set of points of Z(Φ) in the open simplex

defined by the inequalities m< (σi, x) for all 1� i� � and (α̃, x)< t − m,
while (t−mh)A◦ is the open simplex defined by 0< (σi, x) for all 1� i� �
and (α̃, x)< t−mh. Lemma 2.4(i) implies that the translation by the negative of
m(�∨

1 +�∨
2 + . . . + �∨

� ) ∈ Z(Φ) maps the set tA◦ ∩ Z(Φ)+ tV m
Φ,t bijectively onto

(t + mh)A◦ ∩ Z(Φ), and the proposed expression for χ(Am
Φ , t) follows.

Finally, observe that #(tA◦ ∩ Z(Φ)) is a polynomial in t for all t positive and
relatively prime to the ci(α̃). Indeed, it is certainly a quasi-polynomial for such t,
namely the Ehrhart quasi-polynomial of the open simplex in R

� bounded by the
hyperplanes x∗

i = 0 and
∑�

i = 1 ci(α̃)x∗
i = 1, and agrees with the polynomial χ(AΦ, t)

for large t by what we have already shown for m = 0. By Lemma 2.4(ii), if t is
relatively prime to the ci(α̃), then so is t−mh. Consequently, the right-hand side
of (6) is a polynomial in t for all t, as in the statement of the theorem, and hence
agrees with χ(Am

Φ , t) for all such t.

Proof of Theorem 1.2 and Corollary 1.3. Theorem 3.1 implies that

χ
(
Am

Φ , q
)

= χ(AΦ, q − mh)

for infinitely many positive integers q. Since both sides are polynomials in q, this
equation has to hold identically.

Given this, equation (1) follows from Theorem 1.1. Then Corollary 1.3 follows
from equation (1), Theorem 2.1, and the fact that each chamber of AΦ contains
the same number of regions (or bounded regions, respectively) as Am

Φ , as well as
the formula

∏�
i = 1(ei + 1) for the number of chambers of AΦ.
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4. Antichains in the root poset

In this section we give a characterization of the bounded regions of Am
Φ , referred

to in Corollary 1.3, and we prove Corollary 1.4.
Let P denote the parallelepiped spanned by the dual basis (�∨

1 ,�∨
2 , . . . , �∨

� ) to
∆, as in the proof of Theorem 1.2, so that P can be described alternatively by the
inequalities 0� (σi, x)� 1 for 1� i� �. Let mP denote the dilation {mx : x∈P}
of P .

Lemma 4.1. Let R be a region of Am
Φ inside the fundamental chamber of the

Coxeter arrangement AΦ. Then R is bounded if and only if R⊆mP .

Proof. If R⊆mP , then clearly R is bounded. Suppose that R is not contained
in mP , and let x∈R, so that for some simple root σi we have (σi, x)> m.
We claim that xt =x+ t�∨

i ∈R for all positive real t, which implies that R is
unbounded. Indeed, in view of the relations (σj ,�

∨
i )= δij , for α∈Φ+ we have

(α, xt) = (α, x) if α is a nonnegative linear combination of simple roots other than
σi, and (α, xt)> (α, x) � (σi, x)> m otherwise. This implies that xt ∈R.

Recall that the root poset of Φ is the set of positive roots Φ+, partially ordered
by letting α �β if β −α is a nonnegative linear combination of simple roots.
An antichain in Φ+ is a subset A of the root poset of Φ with no two elements
comparable. The dual order ideal IA, defined by A, is the set of all β ∈Φ+ such
that α �β for some α∈A. Given an antichain A in Φ+, let RA be the set of points
x in R

� that satisfy

(β, x)> 1, if β ∈ IA;
0< (β, x)< 1, if β ∈Φ+− IA.

For instance, if A is the empty antichain, then RA is the fundamental alcove of ÃΦ.
Let τ be the map that sends an antichain A in Φ+ to the set RA. The following
result has been discovered independently for the root systems of types A, B, C and
D by A. Postnikov (in unpublished work).

Theorem 4.2 (Shi [21]). The map τ is a bijection between the set of antichains
in the root poset of Φ and the set of regions of CatΦ inside the fundamental chamber
of AΦ.

We remark that the nontrivial part in the proof of the previous theorem is to
show that the set RA is actually nonempty. As explained in [21], this follows from
the results of Shi given in [20].

Proof of Corollary 1.4. Part (i) follows immediately from the case m = 1 of
Corollary 1.3, and Theorem 4.2.

For part (ii), note that an antichain A in the root poset of Φ does not contain
any simple root if and only if RA ⊆ P . The result then follows from Theorem 4.2
and the cases m = 1 of Lemma 4.1 and Corollary 1.3, respectively.

Acknowledgement. I am grateful to Victor Reiner for inspiring e-discussions.
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