Beitrage zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 40 (1999), No. 2, 283-289.

The Largest Intersection Lattice of a
Discriminantal Arrangement

Christos A. Athanasiadis*

Department of Mathematics, University of Pennsylvania
209 South 33rd Street, Philadelphia, PA 19104-6395, USA

email: athana@math.upenn.edu

Abstract. We prove a conjecture of Bayer and Brandt [J. Alg. Combin. 6 (1997),
229-246] about the “largest” intersection lattice of a discriminantal arrangement
based on an essential arrangement of n linear hyperplanes in R¥. An important
ingredient in the proof is Crapo’s characterization of the matroid of circuits of the
configuration of n generic points in R*.

1. Introduction

Let A be an arrangement of n linear hyperplanes in R¥ with normal vectors a; for 1 < i < n.
Assume that the vectors a; span R¥, so that A is essential. The discriminantal arrangement
B(A) based on A (see [11], [1]) is the arrangement of linear hyperplanes in R" with normal
vectors the distinct, nonzero vectors of the form

k+1
ag = Z (—=1)"det (Qgyy .y Qg Qs v Q) €5y, (1)
i=1
where S = {s; < sp < -+- < s,41} ranges over all subsets of [n] := {1,2,...,n} with k +1

elements and the e; are the standard coordinate vectors in R".
We are primarily concerned with a conjecture of Bayer and Brandt [1] about the inter-
section lattice [13, §2.1] L(B(A)) of B(A), the main combinatorial invariant of B(.4). Bayer
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and Brandt call A very generic if for all r, the number of elements of L(B(A)) of rank r
is the largest possible for a discriminantal arrangement based on an essential arrangement
of n linear hyperplanes in R¥. They denote by P(n, k) the collection of all sets of the form
{S1,S9,...,Sn}, where the S; are subsets of [n], each of cardinality at least k£ + 1, such that

[USil > k+)_ (1S = k)

el el

for all I C [m] with |I| > 2. They partially order P(n, k) by letting S < T if every subset
in S is contained in some subset in 7. Note that P(n,1) is isomorphic to the lattice of
partitions of [n]. The following appears as Conjecture 4.3 in [1].

Conjecture 1.1. (Bayer and Brandt [1]) Let n > k + 1 > 2. There exist arrangements
of n hyperplanes in R* which are very generic. Moreover, the intersection lattice of the
discriminantal arrangement based on any very generic arrangement of n hyperplanes in RF
is isomorphic to P(n, k).

The discriminantal arrangement was originally defined when the hyperplanes of A are in
general position, meaning that any k of the vectors «; are linearly independent, by Manin
and Schechtman [11], who initiated the study of its complement. Manin and Schechtman
remarked [11, p.292] that although B(.A) depends on the original arrangement A (see also
Falk [9]), its intersection lattice depends only on n and k if A lies in a Zariski open subset of
the space of all arrangements of n linear hyperplanes in general position in R¥. They gave a
description of this lattice, which we denote by L(n, k), for k+1 < n < k+3 ([11, p. 292], see
also [13, p.205]) and implicitly suggested the problem of describing L(n, k) for other values
of n.

From a different perspective, unkown in the literature of discriminantal arrangements,
the matroid of circuits of the configuration of n points aq, s, ..., o, in R¥, realized by the
vectors ag, has been introduced by Crapo [4]. Crapo characterized this matroid M (n, k) when
the coordinates of the vectors «; are generic indeterminates [5] as the Dilworth completion
Dy(B,,) of the kth lower truncation of the Boolean algebra of rank n (see e.g. Crapo and
Rota [6, §7], Mason [12] or Brylawski [3, §7]). The lattice L(n, k) is the geometric lattice of
flats of M (n, k). For recent related work, see Crapo and Rota [7].

In the present paper we first define precisely the Zariski open set O(n, k) that the hypoth-
esis of Manin and Schechtman on A refers to, in order to clarify this point (see [9, p. 1222]).
We refer to an arrangement A in O(n, k) as sufficiently general. We use ideas from matroid
theory [10] to show (Theorem 2.3) that any arrangement A in O(n, k) is very generic and
moreover, that it maximizes the f-vector of B(A) or, equivalently, the f-vector of the cor-
responding fiber zonotope [2, §4]. Tt follows that very generic arrangements exist and that
the lattice which Conjecture 1.1 refers to coincides with L(n, k). Finally we show (Theorem
3.2) that Crapo’s characterization [5, §6] of M (n, k) implies that its lattice of flats L(n, k) is
isomorphic to P(n, k). Equivalently, the lattice of flats of the Dilworth completion Dy (B,)
is isomorphic to P(n, k). This has been observed earlier for £ =1 ([6, Prop. 7.9], [12, §2.5])
and completes the proof of Conjecture 1.1.
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2. Sufficiently general arrangements

Let A be an essential arrangement of n linear hyperplanes in R, as in the beginning of
the introduction, with normal vectors «; = (aij);?:l for 1 < ¢ < n. For each set § =
{S1,S9,...,Sn} of (k+1)-subsets of [n] with m < n, we denote by Ag the m xn matrix whose
(r,7) entry is the jth coordinate of the vector ag, in R”. Let ps be the sum of the squares
of the m x m minors of the matrix Ag, considered as a polynomial in the indeterminates
«;;. Thus ps is an element of the ring R[z;;] and ps(a;;) = 0 if and only if the vectors
ag,, s, - - ., g, are linearly dependent.

Definition 2.1. We call A sufficiently general if ps(cij) # 0 for all S for which the poly-
nomial ps is not identically zero. We denote by O(n,k) the space of sufficiently general
arrangements.

The set O(n, k) is a nonempty Zariski open subset of the space of all arrangements of n
linear hyperplanes in general position in R¥. Apparently, and in view of the following easy
proposition, it is the Zariski open set that Manin and Schechtman refer to.

Proposition 2.2. If A is restricted in the set O(n, k) then the matroid realized by the vectors
ag, and hence the intersection lattice L(n, k) as well as the f-vector of B(A), depend only
onn and k.

Proof. Indeed, a set S = {51, S, ...,S,} indexes an independent subset of the set of vectors
{as} if and only if the polynomial pg is not identically zero. O

We now use the idea of weak maps of matroids [10] to show that any arrangement in O(n, k) is
very generic, in the sense of Bayer and Brandt. A different application of the same technique
was recently given by Edelman [8].

Theorem 2.3. If A is in O(n, k) then B(A) has mazimum f-vector and intersection lat-
tice with all rank sets of maximum size among all discriminantal arrangements based on an
essential arrangement of n linear hyperplanes in RF.

Proof. Let A’ be any essential arrangement of n linear hyperplanes in R* with corresponding
data o, aj; and a’. The map ag — af defines a weak map [10] of the matroids M and M,
realized by the sets of vectors {ag} and {c/s} respectively. Indeed, if the {a/} for S € S
are linearly independent then ps(aj;) # 0, so ps is not identically zero and hence the {as}
for § € § are also linearly independent. The result follows from the fact that the Whitney
numbers of both kinds of M’ are bounded above by those of M whenever there is a weak
map of matroids M — M’ (see Proposition 9.3.3 and Corollary 9.3.7 in [10]). 0

3. The intersection lattice

We first recall some useful notation from [7]. A set S = {Si,Ss,...,Sn} of subsets of [n] is
an antichain if none of the subsets contains another. For such an antichain S we let

AS) =v(J9) - v(s),

Ses Ses
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where v (S) = max(0,|S| — k). Thus S € P(n, k) if each S; has cardinality at least k£ + 1 and
A(F) >0 forall F C S with |F| > 2. If T = {T},T5,...,T,} is another antichain, we let
S <X T if for each 7 there exists a j such that S; C Tj.

We assume that A is in O(n, k) and think of L(n, k) as the geometric lattice spanned by
the vectors ag. The matroid M (n, k) realized by these vectors, to which we have referred
in Proposition 2.2, has been characterized by Crapo [5, §6] and was shown to be isomorphic
to the Dilworth completion Dy (B,) ([6, §7], [12]) of the kth lower truncation of the Boolean
algebra of rank n. The Dilworth completion Dy(B,) is a matroid on the set of all (k +
1)-subsets of [n] which can be described explicitly in terms of its bases, independent sets
and circuits. We keep our discussion as self-contained as possible. The following result is
equivalent to Theorem 2 in [5, §6].

Theorem 3.1. (Crapo [5]) Let Si,Ss,..., S, be (k+ 1)-subsets of [n]. The vectors ag,,
as,, ..., ag, are linearly independent if and only if

IUsil =k +11] (2)
icl
for all I C [m] or, in other words, if S = {S1,Sa, ..., Sn} satisfies A(F) >0 for all F C S.

Proof. The elegant argument in the proof of Theorem 2 in [5, §6] shows that ag :=
{as,,as,,...,as, } is a basis if and only if A(F) > 0 for all F C S and m =n — k. It
suffices to show that if S satisfies (2) then «gs is contained in a basis. This follows by an
application of Hall’s marriage theorem to the sets S; — [k]. O

In the remaining of this section we show that this characterization of M (n, k) implies that
its lattice of flats L(n, k) is isomorphic to the poset P(n, k), defined in the introduction. For
an antichain § = {5, 5,,...,5,} of subsets of [n] we denote by Vs the linear span of the
vectors ag for all (k + 1)-subsets S of [n] such that S C S; for some 1 <i <m. If § = {S},
where S has any cardinality, we write Vs instead of Vs. Note that dim Vs = v (S), which
clearly implies the “only if” direction of Theorem 3.1. We let ¢(S) = Vs if S € P(n, k).

Theorem 3.2. The map ¢ : P(n, k) — L(n, k) is an isomorphism of posets.
We give the proof after having established a few lemmas.

Lemma 3.3. Let S be an antichain with the properties |S| > k+1 for all S € S, A(F) >0
forall F € S and Vs = @q.5Vs. If S is not in P(n, k) then there exists an antichain S'
with the same three properties as S and such that Ver = Vs, |S'| < |S| and S < §'.

Proof. By assumption, A(F) = 0 for some F C S with at least two elements. Let U be the
union of the elements of F. Since Vip C Vi for all F' € F, the sum of the Vz is direct and
their dimensions v (F') sum to the dimension v (U) of Vi, we have

Vo =P Ve.
FeF

Replace the subsets F' € F in S with their union U to get the desired antichain &’. The
property A(E) > 0 for all £ C &' follows from the corresponding property of S and the fact

that v (U) = > perv (F). O
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Lemma 3.4. If S and T are any antichains with S < T and A(F) > 0 for all F C S, then

o w(S) <> v(T).

SeS TeT

Proof. We induct on the cardinality of S. Choose a set T € T so that the subfamily
F={Fe€S8: FCT} is nonempty. Then

v =Y vF) + Y v <vlUR + D> v <

Ses FeF Ses—F FeF Ses—F
<v(T) + > v(S).
Ses-F
Since § — F < T — {T'}, induction completes the proof. O

Lemma 3.5. If § € P(n,k), T is a subset of [n] with |T| > k+ 1 and {R} < S for all
R C T with |R| =k +1, then {T} < 8.

Proof. This follows from the definition of P(n, k) by an easy induction. O

We now prove Theorem 3.2 and thus complete the proof of Conjecture 1.1.

Proof of Theorem 3.2. The map ¢ is clearly order preserving. We first show that it is
surjective. Let V be a linear space in L(n, k). Choose a basis {as,, as,,...,ag,} of V,
where the S; are (k + 1)-subsets of [n] and let S = {S},5%,...,Sn}, so that V = Vs. If
S € P(n,k) then ¢(S) = V. If not, then Lemma 3.3 applies and produces a sequence of

antichains § < § < &, < --- with V = Vg = Vs, = ---. Since this procedure reduces m
at each step, it terminates. The last antichain 7 in the sequence is in P(n, k) and satisfies
p(T)=V.

Next we show that ¢ is injective. Suppose on the contrary that ¢(S) = o(T) for two
distinct families S, T € P(n, k). We may assume that 7 < S is invalid. By Lemma 3.5 there
exists a (k + 1)-set R contained in some subset in 7 but not contained in any S € S. Since
ag € Vs, we can choose a minimal family F < S of (k + 1)-subsets such that {ap : F € F}
is independent and ap lies in its span. Theorem 3.1 and the minimality of F imply that

u<(U F) UR) < |F|+1.

FeF

On the other hand
v(lJ F) > 17

FeF

by independence of the ap. Hence R C |y F and

v([J F) =17l

FeF
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Let £ be the subfamily consisting of the subsets E' € § which contain some F' € F and &' be
the family obtained from &£ by intersecting all sets in £ with (Jp. F, so that F < £'. We

have
v EY=v(UFP)=D_vF)< ) v(E) (3)

E'eg! FeF FeF Eeg!

where the inequality follows from Lemma 3.4. It follows that

v(JB) <D v(B), (4)

Eecg EecE

since adding elements to each E’ preserves the inequality (3). By the choice of R, £ has
cardinality at least 2. Hence (4) contradicts the fact that S € P(n, k).

Finally we show that the inverse of ¢ is order preserving. Let S, 7 € P(n,k) be such
that ©(S) = Vs C Vi = p(T). Choose a basis {ag : S € S} for Vs and complete it to
a basis {ag : S € Ty} of Vr, where Sy C 7, are families of (k + 1)-subsets of [n]. Apply
Lemma 3.3 successively to Sy to find an S; € P(n, k) with S < S; and ¢(S1) = Vs = ¢(S).
Then apply the same lemma to S; U (7p — &) to find a 7y € P(n,k) with §; < 77 and
©(T1) = Vr = (T). By injectivity of p we get S=8; and T =T, so S < T, as desired. O

The following is a corollary of Theorem 3.2 and the fact that the operation S — &’ of Lemma
3.3 preserves the quantity Y ¢ s v ().

Corollary 3.6. The poset P(n, k) is a geometric lattice with rank function

Ses
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