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ABSTRACT. Given an affine surjection of polytopes π : P → Q, the Generalized
Baues Problem asks whether the poset of all proper polyhedral subdivisions of Q
which are induced by the map π has the homotopy type of a sphere. We extend
earlier work of the last two authors on subdivisions of cyclic polytopes to give
an affirmative answer to the problem for the natural surjections between cyclic
polytopes π : C(n, d′)→ C(n, d) for all 1 ≤ d < d′ < n.

1. INTRODUCTION

The Generalized Baues Problem, posed by Billera, Kapranov and Sturmfels [4],
is a question in combinatorial geometry and topology, motivated by the theory
of fiber polytopes [5] [18, Lecture 9]. Given an affine surjection of polytopes π :
P → Q, the problem asks to determine whether the Baues poset ω(P π→ Q) of all
proper polyhedral subdivisions of Q which are induced in a certain way by the
map π, endowed with a standard topology [6], has the homotopy type of a sphere
of dimension dim(P )− dim(Q)− 1. We refer to [11] for a concise introduction and
[15] for a recent survey.

Although the Generalized Baues Problem is known to have a negative answer
in general [14], various special cases have remained of interest in the literature; see
[15, Section 4]. One such relates to subdivisions of cyclic polytopes. Another is the
case where P is a simplex, in which ω(P π→ Q) is the poset of all proper polyhedral
subdivisions of Q and is simply denoted ω(Q). In [9] an affirmative answer to the
problem was given in the case of the poset of all subdivisions of cyclic polytopes
of dimension at most 3. This was recently improved in [13] to all dimensions, as
follows.

Theorem 1.1. ([13, Theorem 1.1]) For all 1 ≤ d < n, the Baues poset ω(C(n, d)) of all
proper polyhedral subdivisions of the cyclic polytope C(n, d) is homotopy equivalent to an
(n− d− 2)-sphere.

For 1 ≤ d < d′ < n, one can consider the natural projections π : C(n, d′) →
C(n, d) between cyclic polytopes [1]. The Baues poset ω(C(n, d)) in Theorem 1.1 is
the Baues poset of the projection π for d′ = n−1. In this paper we use the “sliding”
technique of [13] to give an affirmative answer to the Generalized Baues Problem
for π for all d, d′ and n.

Theorem 1.2. For 1 ≤ d < d′ < n, the Baues poset ω(C(n, d′) π→ C(n, d)) of all proper
polyhedral subdivisions of the cyclic polytope C(n, d) which are induced by π is homotopy
equivalent to a (d′ − d− 1)-sphere.
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Theorem 1.2 was conjectured by Reiner [15] on the basis of the following special
cases:

• d = 2, d′ = n− 2 [1, Corollary 6.3],
• d′ = n− 1 (Theorem 1.1),
• d = 2, n < 2d′ + 2, d′ ≥ 9 [16, Corollary 15].

Other previously known special cases are those of d = 1 and d′ − d ≤ 2, which
follow from more general results of [4] and [14], respectively: for any polytope
projection π : P → Q, the poset ω(P π→ Q) of all proper π-induced subdivisions of
Q is homotopy equivalent to a sphere whenever dim(Q) = 1 or dim(P )−dim(Q) ≤
2.

Our argument is a modification of the one used in [13, Section 4] to prove Theo-
rem 1.1 and therefore relies heavily on the constructions of [13]. In the next section
we review some basic definitions and facts. In Section 3 we give a sketch of the
proof of Theorem 1.2, thereby recalling those constructions from [13] that will be
essential here. Section 4 contains the remaining details, which amount to proving
that two certain posets of subdivisions are contractible.

2. PRELIMINARIES

2.1. Polyhedral subdivisions. By a point configuration A in Rd we mean a finite
labeled subset of Rd. We allow A to have repeated points which are distinguished
by their labels. The convex hull conv(A) of A is a polytope.

A face of a subconfiguration σ ⊆ A is a subconfiguration Fω ⊆ σ consisting of
all points on which some linear functional ω ∈ (Rd)∗ takes its minimum over σ.

We say that two subconfigurations σ1 and σ2 of A intersect properly if the follow-
ing two conditions are satisfied:

• σ1 ∩ σ2 is a face of both σ1 and σ2;
• conv(σ1) ∩ conv(σ2) = conv(σ1 ∩ σ2).

A subconfiguration of A is said to be full-dimensional, or spanning, if it affinely
spans Rd. In that case we call it a cell. Following [3] and [10, Section 7.2] we say
that a collection S of cells of A is a (polyhedral) subdivision of A if the elements of S
intersect pairwise properly and cover conv(A) in the sense that

∪σ∈Sconv(σ) = conv(A).

Cells that share a common facet are adjacent. The set of subdivisions ofA is partially
ordered by the refinement relation

S1 ≤ S2 : ⇐⇒ ∀σ1 ∈ S1, ∃σ2 ∈ S2 : σ1 ⊂ σ2.

The poset of subdivisions of A has a unique maximal element which is the trivial
subdivision {A}. The minimal elements are the subdivisions all of whose cells are
affinely independent, which are called triangulations of A. We call subdivisions of a
polytope Q the subdivisions of its vertex set.

2.2. Induced subdivisions. Now let P ⊂ Rp be a polytope, and let π : Rp → Rd be
a linear projection map. We can consider the point configuration A = π(vert(P ))
arising from the projection of the vertex set of P . An element in A is labeled by the
vertex of P of which it is considered to be the image. In other words, π induces a
bijection between the vertex set of P and A, even if different vertices of P have the
same projection.
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A subdivision S of A is said to be π-induced if every cell of S is the projection
of the vertex set of a face of P . If P is a simplex then all subdivisions of A are
π-induced. This concept of π-induced subdivisions was introduced in [5].

A π-induced subdivision S contains the same information as the collection of
faces of P whose vertex sets are in S. In this sense one can say that a π-induced
subdivision of A is a polyhedral subdivision whose cells are projections of faces
of P (this statement is not accurate; see [11, 14, 18] for an accurate definition of
π-induced subdivisions in terms of faces of P ).

The poset of π-induced subdivisions excluding the trivial one is denoted by
ω(P π→ π(P )). Its minimal elements are the subdivisions for which every cell comes
from a dim(A)-dimensional face of P . They are called tight π-induced subdivisions.

In [4] it was conjectured that the Baues poset ω(P π→ π(P )) is homotopy equiva-
lent to a sphere of dimension p − d − 1. Evidence for this were the cases p − d = 1
(trivial) and d = 1 (proved in [4]) together with the fact that ω(P π→ π(P )) always
contains a subposet homeomorphic to a sphere of dimension p − d − 1 (the poset of
coherent π-induced subdivisions [5]). The conjecture was known as the generalized
Baues conjecture since the case d = 1 had been conjectured by J. Baues in a different
form, until it was disproved in [14]. Still, several cases remain of interest. Theorem
1.1 is the case where π is the natural projection from a simplex to a cyclic polytope
and our Theorem 1.2 is the case where π is the natural projection between two cyclic
polytopes. Other cases where the statement is known to be true are when p− d = 2
[14] and when P is a simplex and d = 2 [8].

See [5, 15, 18] for more information on π-induced subdivisions and the Baues
problem.

2.3. Poset topology. When refering to the topology of a finite poset we mean the
topology of its order complex, i.e., the simplicial complex of chains in the poset [6].
For a poset P and x ∈ P we denote by P≤x the set { y ∈ P : y ≤ x }. We will use
the following tool from [2] to relate the homotopy type of two posets. A proof is
given in [17, Section 3].

Lemma 2.1. (Babson) Let f : ω → ω′ be an order preserving map of posets. If
(i) f−1(y) is contractible for every y ∈ ω′ and

(ii) ω≤x ∩ f−1(y) is contractible for every x ∈ ω and y ∈ ω′ with f(x) > y

then f induces a homotopy equivalence.

2.4. Cyclic polytopes. The cyclic polytope C(n, d) is the convex hull of any n points
on the moment curve {(t, t2, . . . , td) : t ∈ R} in Rd. We consider it as the point con-
figuration consisting of these n points, which are the vertices for d ≥ 2. Hence,
all the notions for induced subdivisions make sense for cyclic polytopes. Also, we
extend the usual definition by the trivial case of d = 0: the cyclic polytope C(n, 0) is
just the set of n copies of the only point in R0. The cyclic polytope C(n, 1) consists
of n distinct points in the real line R.

As usual, we label the vertices of C(n, d) with the numbers 1, . . . , n, in the order
they appear along the moment curve and refer to faces of C(n, d) by the index sets
of their vertices, i.e. as subsets of [n] := {1, 2, . . . , n}.

The face lattice of C(n, d) is known to be independent of the choice of points
on the curve and is characterized by Gale’s evenness criterion, which is as follows
(see also [18, p. 14] or [1, Theorem 5.2]). For a subset F ⊂ [n] with complement
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[n] \ F = {a1, a2, . . . , ak}, we divide F in its initial interval {1, . . . , a1 − 1}, its final
interval {ak +1, . . . , n} and its interior intervals {ai +1, . . . , ai+1−1}, i = 1, . . . , k−1.
The initial and final intervals may be empty. An interval is called odd if it has
an odd number of elements and even otherwise. Then, F is a face of C(n, d) if
and only if the cardinality of F plus the number of odd interior intervals does not
exceed d. Two obvious consequences of this description are that cyclic polytopes
are simplicial and that faces of C(n, d) are also faces of C(n, d′) for d′ > d.

Moreover, if d is the smallest integer for which F is a face of C(n, d), then F is an
upper face of C(n, d) (meaning that its normal cone contains only vectors with last
coordinate positive) if the final interval in F is odd and F is a lower face (meaning
that its normal cone contains only vectors with last coordinate negative) if the final
interval in F is even (or empty).

2.5. The canonical projections between cyclic polytopes. For a fixed pair of di-
mensions d′ > d we will be interested in the surjection π : C(n, d′) → C(n, d),
induced by the map π : Rd′ → Rd which forgets the last d′ − d coordinates. The
fiber polytopes for this family of surjections were studied in [1]. The associated
Baues posets were studied in the special case d = 2 in [16]. For the ease of no-
tation, we will write ωd′(C(n, d)) for the Baues poset ω(C(n, d′) π→ C(n, d)). This
poset is also independent of the choice of points used to define C(n, d′). Note that
the Baues poset ωd′(C(n, 0)) = ω(C(n, d′) π→ C(n, 0)) is isomorphic to the poset of
proper faces of C(n, d′) for all d′ > 0, hence homeomorphic to a (d′ − 1)-sphere.

3. STRUCTURE OF THE PROOF

The idea for proving Theorem 1.2 is as follows. Let us fix the dimensions 2 ≤
d < d′ and then use induction on the number n of vertices. The result is already
known in the cases d = 0, 1. The base case n = d′ + 1 for the induction is provided
by Theorem 1.1. For the inductive step, we will use the same approach as in [13]:
via the deletion operation of vertex n from a subdivision of C(n, d), we will define a
map between the posets ωd′(C(n, d)) and ωd′(C(n − 1, d)) and will prove it to be a
homotopy equivalence. This deletion operation is a generalization of the deletion
operation on triangulations of C(n, d) from [12].

For two collections S and T of finite pointsets in Rd we define

spanning(S) := {σ ∈ S : σ is spanning }
astS(i) := {σ ∈ S : i /∈ σ }
lkS(i) := {σ − {i} : σ ∈ S, i ∈ σ }
S ∗ T := {σ ∪ τ : σ ∈ S, τ ∈ T } .

As was discussed in [13, Section 4], if S is a subdivision of C(n, d) then lkS(n) is a
subdivision of C(n − 1, d − 1). Moreover, Gale’s evenness criterion easily implies
that if S is in ωd′(C(n, d)) then lkS(n) is in ωd′−1(C(n− 1, d− 1)).

Definition 3.1. ([13]) Given a subdivision S of C(n, d), the deletion S\n is

S\n := spanning
(
{σ\n : σ ∈ S}

)
,
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where

σ\n :=

{
(σ − {n}) ∪ {n− 1}, if n ∈ σ,

σ, otherwise.
Equivalently,

S\n := astS(n) ∪ spanning
(
lkS(n) ∗ {n− 1}

)
.

Using the idea of “sliding” vertex n to n−1, it is proved in [13, Theorem 3.2] that
S\n is a subdivision of C(n − 1, d). The deletion of n defines a map between the
posets ωd′(C(n, d)) and ωd′(C(n− 1, d)):

Proposition 3.2. Let n ≥ d′+2. The deletion map Πd′ : ωd′(C(n, d)) → ωd′(C(n−1, d))

Πd′(S) = S\n
between the Baues posets of proper π-induced subdivisions is well-defined and order pre-
serving.

Proof. In order to see that Πd′ is well-defined we just need to check that if σ is a
proper face of C(n, d′) then σ\n, introduced in Definition 3.1, is a proper face of
C(n − 1, d′). It follows easily from Gale’s evenness criterion that σ\n is a face of
C(n − 1, d′). Moreover, since σ is proper and C(n, d′) is simplicial, σ has at most
d′ ≤ n − 2 vertices. Thus σ\n has at most n − 2 vertices and is a proper face of
C(n− 1, d′).

That Πd′ is order preserving follows trivially from the fact that if σ ⊂ σ′ then
σ\n ⊂ σ′\n. �

∗
In order to apply Lemma 2.1 to the map Πd′ we need to understand its fibers.

The following concept of subdivisions of C(n, d) induced by a certain subdivision S of
C(n, d + 1) will be crucial for this.

Let S be a subdivision of the cyclic polytope C(n, d + 1) and S a subdivision of
C(n, d). Following [13], we say that S is induced by S if every cell σ ∈ S is a face
(not necessarily proper) of a cell σ′ ∈ S. We can think of S as a cellular section
of the natural projection C(n, d + 1) → C(n, d) which uses only cells in S or their
faces. Observe that for every cell σ′′ of S we can tell whether σ′′ is above, on or
below (the section corresponding to) a subdivision S induced by S. We will denote
by above(S, S) and below(S, S) the set of cells of S which lie above and below S,
respectively.

We denote by ω(S) the poset of all subdivisions of C(n, d) which are induced by
S, partially ordered by refinement, so that ω(S) is a subposet ω(C(n, d)).

From the definition of the deletion S\n it follows trivially that lkS({n, n− 1}) :=
lklkS(n)(n − 1) ⊂ lkS\n(n − 1) for any S ∈ ω(C(n, d)). Let T ∈ ωd′(C(n − 1, d)) and
let S ∈ ωd′(C(n, d)) be such that S\n = T , i.e., S ∈ Π−1

d′ (T ). Then the subdivision
lkS({n, n−1}) of C(n−2, d−2) is induced by the subdivision lkT (n−1) ∈ ω(C(n−
2, d − 1)). In other words, we have a map Π−1

d′ (T ) → ω(lkT (n − 1)) defined by
S 7→ lkS({n, n − 1}). The following much stronger statement follows from [13,
Lemma 4.7].

Lemma 3.3. Let 2 ≤ d < d′ ≤ n− 2 and consider the deletion map Πd′ : ωd′(C(n, d)) →
ωd′(C(n − 1, d)). Let T ∈ ωd′(C(n − 1, d)) and S = lkT (n − 1) ∈ ω(C(n − 2, d − 1)).
Then:
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(1) The map ω(C(n, d)) → ω(C(n−2, d−2)) given by S 7→ lkS({n−1, n}) restricts
to a poset isomorphism between Π−1

d′ (T ) and a subposet ωd′(S) of ω(S).
(2) The inverse map τ : ωd′(S) → Π−1

d′ (T ) is given by

τ(S) := {σ ∈ T : n− 1 6∈ σ }
∪

{
σ ∪ {n} : σ ∈ S, σ is below S

}
∪

{
σ ∪ {n− 1} : σ ∈ S, σ is above S

}
∪ {σ ∪ {n, n− 1} : σ ∈ S } .

Moreover,

ωd′(S) = {S ∈ ω(S) : τ(S) ∈ ωd′(C(n, d))}.

(3) Let T ′ ∈ ωd′(C(n, d)) be such that T ′\n is coarser than T and let S0 = lkT ′({n, n−
1}) ∈ ω(C(n− 2, d− 2)). Then, the previous isomorphism restricts to an isomor-
phism between ωd′(C(n, d))≤T ′ ∩Π−1

d′ (T ) and

ωd′(S)≤S0 := {S ∈ ωd′(S) : S refines S0} = ωd′(S) ∩ ω(C(n− 2, d− 2))≤S0 .

By Lemma 2.1 applied to the map Πd′ introduced in Proposition 3.2, Lemma 3.3
implies that in order to prove Theorem 1.2 we just need to show that, under the
assumptions of the lemma, both ωd′(S) and ωd′(S)≤S0 are contractible. We will do
this in the next section, following the ideas of [13].

4. THE DETAILS

Throughout this section we assume that the hypotheses of Lemma 3.3 hold and
we fix an element T ∈ ωd′(C(n − 1, d)) and an element T ′ ∈ ωd′(C(n, d)) such that
T refines T ′\n. We also let S = lkT (n − 1) and S0 = lkT ′({n, n − 1}). Our task is
to prove that both ωd′(S) and ωd′(S)≤S0 are contractible. The proof for ωd′(S)≤S0 is
easier and we do it in the following proposition. The proof for ωd′(S) occupies the
rest of this section.

Proposition 4.1. Under the assumptions of part 3 of Lemma 3.3, let ω(S)≤S0 := ω(S) ∩
ω(C(n− 2, d− 2))≤S0 . Then:

(1) ωd′(S)≤S0 = ω(S)≤S0 and hence
(2) ωd′(S)≤S0 is contractible.

Proof. The second statement follows from [13, Corollary 4.6], where ω(S)≤S0 is
proved to be contractible.

For the first statement, let T ′ ∈ ωd′(C(n, d)) be such that T ′\n is coarser than T
and let S0 = lkT ′({n− 1, n}) ∈ ω(C(n− 2, d− 2)). Observe that S0 might not be in
ω(S) but it is in ω(S′), where S′ := lkT ′\n(n− 1) is coarser than S. By parts 1 and 2
of Lemma 3.3 we have that S0 is in ωd′(S′).

Let S ∈ ω(S) be a refinement of S0. We will prove that τ(S) is in ω(C(n, d′)),
i.e. S ∈ ωd′(S). Thus S ∈ ωd′(S)≤S0 . For the proof we only use the fact that
S0 ∈ ωd′(S′), that S refines S0 and that S refines S′.

Let σ ∈ above(S, S) and choose σ′ ∈ S′ such that σ ⊂ σ′. Since S refines S0, either
σ′ ∈ above(S0, S′) or σ′ ∈ S0. In both cases σ′ ∪ {n− 1}, and hence σ ∪ {n− 1}, is a
face of C(n, d′). In the same way, if σ ∈ below(S, S) then σ∪{n} is a face of C(n, d′).
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Finally, if σ ∈ S, then there is σ′ ∈ S0 with σ ⊂ σ′ and since σ′ ∪ {n, n− 1} is a face
of C(n, d′), σ ∪ {n, n− 1} is a face too. �

We are now concerned with the poset ω(S) ⊂ ω(C(n− 2, d− 2)) and its subposet

ωd′(S) = {S ∈ ω(S) : τ(S) ∈ ωd′(C(n, d))}.
Our goal is to prove that ωd′(S) is contractible. Actually, we will never use the fact
that S is a link of a subdivision T ∈ C(n − 1, d) but only that, since T ∈ ωd′(C(n −
1, d)), its link S is in ωd′−1(C(n − 2, d − 1)). In other words, we will prove the
following result.

Theorem 4.2. Let S be a proper subdivision of C(n−2, d−1), induced by C(n−2, d′−1),
and let ωd′(S) ⊂ ω(S) be the poset of sections S of S which have the properties:

(1) For any σ ∈ above(S, S), σ ∪ {n− 1} is a face of C(n, d′).
(2) For any σ ∈ below(S, S), σ ∪ {n} is a face of C(n, d′).
(3) For any σ ∈ S, σ ∪ {n, n− 1} is a face of C(n, d′).

Then ωd′(S) is contractible.

Let us recall the following technical property of subdivisions of cyclic polytopes,
proved and called stackability in [13]. Let S be a subdivision of a cyclic polytope
C(n, d), for arbitrary n > d. For any two cells σ1, σ2 ∈ S which share a facet, their
common facet is an upper facet of one of σ1, σ2 and a lower facet of the other. If it
is a lower facet of σ2 and an upper facet of σ1 we say that “σ2 is above σ1” and “σ1

below σ2”.

Lemma 4.3. ([13, Lemma 2.16]) The relation “σ1 is below σ2” just defined has no cycles.
Hence, its transitive closure is a partial order on the collection of all cells of S.

In the sequel we denote by <st this partial order on the cells of the subdivision
S ∈ ωd′−1(C(n− 2, d− 1)).

Lemma 4.4. Let S ∈ ωd′−1(C(n− 2, d− 1)). Let σ ⊂ [n− 2] be a face of C(n− 2, d′− 1)
(not necessarily a cell of S) and let σ+ and σ− be cells in S such that σ− <st σ+. Then:

(1) At least one of σ ∪ {n− 1} and σ ∪ {n} is a proper face of C(n, d′).
(2) If σ∪{n−1} and σ∪{n} are both proper faces of C(n, d′), then so is σ∪{n, n−1}.
(3) If σ+ ∪ {n} and σ− ∪ {n − 1} are both proper faces of C(n, d′) then so is either

σ− ∪ {n} or σ+ ∪ {n− 1}.

Proof. 1. If σ is a face of C(n − 2, d′ − 2) then σ ∪ {n, n − 1} is a face of C(n, d′).
Hence, both σ ∪ {n− 1} and σ ∪ {n} are faces of C(n, d′) as well.

If σ is not a face of C(n − 2, d′ − 2) then σ is either an upper or a lower face of
C(n − 2, d′ − 1). In the first case σ ∪ {n − 1} is a face of C(n, d′) and in the second
case σ ∪ {n} is a face of C(n, d′), as follows easily from Gale’s evenness criterion.

2. We will show that σ ∪ {n, n − 1} has at least one interior component of odd
length less than either σ∪{n} or σ∪{n−1}. Taking m to be the maximum element
in [n− 2]\σ, we observe that this is the case for σ ∪ {n− 1} if n−m is even and for
σ ∪ {n} if n−m is odd.

3. Let m+ (respectively m−) be the maximum in [n − 2]\σ+ (respectively [n −
2]\σ−). We will prove that either {m−+1, . . . , n−2} has an even number of elements
(and then σ− ∪ {n} is a face of C(n, d′)), or {m+ + 1, . . . , n− 2} has an odd number
of elements (and then σ+ ∪ {n− 1} is a face of C(n, d′)).
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For this let σ− = σ0 <st σ1 <st · · · <st σk = σ+ be a chain of cells of S such
that every two consecutive ones share a facet. Let m be the maximum integer in
[n−2]\∩k

i=0σi. We will consider separately the following three cases: (i) m 6∈ ∪k
i=0σi,

(ii) m ∈ ∪k
i=0σi and n−m is even and (iii) m ∈ ∪k

i=0σi and n−m is odd.

(i) If m 6∈ ∪k
i=0σi then m = m+ = m−. Obviously, {m + 1, . . . , n− 2} has either

an even or an odd number of elements.
(ii) If n−m is even then the common interval {m+1, . . . , n−2} to all the σi has

an even number of elements. This implies that if m ∈ σi for an i ≤ k−1 then
m ∈ σi+1 too. Indeed, the common facet τ between σi and σi+1 is an upper
facet of σi and, hence, its last interval has odd length. So it is impossible
to have m ∈ σi\τ and {m + 1, . . . , n − 2} ⊂ τ . In particular, m cannot
be in σ− = σ0 because then it would be in ∩k

i=0σi. Hence, m = m− and
{m− + 1, . . . , n− 2} has an even number of elements.

(iii) This case is analogous: If n − m is odd then the common interval {m +
1, . . . , n−2} to all the σi has an odd number of elements. This implies that if
m ∈ σi for an i ≥ 1 then m ∈ σi−1 too. Indeed, the common facet τ between
σi and σi−1 is a lower facet of σi and, hence, its last interval has even length.
So it is impossible to have m ∈ σi\τ and {m+1, . . . , n−2} ⊂ τ . In particular,
m cannot be in σ+ = σk because then it would be in ∩k

i=0σi. Hence, m = m+

and {m+ + 1, . . . , n− 2} has an odd number of elements.

�

Our next goal is to prove that ωd′(S) is not empty, and hence that the map Πd′

is surjective. Clearly, ω(S) is not empty so we are interested in which elements
S ∈ ω(S) lie also in ωd′(S) ⊂ ω(S).

Lemma 4.5. Let S ∈ ω(S). Then S ∈ ωd′(S) if and only if for any cell σ of S we have:

if σ ∈ S ∪ above(S, S) then σ ∪ {n− 1} is a face of C(n, d′),

if σ ∈ S ∪ below(S, S) then σ ∪ {n} is a face of C(n, d′).

Proof. Necessity of the conditions is obvious by the definition of ωd′(S) in Lemma
3.3. Sufficiency is not obvious since a cell σ of S might not be a (spanning) cell of
S. We need to prove under the conditions in the statement that for such a cell σ,
σ ∪ {n, n− 1} is a face of C(n, d′).

Let σ be in S \ S. Then σ is a simplex of dimension d − 2 in C(n − 2, d − 1) and
there is a cell σ+ ∈ S (respectively σ−) of which σ is a lower (respectively upper)
facet unless σ is an upper (respectively lower) facet of C(n−2, d−1). We will prove
that σ ∪ {n} and σ ∪ {n− 1} are faces of C(n, d′). Then by part 2 of Lemma 4.4 we
conclude that σ ∪ {n, n− 1} is a face of C(n, d′).

If σ is an upper (respectively lower) facet of C(n − 2, d − 1) then σ ∪ {n − 1}
(respectively σ ∪ {n}) is a lower (respectively upper) facet of C(n, d), hence a face
of C(n, d′). If σ is an upper (respectively lower) facet of σ− ∈ S, (respectively
of σ+) then σ− is below S (respectively σ+ is above S) and by hypothesis σ− ∪ {n}
(respectively σ+∪{n−1}) is a face of C(n, d′). Thus σ∪{n} (respectively σ∪{n−1})
is also a face.

�
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For the sequel, for S ∈ ωd′−1(C(n − 2, d − 1)), let us define the following collec-
tions, which depend on d′:

above(S) = {σ ∈ S : ∀σ′ ∈ S with σ ≤st σ′, σ′ ∪ {n− 1} is a face of C(n, d′)},
below(S) = {σ ∈ S : ∀σ′ ∈ S with σ′ ≤st σ, σ′ ∪ {n} is a face of C(n, d′)}.

By definition, below(S) and above(S) are a lower and an upper ideal respectively in
<st. This implies that the upper envelope Sup of below(S) and the lower envelope
Sdown of above(S) are valid sections in ω(S). We show that they are also in ωd′(S).
Observe that above(S) = above(Sdown, S) and below(S) = below(Sup, S).

Lemma 4.6. We have:
(1) below(S) ∪ above(S) = S.
(2) Let S ∈ ω(S). Then S ∈ ωd′(S) if and only if

above(S, S) ∪ below(S) = S,

below(S, S) ∪ above(S) = S.

(3) In particular, Sup and Sdown are in ωd′(S).

Proof. 1. Let σ ∈ S and suppose σ 6∈ below(S). By definition of below(S) this means
that there is a σ′ ≤st σ such that σ′ ∪{n} is not a face of C(n, d′). Since σ′ is a face of
C(n−2, d′−1), parts 1 and 3 of Lemma 4.4 imply, respectively, that σ′∪{n−1} and
any σ′′ ∪ {n− 1} with σ′′ ≥st σ′ are faces of C(n, d′). In particular, σ ∈ above(S).

2. We first prove the necessity of the conditions. If σ ∈ S\(above(S, S)∪below(S))
then σ ∈ S ∪ below(S, S) and there is a σ′ <st σ such that σ′ ∪ {n} is not a face of
C(n, d′). This σ′ will also be in S ∪below(S, S) and hence S 6∈ ωd′(S) by Lemma 4.5.
The case of a σ ∈ S \ (below(S, S) ∪ above(S)) is analogous.

For the sufficiency, let S ∈ ω(S) be such that above(S, S) ∪ below(S) = S and
below(S, S) ∪ above(S) = S. We will prove that S ∈ ωd′(S) using Lemma 4.5. Let
σ ∈ S and suppose that σ ∈ S ∪ above(S, S). This is equivalent to σ 6∈ below(S, S)
and hence σ ∈ above(S). Hence, σ ∪ {n − 1} is a face of C(n, d′). In the same way,
if σ ∈ S ∪ below(S, S) we prove that σ ∪ {n} is a face of C(n, d′).

3. From the definition of Sup, it follows that Sup does not contain any cell of S

(i.e. above(Sup, S) ∪ below(Sup, S) = S) and also that below(Sup, S) = below(S).
Putting these two facts together and using part 1, we conclude that Sup satisfies the
conditions of part 2. The same holds for Sdown. �

Remark 4.7. The last result can be interpreted using the following poset structure
on the collection of subdivisions induced by S.

Definition 4.8. Let St(S) be the set of subdivisions of C(n, d) induced by S, partially
ordered by S1 ≤ S2 if and only if S1 lies below S2 as a cellular section of the natural
projection C(n, d + 1) → C(n, d) or, equivalently, if above(S2, S) ⊂ above(S1, S) and
below(S1, S) ⊂ below(S2, S).

Let Std′(S) be the induced subposet of St(S) on the subset ωd′(S). We call St(S) and
Std′(S) the Stasheff orders on ω(S) and ωd′(S).

The above definition reminds of the second higher Stasheff-Tamari order on the
set of all triangulations of a cyclic polytope and its characterization as closed sets in
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dimensions 2 and 3 [7]. In this context the structure is well-behaved in all dimen-
sions.

Using the Stasheff order, Lemma 4.6 can be rewritten as follows.

Lemma 4.9. An element S of ω(S) is in ωd′(S) if and only if Sdown ≤St S ≤St Sup.
Thus, Std′(S) is a nonempty interval in St(S).

It is also easy to see that ωd′(S) is a lattice, where for every S1, S2 ∈ ωd′(S) the
join S1 ∨ S2 and the meet S1 ∧ S2 are the elements satisfying

above(S1 ∨ S2, S) := above(S1, S) ∩ above(S2, S),

below(S1 ∨ S2, S) := below(S1, S) ∪ below(S2, S);

above(S1 ∧ S2, S) := above(S1, S) ∪ above(S2, S),

below(S1 ∧ S2, S) := below(S1, S) ∩ below(S2, S).

In a sense, S1∨S2 and S1∧S2 are the common upper and lower envelopes of S1 and
S2, except that if a cell σ is in S1∩S2 then σ (instead of its upper or lower envelope)
is also in S1 ∨ S2 and S1 ∧ S2.

In what follows we argue that the proof of [13, Theorem 4.5], showing that ω(S)
is contractible, can be modified to prove that ωd′(S) is contractible. The original
proof is based on a total ordering of the cells of S compatible with the partial order
<st. Here we also want our total order to behave nicely with respect to above(S)
and below(S).

Lemma 4.10. There is a total order, i.e. a numbering S = {σ1, . . . , σk}, of the cells of S
such that for every i, j ∈ {1, . . . , k} we have:

(1) If σi <st σj then i < j.
(2) If σi ∈ below(S) and σj 6∈ below(S) then i < j.
(3) If σi ∈ above(S) and σj 6∈ above(S) then i > j.

Proof. We first order the cells not in above(S) with the numbers from 1 to k1, in a
way compatible with the partial order <st. Then we order the cells in above(S) ∩
below(S) with numbers k1 + 1, . . . , k2 and then those not in below(S) with k2 +
1, . . . , k, both times again in a way compatible with <st. This can be done since <st

is a partial order.
The order so obtained satisfies conditions 2 and 3 by construction and it also

satisfies condition 1 since below(S) is a lower ideal in <st (so that if σi <st σj , it is
impossible that σj ∈ below(S) and σi 6∈ below(S)) and above(S) is an upper ideal in
<st (so that if σi <st σj , it is impossible that σi ∈ above(S) and σj 6∈ above(S)). �

The proof of the following proposition follows closely the one of [13, Theo-
rem 4.5] but we include it for the sake of completeness. It establishes Theorem
4.2 and finishes the proof of Theorem 1.2.

Proposition 4.11. The subposet ωd′(S) of ω(C(n− 2, d− 2)) is contractible.

Proof. Let the cells of S be totally ordered as in Lemma 4.10, so that {σ1, . . . , σk1} =
below(S)\ above(S), {σk1+1, . . . , σk2} = below(S)∩above(S) and {σk2+1, . . . , σk} =
above(S)\below(S).
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For any S ∈ ω(S) we call height of S the maximum index i of a cell σi on or below
S. For each i = 0, . . . , k we denote by ωd′(S; i) the subposet of ωd′(S) consisting of
the subdivisions of height at most i.

By definition, Sdown has height k1 and Sup has height k2. Moreover, by Lemma
4.6, ωd′(S) = ωd′(S; k2) and ω(S; k1) has only the element Sdown. We will prove that
ωd′(S; i) and ωd′(S; i− 1) are homotopically equivalent for every i = k1 + 1, . . . , k2.

Consider first the following situation. Let S ∈ ωd′(S) with σi ∈ S. We can get
two new elements Sσi+ and Sσi− of ωd′(S) by substituting σi in S for its upper and
lower envelope, respectively.

We now construct the homotopy equivalence fi : ωd′(S; i) → ωd′(S; i − 1). We
define fi to be the identity on those S ∈ ωd′(S; i) with height at most i− 1. If S has
height i then either S contains σi, in which case we take fi(S) = Sσi−, or S contains
the upper envelope of σi. In this case S = Tσ+

i
for some T ∈ ωd′(S). We then define

fi(Tσ+
i
) = Tσ−i

. In this way, the inverse image of an element S ∈ ωd′(S; i − 1) is
given as follows:

(i) It is S itself, if S does not contain the lower envelope of σi.
(ii) If S contains the lower envelope of σi, then S = Tσi− for some T ∈ ωd′(S; i)

and f−1(S) = f−1(Tσi−) = {T, Tσi−, Tσi+}.
Define the following order-preserving map:

gi :


ω(S; i− 1) → ω(S; i),

S 7→

{
S in case (i),
T in case (ii).

Then fi ◦ gi = idωd′ (S;i−1) and gi ◦ fi ≥ idωd′ (S;i), which means that fi and gi are
homotopy inverses to each other by Quillen’s order homotopy theorem [6, 10.11].
Thus, ωd′(S; i) is homotopy equivalent to ωd′(S; i− 1). �
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