Characters, Derangements and Descents for the Hyperoctahedral Group

Christos Athanasiadis joint with Ron Adin, Sergi Elizalde and Yuval Roichman

University of Athens

July 9, 2015

Outline

Motivation

- 2 Character formulas and descents for the symmetric group
- 3 Character formulas and descents for the hyperoctahedral group
- 4 Examples and open problems

Much of the motivation comes from certain equidistribution results in enumerative combinatorics. We let

- \mathfrak{S}_n be the group of permutations of $[n] := \{1, 2, \dots, n\}$,
- \mathcal{D}_n be the set of derangements in \mathfrak{S}_n

and for $w \in \mathfrak{S}_n$

- $\operatorname{inv}(w) := \# \{1 \le i < j \le n : w(i) > w(j)\}$ be the number of inversions of w,
- $\operatorname{maj}(w) := \sum_{j \in \operatorname{Des}(w)} j$ be the major index of w,
- $Des(w) := \{j \in [n-1] : w(j) > w(j+1)\}$ be the descent set of w.

Theorem (Foata-Schützenberger, 1978)

For every $J\subseteq [n-1]$ and $k\in \mathbb{N}$, the number

$$\#\{w \in \mathfrak{S}_n : \text{Des}(w^{-1}) = J, \text{ inv}(w) = k\}$$

is equal to

$$\#\{w \in \mathfrak{S}_n : \text{Des}(w^{-1}) = J, \text{maj}(w) = k\}.$$

Let \mathcal{E}_n be the set of permutations (desarrangements) $w \in \mathfrak{S}_n$ for which the minimum element of $[n] \setminus \mathrm{Des}(w)$ is even.

Theorem (Désarménien-Wachs, 1988)

For every $J \subseteq [n-1]$,

$$\#\{w \in \mathcal{D}_n : \operatorname{Des}(w) = J\} = \#\{w \in \mathcal{E}_n : \operatorname{Des}(w^{-1}) = J\}.$$

Note: A B_n -analogue of the theorem of Foata–Schützenberger was given by Adin–Brenti–Roichman (2006) and another by Foata–Han (2007).

Problem: Find a B_n -analogue of the theorem of Désarménien–Wachs.

These two theorems are related to the representation theory of \mathfrak{S}_n . For instance, the original proof of Désarménien–Wachs showed that

$$\sum_{w \in \mathcal{D}_n} F_{n,\mathrm{Des}(w)}(x) \ = \ \sum_{w \in \mathcal{E}_n} F_{n,\mathrm{Des}(w^{-1})}(x)$$

and that the two handsides are in fact symmetric functions in x, where for $S\subseteq [n-1]$

$$F_{n,S}(x) = \sum_{\substack{i_1 \leq i_2 \leq \cdots \leq i_n \\ j \in S \Rightarrow i_i < i_{i+1}}} x_{i_1} x_{i_2} \cdots x_{i_n}$$

is Gessel's fundamental quasisymmetric function.

Moreover, Reiner–Webb (2004) found a natural \mathfrak{S}_n -representation whose Frobenius characteristic is the Désarménien–Wachs symmetric function. More precisely, they showed that

$$\operatorname{ch}(\varepsilon_n \otimes \chi_n) = \sum_{w \in \mathcal{D}_n} F_{n,\operatorname{Des}(w)}(x) = \sum_{w \in \mathcal{E}_n} F_{n,\operatorname{Des}(w^{-1})}(x)$$

where ε_n is the sign character and

$$\chi_n = \sum_{k=0}^n (-1)^{n-k} 1 \uparrow_{(\mathfrak{S}_1)^k \times \mathfrak{S}_{n-k}}^{\mathfrak{S}_n}$$

is the character of the natural \mathfrak{S}_n -representation on the top homology of the complex of injective words.

The Foata–Schützenberger theorem has a representation-theoretic proof via the theory of character formulas of Adin–Roichman (2015), which we now explain.

Recall that the irreducible characters of the symmetric group \mathfrak{S}_n over $\mathbb C$ can be indexed by partitions of n. Let

- χ^{λ} be the irreducible \mathfrak{S}_n -character associated to $\lambda \vdash n$,
- $\operatorname{SYT}(\lambda)$ be the set of SYT of shape λ

and for $\lambda \vdash n$ and $Q \in \mathrm{SYT}(\lambda)$ let

• $\operatorname{Des}(Q)$ be the set of entries $j \in [n-1]$ of Q for which j+1 appears in a lower row than j.

Example: Des
$$(\begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \\ 6 \end{bmatrix}) = \{2, 5\}.$$

The concept of unimodality of a set with respect to a composition will be useful. Let

- $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ be a composition of n,
- $S(\alpha) = \{r_1, r_2, \dots, r_k\}$, where $r_i = \alpha_1 + \alpha_2 + \dots + \alpha_i$ and $r_0 = 0$,
- $J \subseteq [n-1]$.

Consider the segments

$$\{r_{i-1}+1, r_{i-1}+2, \ldots, r_i-1\}, \qquad 1 \leq i \leq k.$$

We call J α -unimodal if its intersection with each segment is a prefix, possibly empty, of that segment for all $1 \le i \le k$.

Example

Let $\alpha = (3, 1, 4, 2)$. Then $S(\alpha) = \{3, 4, 8, 10\}$, the segments are

$$\{1,2\},\ \varnothing,\ \{5,6,7\},\ \{9\}$$

and hence $\{1,3,5,6\}$ is α -unimodal but $\{1,3,5,7\}$ is not.

Theorem (Roichman 1997, Fomin-Greene 1998)

For all partitions $\lambda \vdash n$ and compositions $\alpha \models n$,

$$\chi^{\lambda}(\alpha) = \sum_{Q \in SYT(\lambda)} wt_{\alpha}(Des(Q)),$$

where

$$\operatorname{wt}_{\alpha}(J) := \begin{cases} 0, & \text{if J is not α-unimodal;} \\ (-1)^{|J \setminus S(\alpha)|}, & \text{otherwise} \end{cases}$$

for $J \subseteq [n-1]$.

Definition (Adin–Roichman, 2015)

Let χ be an \mathfrak{S}_n -character. A fine set for χ is a set \mathcal{B} , endowed with a map $\mathrm{Des}: \mathcal{B} \to 2^{[n-1]}$, such that

$$\chi(\alpha) = \sum_{b \in \mathcal{B}} \operatorname{wt}_{\alpha}(\operatorname{Des}(b))$$

for every composition α of n, where

$$\operatorname{wt}_{\alpha}(J) = \begin{cases} 0, & \text{if } J \text{ is not } \alpha\text{-unimodal;} \\ (-1)^{|J \setminus S(\alpha)|}, & \text{otherwise} \end{cases}$$

for
$$J \subseteq [n-1]$$
.

Example

The set $SYT(\lambda)$, endowed with the standard descent map

Des :
$$SYT(\lambda) \rightarrow 2^{[n-1]}$$
,

is a fine set for χ^{λ} for every $\lambda \vdash n$.

Other examples of \mathfrak{S}_n -characters and corresponding combinatorial objects giving rise to fine sets include:

- Gelfand models and involutions in \mathfrak{S}_n ,
- coinvariant algebra characters and permutations of given inversion number,
- Lie characters and conjugacy classes (Gessel-Reutenauer, 1993),
- characters of Specht modules of zigzag shapes and inverse descent classes,
- certain induced characters and k-roots of the identity,
- characters induced from exterior algebras and arc permutations (Elizalde-Roichman, 2014).

Theorem (Adin-Roichman, 2015)

Given a fine set \mathcal{B} for an \mathfrak{S}_n -character χ , the distribution of Des over \mathcal{B} is uniquely determined by χ .

Corollary (Adin–Roichman, 2015)

The theorem of Foata–Schützenberger can be derived from (and is in fact equivalent to) one of Lusztig and Stanley on the representation of \mathfrak{S}_n on its coinvariant algebra.

Recall that the Frobenius characteristic of a class function $\chi:\mathfrak{S}_n\to\mathbb{C}$ is defined by setting

$$\operatorname{ch}(\chi^{\lambda}) = s_{\lambda}(x)$$

and extending by linearity.

Theorem (Adin-A-Elizalde-Roichman)

A set \mathcal{B} , endowed with a map $\mathrm{Des}:\mathcal{B}\to 2^{[n-1]}$, is fine for a character χ of \mathfrak{S}_n if and only if

$$\operatorname{ch}(\chi) = \sum_{b \in \mathcal{B}} F_{n,\operatorname{Des}(b)}(x).$$

In particular, the distribution of Des over $\mathcal B$ is uniquely determined by χ .

For instance, from the formula

$$\operatorname{ch}(\varepsilon_n \otimes \chi_n) = \sum_{w \in \mathcal{D}_n} F_{n,\operatorname{Des}(w)}(x) = \sum_{w \in \mathcal{E}_n} F_{n,\operatorname{Des}(w^{-1})}(x)$$

of Désarménien-Wachs and Reiner-Webb we deduce:

Corollary

The sets \mathcal{D}_n and $\{w^{-1}: w \in \mathcal{E}_n\}$ are both fine for the sign twist of the Reiner–Webb character χ_n . In particular,

$$\chi_n(\alpha) = \varepsilon_\alpha \sum_{w \in \mathcal{D}_n} \operatorname{wt}_\alpha(w)$$

for every composition α of n.

Our goal is to extend this theory to the group of signed permutations

$$B_n = \{w = (w(1), w(2), \dots, w(n)) : |w| \in \mathfrak{S}_n\}.$$

Note: To find the right B_n -analogue of the concept of fine set, we need to find the right B_n -analogue of Roichman's formula for the irreducible characters of \mathfrak{S}_n .

Recall that the irreducible characters of the hyperoctahedral group B_n over $\mathbb C$ can be indexed by bipartitions of n, meaning pairs (λ, μ) of partitions of total sum n. We need to replace:

- partitions $\lambda \vdash n$ by bipartitions $(\lambda, \mu) \vdash n$,
- SYT of shape λ by SY bitableaux (Q^+,Q^-) of shape (λ,μ) ,

- compositions of n and subsets of [n-1] by signed compositions of n and signed subsets of [n],
- descent sets of SYT by signed descent sets of SY bitableaux,
- the weight of a set with respect to a composition by that of a signed set with respect to a signed composition.

A signed subset of [n] is a pair (J, ε) where

- $J \subseteq [n]$ contains n and
- $\varepsilon: J \to \{-,+\}$ is a map.

Note: Suppose $J = \{s_1 < s_2 < \cdots < s_k\}$, where $s_k = n$, and set $s_0 := 0$. The map ε can be extended to a sign vector $\varepsilon : [n] \to \{-,+\}^n$ by setting

$$\varepsilon(j) = \varepsilon(s_i)$$

for $s_{i-1} < j \le s_i$ and $1 \le i \le k$.

Note: The signed subsets of [n] are in one-to-one correspondence with the signed compositions of n, meaning compositions of n for which each part has been assigned the positive or the negative sign.

Example

Let n = 9 and $J = \{3, 5, 6, 8, 9\}$ with

$$\varepsilon(3) = -, \ \varepsilon(5) = \varepsilon(6) = +, \ \varepsilon(8) = -, \ \varepsilon(9) = +.$$

Then (J, ε) is a signed set with corresponding signed composition

$$(3^-, 2^+, 1^+, 2^-, 1^+)$$

and sign vector

$$(-,-,-,+,+,-,-,+)$$
.

The signed (or colored) descent set of $w = (w(1), w(2), \dots, w(n)) \in B_n$ is the pair (J, ε) defined by letting

$$\varepsilon_i = \begin{cases} +, & \text{if } w(i) > 0; \\ -, & \text{if } w(i) < 0 \end{cases}$$

and $J\subseteq [n]$ consist of n along with all $j\in [n-1]$ for which

- w(j) and w(j+1) have different signs, or
- w(j) > w(j+1) > 0, or
- -w(j) > -w(j+1) > 0.

Example

Let
$$n = 9$$
, $w = (-2, -5, -7, 3, 8, 1, -4, -9, 6)$. Then

$$\varepsilon = (-, -, -, +, +, +, -, -, +), \quad J = \{3, 5, 6, 8, 9\}$$

with corresponding signed composition

$$(3^-, 2^+, 1^+, 2^-, 1^+).$$

The signed (or colored) descent set (J, ε) of a SY bitableau (Q^+, Q^-) of shape $(\lambda, \mu) \vdash n$ is defined by letting

$$\varepsilon_i = \begin{cases} +, & \text{if } i \text{ appears in } Q^+; \\ -, & \text{if } i \text{ appears in } Q^- \end{cases}$$

and letting $J\subseteq [n]$ consist of n along with all $j\in [n-1]$ for which

- j appears in Q^+ and j+1 in Q^- , or
- j appears in Q^- and j+1 in Q^+ , or
- j and j+1 appear in the same tableau and j+1 appears in a lower row than j.

Example

Let n = 9 and $Q = (Q^+, Q^-)$, where

Then

$$\varepsilon = (-, +, +, +, +, -, -, -, +), \quad J = \{1, 3, 5, 6, 8, 9\}$$

with corresponding signed composition

$$(1^-, 2^+, 2^+, 1^-, 2^-, 1^+).$$

We let

- $\Sigma^B(n)$ be the set of signed subsets of [n],
- $\chi^{\lambda,\mu}$ be the irreducible B_n -character associated to $(\lambda,\mu)\vdash n$,
- $SYT(\lambda, \mu)$ be the set of SY bitableaux of shape $(\lambda, \mu) \vdash n$,
- cDes(w) be the signed descent set of $w \in B_n$,
- $\mathrm{cDes}(Q)$ be the signed descent set of $Q \in \mathrm{SYT}(\lambda,\mu)$,

so that $cDes(w), cDes(Q) \in \Sigma^B(n)$.

Theorem (Adin-A-Elizalde-Roichman)

For all bipartitions $(\lambda, \mu) \vdash n$ and signed compositions γ of n,

$$\chi^{\lambda,\mu}(\gamma) = \sum_{Q \in \mathrm{SYT}(\lambda,\mu)} \mathrm{wt}_{\gamma}(\mathrm{cDes}(Q)),$$

where $\operatorname{wt}_{\gamma}(\sigma)$ is defined in the sequel.

To define the weight function wt_{γ} let

- γ be a signed composition of n,
- $S(\gamma) = S(|\gamma|) = \{r_1, r_2, \dots, r_k\}$ and set $r_0 = 0$,
- $\sigma = (J, \varepsilon) \in \Sigma^B(n)$

and consider again the segments $\{r_{i-1}+1,r_{i-1}+2,\ldots,r_i-1\}$ for $1\leq i\leq k$. Then

$$\mathrm{wt}_{\gamma}(\sigma) \; := \; \begin{cases} 0, & \text{if J is not $|\gamma|$-unimodal;} \\ 0, & \text{if σ assigns different signs to two} \\ & \text{elements of the same segment;} \\ (-1)^{|J \smallsetminus S(\gamma)| \, + \, n_{\gamma}(\sigma)}, & \text{otherwise} \end{cases}$$

where $n_{\gamma}(\sigma)$ is the number of segments which are assigned the negative sign by both σ and γ .

Definition

Let χ be a B_n -character. A fine set for χ is a set \mathcal{B} , endowed with a map $\mathrm{cDes}: \mathcal{B} \to \Sigma^B(n)$, such that

$$\chi(\gamma) = \sum_{b \in \mathcal{B}} \operatorname{wt}_{\gamma}(\operatorname{cDes}(b))$$

for every signed composition γ of n.

Example

The set $\mathrm{SYT}(\lambda,\mu)$, endowed with the standard signed descent map

cDes : SYT
$$(\lambda, \mu) \to \Sigma^B(n)$$
,

is a fine set for $\chi^{\lambda,\mu}$ for every bipartition $(\lambda,\mu) \vdash n$.

The following signed analogues of the functions $F_{n,S}(x)$ were introduced and studied by Poirier (1998). For $\sigma = (J, \varepsilon) \in \Sigma^B(n)$ define

$$F_{\sigma}(x,y) = \sum_{\substack{1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \\ j \in \mathrm{Des}(\sigma) \Rightarrow i_j < i_{j+1}}} z_{i_1} z_{i_2} \cdots z_{i_n}$$

where

$$z_i = \begin{cases} x_i, & \text{if } \varepsilon_i = +; \\ y_i, & \text{if } \varepsilon_i = - \end{cases}$$

and $\mathrm{Des}(\sigma)$ stands for the set of elements of $J \cap [n-1]$ except for those of negative sign immediately followed by one of positive sign.

Example

For
$$n = 6$$
 and $J = \{2, 3, 5, 6\}$ with sign vector $\varepsilon = (+, +, -, -, +)$,

$$F_{\sigma}(x,y) = \sum_{1 \leq i_1 \leq i_2 < i_3 < i_4 \leq i_5 \leq i_6} x_{i_1} x_{i_2} y_{i_3} y_{i_4} y_{i_5} x_{i_6}.$$

Recall that the Frobenius characteristic of a class function $\chi: B_n \to \mathbb{C}$ is defined by setting

$$\operatorname{ch}(\chi^{\lambda,\mu}) = s_{\lambda}(x)s_{\mu}(y)$$

and extending by linearity.

Theorem (Adin-A-Elizalde-Roichman)

A set \mathcal{B} , endowed with a map $\mathrm{cDes}:\mathcal{B}\to\Sigma^B(n)$, is fine for a character χ of B_n if and only if

$$\operatorname{ch}(\chi) = \sum_{b \in \mathcal{B}} F_{\operatorname{cDes}(b)}(x, y).$$

In particular, the distribution of cDes over ${\cal B}$ is uniquely determined by $\chi.$

Examples

Other examples of B_n -characters and corresponding combinatorial objects giving rise to fine sets include:

- Gelfand models and involutions in B_n ,
- coinvariant algebra characters and signed permutations of given flag inversion number,
- Lie characters and conjugacy classes (Poirier, 1998),
- signed Reiner–Webb characters and derangements in B_n ,
- certain induced characters and k-roots of the identity,
- characters induced from exterior algebras and signed arc permutations.

Coinvariant algebra and flag statistics

Let F be a field of characteristic zero. The group B_n acts on the polynomial ring $F[x_1, x_2, \ldots, x_n]$ by permuting the variables and switching their signs. Let

- $P_n = F[x_1, x_2, \dots, x_n],$
- I_n^B be the ideal of P_n generated by the B_n -invariant polynomials of zero constant term,
- P_n/I_n^B be the coinvariant algebra of B_n .

The algebra P_n/I_n^B is graded by degree and B_n acts on each homogeneous component. Let

• $\chi_{n,k}^B$ be the character of the B_n -action on the kth homogeneous component of P_n/I_n^B .

Coinvariant algebra and flag statistics

The flag-major index of $w \in B_n$ is defined as

$$\operatorname{fmaj}(w) = 2 \sum_{i \in \operatorname{Des}(w)} i + \operatorname{neg}(w),$$

where neg(w) is the number of $i \in [n]$ with w(i) < 0. The flag-inversion number of $w \in B_n$ is defined as

$$\operatorname{finv}(w) = 2 \cdot \operatorname{inv}(w) + \operatorname{neg}(w),$$

where inv(w) is the number of inversions of w = (w(1), w(2), ..., w(n)) with respect to the total order

$$-1 < -2 < \cdots < -n < 1 < 2 < \cdots < n$$
.

Coinvariant algebra and flag statistics

Theorem (Adin-A-Elizalde-Roichman)

The following subsets of B_n are both fine sets for the B_n -character $\chi_{n,k}^B$:

- $\{w \in B_n : \operatorname{finv}(w) = k\}$,
- $\{w \in B_n : \operatorname{fmaj}(w^{-1}) = k\}.$

Corollary (Foata-Han, 2007)

For every $\sigma \in \Sigma^B(n)$ and every $k \in \mathbb{N}$, the number

$$\#\{w \in B_n : cDes(w) = \sigma, finv(w) = k\}$$

is equal to

$$\#\{w \in B_n : cDes(w) = \sigma, fmaj(w^{-1}) = k\}.$$

Derangements and desarrangements

Let ψ_n the character of the natural B_n -action on the top homology of the complex of injective words of type B_n .

Equivalently,

$$\psi_n = \sum_{k=0}^n (-1)^{n-k} 1 \uparrow_{(\mathfrak{S}_1)^k \times B_{n-k}}^{B_n}.$$

Derangements and desarrangements

Let

- \mathcal{D}_n^B be the set of derangements in B_n ,
- \mathcal{E}_n^B be the set of $w \in B_n$ for which the maximum k with

$$w(1) > w(2) > \cdots > w(k) > 0$$

is even (possibly zero).

For instance,

- $\mathcal{D}_2^B = \{(-1,-2), (2,1), (-2,1), (2,-1), (-2,-1)\},\$
- $\mathcal{E}_2^B = \{(2,1), (-1,2), (-1,-2), (-2,1), (-2,-1)\}.$

Derangements and desarrangements

Theorem (Adin-A-Elizalde-Roichman)

For every positive integer n,

$$\omega_x \operatorname{ch}(\psi_n) \ = \ \sum_{w \in \mathcal{D}_n^B} F_{\operatorname{cDes}(w)}(x,y) \ = \ \sum_{w \in \mathcal{E}_n^B} F_{\operatorname{cDes}(w^{-1})}(x,y).$$

In particular,

$$\#\left\{w\in\mathcal{D}_n^B:\operatorname{cDes}(w)=\sigma\right\}\ =\ \#\left\{w\in\mathcal{E}_n^B:\operatorname{cDes}(w^{-1})=\sigma\right\}$$

for every $\sigma \in \Sigma^B(n)$.

Open problems

• Characterize fine subsets of \mathfrak{S}_n and B_n or, equivalently, subsets \mathcal{B} for which

$$\sum_{b \in \mathcal{B}} F_{n,\mathrm{Des}(b)}(x) \quad \text{ or } \quad \sum_{b \in \mathcal{B}} F_{\mathrm{cDes}(b)}(x,y),$$

respectively, is a symmetric and Schur-nonnegative symmetric function.

- Find conceptual proofs of the two main results.
- Extend to other Coxeter groups and complex reflection groups.
- Extend to the Hecke algebras of \mathfrak{S}_n and B_n .
- Give a bijective proof of the last statement on the previous page.