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Abstract. We prove a conjecture of Bayer and Brandt [J. Alg. Combin. 6 (1997),229{246] about the \largest" intersection lattice of a discriminantal arrangementbased on an essential arrangement of n linear hyperplanes in Rk . An importantingredient in the proof is Crapo's characterization of the matroid of circuits of thecon�guration of n generic points in Rk .1. IntroductionLet A be an arrangement of n linear hyperplanes in Rk with normal vectors �i for 1 � i � n.Assume that the vectors �i span Rk , so that A is essential. The discriminantal arrangementB(A) based on A (see [11], [1]) is the arrangement of linear hyperplanes in Rn with normalvectors the distinct, nonzero vectors of the form�S = k+1Xi=1 (�1)i det (�s1; : : : ; �si�1; �si+1; : : : ; �sk+1) esi; (1)where S = fs1 < s2 < � � � < sk+1g ranges over all subsets of [n] := f1; 2; : : : ; ng with k + 1elements and the ej are the standard coordinate vectors in Rn .We are primarily concerned with a conjecture of Bayer and Brandt [1] about the inter-section lattice [13, x2.1] L(B(A)) of B(A), the main combinatorial invariant of B(A). Bayer�The present research was carried out while the author was a Hans Rademacher Instructor at the Universityof Pennsylvania0138-4821/93 $ 2.50 c
 1999 Heldermann Verlag



284 Ch. A. Athanasiadis: The largest intersection lattice of a discriminantal arrangementand Brandt call A very generic if for all r, the number of elements of L(B(A)) of rank ris the largest possible for a discriminantal arrangement based on an essential arrangementof n linear hyperplanes in Rk . They denote by P (n; k) the collection of all sets of the formfS1; S2; : : : ; Smg, where the Si are subsets of [n], each of cardinality at least k + 1, such thatj[i2I Sij > k +Xi2I (jSij � k)for all I � [m] with jIj � 2. They partially order P (n; k) by letting S � T if every subsetin S is contained in some subset in T . Note that P (n; 1) is isomorphic to the lattice ofpartitions of [n]. The following appears as Conjecture 4.3 in [1].Conjecture 1.1. (Bayer and Brandt [1]) Let n � k + 1 � 2. There exist arrangementsof n hyperplanes in Rk which are very generic. Moreover, the intersection lattice of thediscriminantal arrangement based on any very generic arrangement of n hyperplanes in Rkis isomorphic to P (n; k).The discriminantal arrangement was originally de�ned when the hyperplanes of A are ingeneral position, meaning that any k of the vectors �i are linearly independent, by Maninand Schechtman [11], who initiated the study of its complement. Manin and Schechtmanremarked [11, p. 292] that although B(A) depends on the original arrangement A (see alsoFalk [9]), its intersection lattice depends only on n and k if A lies in a Zariski open subset ofthe space of all arrangements of n linear hyperplanes in general position in Rk . They gave adescription of this lattice, which we denote by L(n; k), for k+1 � n � k+3 ([11, p. 292], seealso [13, p. 205]) and implicitly suggested the problem of describing L(n; k) for other valuesof n.From a di�erent perspective, unkown in the literature of discriminantal arrangements,the matroid of circuits of the con�guration of n points �1, �2; : : :, �n in Rk , realized by thevectors �S, has been introduced by Crapo [4]. Crapo characterized this matroidM(n; k) whenthe coordinates of the vectors �i are generic indeterminates [5] as the Dilworth completionDk(Bn) of the kth lower truncation of the Boolean algebra of rank n (see e.g. Crapo andRota [6, x7], Mason [12] or Brylawski [3, x7]). The lattice L(n; k) is the geometric lattice of
ats of M(n; k). For recent related work, see Crapo and Rota [7].In the present paper we �rst de�ne precisely the Zariski open set O(n; k) that the hypoth-esis of Manin and Schechtman on A refers to, in order to clarify this point (see [9, p. 1222]).We refer to an arrangement A in O(n; k) as su�ciently general. We use ideas from matroidtheory [10] to show (Theorem 2.3) that any arrangement A in O(n; k) is very generic andmoreover, that it maximizes the f -vector of B(A) or, equivalently, the f -vector of the cor-responding �ber zonotope [2, x4]. It follows that very generic arrangements exist and thatthe lattice which Conjecture 1.1 refers to coincides with L(n; k). Finally we show (Theorem3.2) that Crapo's characterization [5, x6] of M(n; k) implies that its lattice of 
ats L(n; k) isisomorphic to P (n; k). Equivalently, the lattice of 
ats of the Dilworth completion Dk(Bn)is isomorphic to P (n; k). This has been observed earlier for k = 1 ([6, Prop. 7.9], [12, x2.5])and completes the proof of Conjecture 1.1.



Ch. A. Athanasiadis: The largest intersection lattice of a discriminantal arrangement 2852. Su�ciently general arrangementsLet A be an essential arrangement of n linear hyperplanes in Rk , as in the beginning ofthe introduction, with normal vectors �i = (�ij)kj=1 for 1 � i � n. For each set S =fS1; S2; : : : ; Smg of (k+1)-subsets of [n] withm � n, we denote by AS them�n matrix whose(r; j) entry is the jth coordinate of the vector �Sr in Rn . Let pS be the sum of the squaresof the m � m minors of the matrix AS, considered as a polynomial in the indeterminates�ij. Thus pS is an element of the ring R[xij ] and pS(�ij) = 0 if and only if the vectors�S1 ; �S2; : : : ; �Sm are linearly dependent.De�nition 2.1. We call A su�ciently general if pS(�ij) 6= 0 for all S for which the poly-nomial pS is not identically zero. We denote by O(n; k) the space of su�ciently generalarrangements.The set O(n; k) is a nonempty Zariski open subset of the space of all arrangements of nlinear hyperplanes in general position in Rk . Apparently, and in view of the following easyproposition, it is the Zariski open set that Manin and Schechtman refer to.Proposition 2.2. If A is restricted in the set O(n; k) then the matroid realized by the vectors�S, and hence the intersection lattice L(n; k) as well as the f -vector of B(A), depend onlyon n and k.Proof. Indeed, a set S = fS1; S2; : : : ; Smg indexes an independent subset of the set of vectorsf�Sg if and only if the polynomial pS is not identically zero. 2We now use the idea of weak maps of matroids [10] to show that any arrangement in O(n; k) isvery generic, in the sense of Bayer and Brandt. A di�erent application of the same techniquewas recently given by Edelman [8].Theorem 2.3. If A is in O(n; k) then B(A) has maximum f -vector and intersection lat-tice with all rank sets of maximum size among all discriminantal arrangements based on anessential arrangement of n linear hyperplanes in Rk .Proof. Let A0 be any essential arrangement of n linear hyperplanes in Rk with correspondingdata �0i, �0ij and �0S. The map �S ! �0S de�nes a weak map [10] of the matroids M and M 0,realized by the sets of vectors f�Sg and f�0Sg respectively. Indeed, if the f�0Sg for S 2 Sare linearly independent then pS(�0ij) 6= 0, so pS is not identically zero and hence the f�Sgfor S 2 S are also linearly independent. The result follows from the fact that the Whitneynumbers of both kinds of M 0 are bounded above by those of M whenever there is a weakmap of matroids M !M 0 (see Proposition 9.3.3 and Corollary 9.3.7 in [10]). 23. The intersection latticeWe �rst recall some useful notation from [7]. A set S = fS1; S2; : : : ; Smg of subsets of [n] isan antichain if none of the subsets contains another. For such an antichain S we let�(S) = � ([S2S S)�XS2S � (S);



286 Ch. A. Athanasiadis: The largest intersection lattice of a discriminantal arrangementwhere � (S) = max(0; jSj� k). Thus S 2 P (n; k) if each Si has cardinality at least k+1 and�(F) > 0 for all F � S with jFj � 2. If T = fT1; T2; : : : ; Tpg is another antichain, we letS � T if for each i there exists a j such that Si � Tj.We assume that A is in O(n; k) and think of L(n; k) as the geometric lattice spanned bythe vectors �S. The matroid M(n; k) realized by these vectors, to which we have referredin Proposition 2.2, has been characterized by Crapo [5, x6] and was shown to be isomorphicto the Dilworth completion Dk(Bn) ([6, x7], [12]) of the kth lower truncation of the Booleanalgebra of rank n. The Dilworth completion Dk(Bn) is a matroid on the set of all (k +1)-subsets of [n] which can be described explicitly in terms of its bases, independent setsand circuits. We keep our discussion as self-contained as possible. The following result isequivalent to Theorem 2 in [5, x6].Theorem 3.1. (Crapo [5]) Let S1; S2; : : : ; Sm be (k + 1)-subsets of [n]. The vectors �S1,�S2 ; : : : ; �Sm are linearly independent if and only ifj[i2I Sij � k + jIj (2)for all I � [m] or, in other words, if S = fS1; S2; : : : ; Smg satis�es �(F) � 0 for all F � S.Proof. The elegant argument in the proof of Theorem 2 in [5, x6] shows that �S :=f�S1 ; �S2; : : : ; �Smg is a basis if and only if �(F) � 0 for all F � S and m = n � k. Itsu�ces to show that if S satis�es (2) then �S is contained in a basis. This follows by anapplication of Hall's marriage theorem to the sets Si � [k]. 2In the remaining of this section we show that this characterization of M(n; k) implies thatits lattice of 
ats L(n; k) is isomorphic to the poset P (n; k), de�ned in the introduction. Foran antichain S = fS1; S2; : : : ; Smg of subsets of [n] we denote by VS the linear span of thevectors �S for all (k + 1)-subsets S of [n] such that S � Si for some 1 � i � m. If S = fSg,where S has any cardinality, we write VS instead of VS . Note that dimVS = � (S), whichclearly implies the \only if" direction of Theorem 3.1. We let '(S) = VS if S 2 P (n; k).Theorem 3.2. The map ' : P (n; k)! L(n; k) is an isomorphism of posets.We give the proof after having established a few lemmas.Lemma 3.3. Let S be an antichain with the properties jSj � k+1 for all S 2 S, �(F) � 0for all F � S and VS = LS2S VS. If S is not in P (n; k) then there exists an antichain S 0with the same three properties as S and such that VS0 = VS, jS 0j < jSj and S � S 0.Proof. By assumption, �(F) = 0 for some F � S with at least two elements. Let U be theunion of the elements of F . Since VF � VU for all F 2 F , the sum of the VF is direct andtheir dimensions � (F ) sum to the dimension � (U) of VU , we haveVU =MF2F VF :Replace the subsets F 2 F in S with their union U to get the desired antichain S 0. Theproperty �(E) � 0 for all E � S 0 follows from the corresponding property of S and the factthat � (U) =PF2F � (F ). 2



Ch. A. Athanasiadis: The largest intersection lattice of a discriminantal arrangement 287Lemma 3.4. If S and T are any antichains with S � T and �(F) � 0 for all F � S, thenXS2S � (S) �XT2T � (T ):Proof. We induct on the cardinality of S. Choose a set T 2 T so that the subfamilyF = fF 2 S : F � Tg is nonempty. ThenXS2S � (S) = XF2F � (F ) + XS 2S�F � (S) � � ([F2F F ) + XS2S�F � (S) �� � (T ) + XS 2S�F � (S):Since S � F � T � fTg, induction completes the proof. 2Lemma 3.5. If S 2 P (n; k), T is a subset of [n] with jT j � k + 1 and fRg � S for allR � T with jRj = k + 1, then fTg � S.Proof. This follows from the de�nition of P (n; k) by an easy induction. 2We now prove Theorem 3.2 and thus complete the proof of Conjecture 1.1.Proof of Theorem 3.2. The map ' is clearly order preserving. We �rst show that it issurjective. Let V be a linear space in L(n; k). Choose a basis f�S1, �S2 ; : : : ; �Smg of V ,where the Si are (k + 1)-subsets of [n] and let S = fS1; S2; : : : ; Smg, so that V = VS . IfS 2 P (n; k) then '(S) = V . If not, then Lemma 3.3 applies and produces a sequence ofantichains S � S1 � S2 � � � � with V = VS1 = VS2 = � � �. Since this procedure reduces mat each step, it terminates. The last antichain T in the sequence is in P (n; k) and satis�es'(T ) = V .Next we show that ' is injective. Suppose on the contrary that '(S) = '(T ) for twodistinct families S; T 2 P (n; k). We may assume that T � S is invalid. By Lemma 3.5 thereexists a (k + 1)-set R contained in some subset in T but not contained in any S 2 S. Since�R 2 VS, we can choose a minimal family F � S of (k + 1)-subsets such that f�F : F 2 Fgis independent and �R lies in its span. Theorem 3.1 and the minimality of F imply that� ([F2F F ) [ R! < jFj+ 1:On the other hand � ([F2F F ) � jFj;by independence of the �F . Hence R � SF2F F and� ([F2F F ) = jFj:



288 Ch. A. Athanasiadis: The largest intersection lattice of a discriminantal arrangementLet E be the subfamily consisting of the subsets E 2 S which contain some F 2 F and E 0 bethe family obtained from E by intersecting all sets in E with SF2F F , so that F � E 0. Wehave � ( [E02E 0E 0) = � ([F2F F ) = XF2F � (F ) � XE02E 0 � (E 0); (3)where the inequality follows from Lemma 3.4. It follows that� ([E2E E) �XE2E � (E); (4)since adding elements to each E 0 preserves the inequality (3). By the choice of R, E hascardinality at least 2. Hence (4) contradicts the fact that S 2 P (n; k).Finally we show that the inverse of ' is order preserving. Let S; T 2 P (n; k) be suchthat '(S) = VS � VT = '(T ). Choose a basis f�S : S 2 S0g for VS and complete it toa basis f�S : S 2 T0g of VT , where S0 � T0 are families of (k + 1)-subsets of [n]. ApplyLemma 3.3 successively to S0 to �nd an S1 2 P (n; k) with S0 � S1 and '(S1) = VS = '(S).Then apply the same lemma to S1 [ (T0 � S0) to �nd a T1 2 P (n; k) with S1 � T1 and'(T1) = VT = '(T ). By injectivity of ' we get S = S1 and T = T1 so S � T , as desired. 2The following is a corollary of Theorem 3.2 and the fact that the operation S 7! S 0 of Lemma3.3 preserves the quantity PS2S � (S).Corollary 3.6. The poset P (n; k) is a geometric lattice with rank functionr(S) =XS2S � (S):Acknowledgement. I wish to thank Margaret Bayer, Henry Crapo, Victor Reiner, Gian-Carlo Rota and Neil White for helpful discussions and useful references.References[1] Bayer, M.; Brandt, K. A.: Discriminantal arrangements, �ber polytopes and formality.J. Algebraic Combin. 6 (1997), 229{246.[2] Billera. L. J.; Sturmfels, B.: Fiber polytopes. Ann. of Math. 135 (1992), 527{549.[3] Brylawski. T.: Constructions. Chapter 7 in: Theory of Matroids (N. White ed.), 127{223, Encyclopedia Math. Appl. 26, Cambridge University Press, 1986.[4] Crapo, H.: Concurrence geometries. Adv. Math. 54 (1984), 278{301.[5] Crapo, H.: The combinatorial theory of structures. In: Matroid theory (A. Recskiand L. Lov�asz eds.), Colloq. Math. Soc. J�anos Bolyai 40, 107{213, North-Holland,Amsterdam-New York 1985.[6] Crapo, H.; Rota, G.-C.: On the Foundations of Combinatorial Theory: CombinatorialGeometries. Preliminary edition, M.I.T. Press, Cambridge, MA, 1970.
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