Equivariant y-positivity J

Christos Athanasiadis

University of Athens

August 29, 2018

1/60



Outline

® Gamma-positivity

® Equivariant gamma-positivity

© Group actions on simplicial complexes

@ Group actions on posets

2/60



Eulerian polynomials

We let

® S, be the group of permutations of [n] := {1,2,...,n}

and for w € G,

o des(w) = #{ie[n—1]: w(i) > w(i+1)}
® exc(w) == #{ie[n-1]: w(i) > i}

be the number of descents and excedances of w, respectively. The
polynomial

An(t) = Z tdeS(W) — Z texc(w)

weS, weS,

is the nth Eulerian polynomial.
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1, if n=
1+¢, if n=
An(t) = 1+ 4t + t2, if n=
il Rl TG if n=4
1+ 26t + 6612 + 2613 + t*, if n=
|1+ 57t +302¢% 302t + 57t* - t°,  if n=6.
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Theorem

The polynomial Ap(t)

® s symmetric and unimodal,
¢ (Foata—Schiitzenberger, 1970) can be written as

L(n—1)/2]

A(t) = ) vt 4 1),
k=0

where v, i is the number of w € &, with des(w) = k, for which

® thereisnoi € {2,...,n— 1} such that w(i — 1) > w(i) > w(i + 1),
* w(n—1) < w(n).
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(1, if n=
1+t if n=
An(t) = (14 t)2 +2t, if n=
(L+1t)3+8t(1+1t), if n=
(14 t)* + 22t(1 + t)% + 16t2, if n=5
(1 +t)° +52¢t(1 +t)° + 186¢*(L + t), if n=
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Derangement polynomials

The nth derangement polynomial is defined as

() = Y0 H () = X e,

k=0 weD,

where D, is the set of derangements in &,,.

(0, if n=1
X, if n=2
x + x°, if n=3
dn(x) = ¢ x+7x>+ x3, if n=4
x 4 21x% + 21x3 + x4, if n=5
x 4 51x% + 161x3 + 51x* + x5, if n=6
x4+ 113x% +813x3 +813x* +113x> + x0, if n=7
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Theorem (by several authors)

The polynomial d,(t)

® js symmetric and unimodal,
® can be written as

[n/2]
do(t) = ) &nit(1+ 1),

k=0
where &, . is the number of w € &, with des(w) = k — 1, for which

® thereisnoi € {2,...,n—1} such that w(i — 1) > w(i) > w(i + 1),
* w(l) < w(2) and w(n —1) < w(n).
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Binomial Eulerian polynomials

The nth binomial Eulerian polynomial is defined as

An(t) =1 + tZ( >Ak(t

(1+¢, if n=1
1+ 3t + t2, if n=
A(t) = L i e i e if n=3
1+ 15t + 33t2 + 1563 + t*, if n=
1+ 31t 4 131¢2 + 13183 + 31t* + 2, if n=5
|1+ 63t + 473t +883¢3 + 473t +63t° +1t°, if n=6.
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Theorem (Postnikov—Reiner—Williams, 2008; Shareshian—Wachs,
2017+)

The polynomial A,(t)

® s symmetric and unimodal,
® can be written as

~ Ln/2]

An(t) = ) Fnuth(1+1)"72K,
k=0

where 7, i is the number of w € &, with des(w) = k, for which there
is no index i € {2,...,n— 1} such that w(i — 1) > w(i) > w(i +1).
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Gamma-positivity

Definition

A polynomial 7(t) € R[t] is called y-positive if

Ln/2]
F(t) = ) wth@+ )72
k=0
for some n € N and nonnegative real numbers 70,71, ..., 7|n/2|-

Writing f(t) = po + pit + pat? + -+ + p,t", we then have

® pj=py—jfor0<i<n,
® po<pL< S Plaj-
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Recently, ~v-positivity attracted attention after the work of
e Branden (2004, 2008) on P-Eulerian polynomials,
e Gal (2005) on flag triangulations of spheres.
Gamma-positive polynomials arise often in enumerative, algebraic and

geometric contexts; see:

e A, Gamma-positivity in combinatorics and geometry, 2017.
e T.K. Petersen, Eulerian Numbers, Birkhatiser, 2015.
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Gessel's identities

We let

® x = (x1,x2,x3,...) be a sequence of commuting indeterminates,
® hp(x) be the complete homogeneous symmetric function of degree n
in x, defined by

H(x;z) = Zh,,(x)z” = H 1

L1111 xz
n>0 i>1

and set

® Xw = Xp(1)Xw(2) " Xw(n)

for w: [n] = Zso.
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Gessel (unpublished) showed that

(1 — t)H(X; Z) _ n des(w) n—1—2des(w)
Hoc) —tHxZ) ~ 1+nz>:12 XW:th (1+41t) ,
1—1¢ _ n des(w)+1 n—2—2des(w)
H(x; tz) — tH(x;z) b ,,Z:z ‘ EW: wt (1+1) ’

where the inner sums range over all w : [n] — Z~¢ for which

® w(n—1) < w(n) (respectively, w(1) < w(2) and w(n —1) < w(n)),
® thereisno i€ {2,...,n—1} such that w(i — 1) > w(i) > w(i + 1).
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These identities may be rewritten in the form

L(n—1)/2]
0-ftes) n—1-2k.
H(x; tz) — tH(x; z) = 1+ Z Z Y,k (X 1 +t)

n>1
L, 1n/2) 3
H(x; tz) — tH(x;z) L+ ;2 Z En(x) £+ )",

where v, k(x) and &, «(x) are Schur-positive symmetric functions of degree
n, whose coefficients in the Schur basis refine the numbers 7,  and &, «.
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They can be considered as & ,-equivariant analogues of the «y-expansions
of Ap(t) and dn(t). For instance, write

1—-t)H(x; z )
H((x; tz)t)— §H(x?z) = D ch(Fa(1)) 2

n>0

for some graded & ,-representation F,(t) =>"7 W,,_,,-t", where ch deno-
tes Frobenius characteristic. Applying a suitable exponential specialization,

z" (1—t)e* z"
S a0 = G0 - S (Samim )%
n>0 n>0

and hence

n .

= Zdim(wn,,-) th,

i=0

Thus, Fp(t) is an Sp-equivariant analogue of Ap(t).
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Gessel's first identity implies that

[(n-1)/2]
Fo(t) s, Y Mosth(14£)"172%
k=0

for some (non-virtual) & ,-representations M, , and provides an & ,-equiva-
riant analogue (and refinement) of the y-positivity of A,(t). Similar re-
marks apply to Gessel's second identity, which may be written in the form
[n/2]
Gn(t) e, > Nost*(1+ 1),
k=0

and dy(t).
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Similarly, Shareshian and Wachs provided the &,-equivariant analogue

e L L L o ij%k (L 1y

H(x; tz) — tH(x; z) =

of the 4-positivity of A,(t), where the 7n,k(x) are Schur-positive symme-
tric functions of degree n, whose coefficients in the Schur basis refine the
numbers 7y, x.

Question: Are there more interesting equivariant analogues of y-positivity
phenomena?
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Equivariant y-positivity

We let

® G be a finite group
® R(G) be the representation ring of G.

Definition
A polynomial F(t) € R(G)[t] is called v-positive if
Ln/2]
F(t) = ) Mth(1 4 1)
k=0

for some n € N and non-virtual G-representations Mgy, My,

”'7MLn/2J-
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Writing
F(t) = Po+ Pit+ Pot? 4+ Pyt",
we then have

o P~ P, ;for0<j<n,
® Py <¢ P1<c: <G Plpj), where P <g Q means that Q — P is a
non-virtual G-representation.

20/ 60



Equivariant analogues of polynomials in combinatorics arise often from
group actions on:

simplicial complexes and their face rings
posets and their homology

lattice polytopes and their Ehrhart rings
matroids

and so on.
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Local face modules

5

let

V, = {e1,€2,...,en} be the set of unit coordinate vectors in R"”
>, be the geometric simplex with vertex set V,,

I" be a triangulation of X, with vertex set V|

C[I'] be the face ring of I over C

© be the ideal in C[I'] generated by 61,6,,...,60,, where

0; = Z(v,€;>x\,

veVvr

c(ry=cjry/e.
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Definition (Stanley, 1992)

The local face module of T', denoted Ly, (), is defined as the image in
C(I) of the ideal of C[I'] generated by the square-free monomials which
correspond to the faces of I' lying in the interior of ¥,,.

The module Ly, (') is a finite-dimensional, graded C-algebra whose Hilbert
polynomial

Oy (T, t) = Z dime(Ly, (T

is the local h-polynomial of I' (depends only on the face vectors of the re-
strictions of I to the faces of ¥).
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Theorem (Stanley, 1992)
The polynomial ¢y, (T, t) is:

® symmetric,
® unimodal for every regular triangulation I of .

Note: The polynomial ¢y, (I, t) has been shown to be 7-positive for seve-
ral classes of flag triangulations of X ,.
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For the barycentric subdivision I, of ¥,

{1

{1, 2} {1, 3}

{1,12,3}

{2 {2,3 {3

Stanley showed that ¢y, (', t) = d(t).
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Now let

® G be a subgroup of the automorphism group &, of X, which acts
simplicially on T'.

Then G acts on Ly, (') as well, which becomes a G-equivariant analogue
of ty, (T, t).

Proposition (Stanley, 1992)

For the & ,-action on the barycentric subdivision I, of ¥, we have

n . 1-
Z z" Z ch (Lv,(Tn)i)t" = H(x; tz) — zl‘-H(X;z)'

n>0 i=0

Thus, Y7 o Ly, (Th)i t' is y-positive by Gessel's second identity.
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Question: Is there a B,-analogue of this result? Is there an analogue for
the colored permutation groups Z, 1 &,?
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We let

® K, be the barycentric subdivision of the standard subdivision of ¥,
into n cubes.
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Theorem (A, 2018+)

For the & ,,-action on K,, we have

Z z" z”: ch(Ly (Ky)i)t = H(x; tz) — tH(x; z)

n>0 i=0

Moreover, > 7_ Ly, (Kn)i t' is y-positive for every n.

H(x; tz)? — tH(x; z)?
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More generally, let

® [, , be the r-fold edgewise subdivision of the barycentric subdivision
[, of X,.

n=r=3  (on the right)
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Theorem (A, 2018+)

For the G,-action on I, , we have

27 z”: S = EREIE Sl ER T

n>0 =0 H(x; tz)" — tH(x; z)"

Moreover, >-"_o Ly, (Tp,)i t' is y-positive for all n,r.

Question: Is there an analogous result for the r-fold edgewise subdivision
of X,?7

31/60



Face rings of triangulations of spheres

We let

A be the complex associated to a complete simplicial fan F in R”
fi(A) be the number of i-dimensional faces of A

C[A] be the face ring of A over C

C(A) =Cl[A]/e.

The ring C(A) is a finite-dimensional, graded C-algebra whose Hilbert
polynomial

Zdlm(c Zf t(1— )"

is the h-polynomial of A.
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Theorem
The polynomial h(A, t) is:

® (Klee, 1965) symmetric,
e (Stanley, 1980) unimodal if A is the boundary complex of a simpli-
cial polytope.

Note: The polynomial h(A, t) has been shown to be ~-positive for several
classes of flag triangulations of the sphere.
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Note: When the fan F is rational, there is an associated complex proje-
ctive toric variety 7a. Danilov (1978) showed that

H*(Ta;C) = C(A);.

Now let

® G be a group of orthogonal transformations in R” which acts simpli-
cially on F.

Then G acts on C(A) as well, which becomes a G-equivariant analogue of
h(A, t).
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Prototypical example: We let

® |V be a finite crystallographic Coxeter group of rank n
® Ay be the associated Coxeter complex.

Coxeter complex of type Bs
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Because of its interpretation in terms of the toric variety 7a,,, the graded
W-representation C(A ) was studied by:

Procesi (1990)

Stanley (1989)
Dolgachev—-Lunts (1994)
Stembridge (1994)
Lehrer (2008)

Question: Is 3°7_ o C(Aw); t' y-positive?
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Theorem (Procesi, Stanley)

For the G,-action on the Coxeter complex Ag,, we have

Z z" Z ch (C(Ag,)i) ! = (1-t)H(x; 2)

n>0 i=0

H(x; tz) — tH(x; z)

Thus 27;01 C(Ag,); t' is y-positive by Gessel's first identity.
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Theorem (Dolgachev—Lunts, Stembridge, 1994)

For the Bp-action on the Coxeter complex Ap,, we have

c — (1 = t)H(x; 2)H(x; tz)
; ,X; hs (C(Be))t = H(x; tz)H(y; tz) — tH(x; z)H(y; z)
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Proposition (A, 2018+)
We have

Ln/2]

(1 - )H(x; 2)H(x; tZ) n—
H(x; tz)H(y; tz) — tH(x; z)H(y; z) ;) Z k%, y) £ (14 2) 7

for some Schur positive functions v2, (x,y) € A(x) ® A(y) of total degree
n. As a result, >7_o C(Ag,)i t' is y-positive for every n.

Note: No combinatorial interpretations for the coefficients of vfk(x,y) in
the Schur basis are known at present.
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Note: Given other evidence provided by results by Stembridge and Lehrer,
it seems reasonable to conjecture that > C(Aw); t' is y-positive for e-
very finite (crystallographic) Coxeter group W.

40 /60



We now let

° A,, be the boundary complex of the n-dimensional simplicial stellohe-
dron.
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We now let

° A,, be the boundary complex of the n-dimensional simplicial stellohe-
dron.

42 /60



We now let

e A, be the boundary complex of the n-dimensional simplicial stellohe-
dron.

Note: Postnikov—Reiner-Williams showed that h(A,, t) = A,(t).
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Recall the Shareshian—Wachs identity

[n/2]
(1H—( t)H)( o tH x Z Z Z ’Ynk k(l + t)nf2k‘

n>0

Theorem (Shareshian—Wachs, 2017+)

For the natural & ,-action on A,, we have

Z N i ch <C(5n)i> Ho— (1 — t)H(X;Z)H(x; tz).

0 = H(x; tz) — tH(x; z)

In particular, 37, C(A,) t' is y-positive for every n.
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Question: Is there a B,-analogue of this result? Is there an analogue for
the colored permutation groups Z, 1 &,?
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The triangulation A(I)

We let

® [ be a triangulation of the simplex ¥,
® [ be the restriction of I to the face F of X,,.

Then, there exists a triangulation A(I") of the standard n-dimensional cros-
spolytope which restricts to I on one of its facets and satisfies

Z - dim(F rF; )7

summed over all faces of ¥ ,,.
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Example

For the barycentric subdivision ', of ¥, we get




More generally, we may consider A(T', ;).

Theorem (A, 2018+)

For the &-action on A(I', ;) we have

i H(x; z)H(x; tz) (H(x; tz)"* — tH(x; ) ! |

Z z" Z ch (C(A(Th,r))i) H(x; tz)" — tH(x; z)"

n>0 i=0

Moreover, Y1 C(A(Ty,,))i t' is y-positive for r = 2 and every n.

Note: Gamma-positivity is open for r > 3.
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Note: This construction motivates the definition

n
~ n _
Aor) = 3 (1) 44wt
of the binomial Eulerian polynomial for r-coroled permutations, where

A”J(t) = Z pdes(w) Z gexc(w)

WEZS, wEZG,

is the Eulerian polynomial for Z, 1 &,. One can then show that

[n/2] (r41)/2] _ _
Z ,yn Ny 1 + t)n 2f + Z ,)n i (1 + t)n+1*21
i=1

for some nonnegative integers ?rjf”- and that the first summand is equal to
h(A(Th,r), t).
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Rees products of posets

We let

® P be a finite graded poset with rank function pp,
® @ be a finite graded poset with rank function pg.

Definition (Bjorner—Welker, 2005)
The Rees product of P and @ is defined as

P+Q = {(p.q) € Px Q: pp(p) > po(a)},

with partial order defined by setting (p1,q1) < (p2, q2) if and only if:

® p; < py holds in P,
® g1 < g holds in @, and

* pp(p2) — pp(P1) > pa(92) — po(ar)-
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We let

® B, be the Boolean lattice of subsets of [n]
® (C, be the n-element chain.

For a finite poset P we let
e u(P) = np(0,1),
where /15 is the Mdbius function of P := P U {0,1}.

Theorem (Johnsson, 2005)

The number |u((B, ~ @) * Cp)| is equal to the derangement number d,,.
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Note: When the group G acts on P by order-preserving bijections, it acts
on Px @ as well.

For positive integers n, t we let

® (C, : be the poset whose Hasse diagram is a complete t-ary tree of
height n — 1, with root at the bottom.

Theorem (Shareshian—Wachs, 2009)
For the G p-action on (B, ~ @) * C, we have

1-1t
E(x; tz) — tE(x;z)’

> ch Ay 1((Ba~ @) % Cre;C) 2" =
n>0
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For a graded poset P of rank n+ 1 with minimum element 0, maximum
element 1 and rank function p: P — {0,1,...,n+ 1} we set

e P = P {(A),i}
For S C [n] we set
* bp(S) = (~1)/S11u(Ps)

where B
Ps = {xe P: p(x) € S}

is a rank-selected subposet.
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Theorem (Linusson—Shareshian—Wachs, 2012)
For every EL-shellable poset P of rank n+ 1 and every positive integer t

(P * Cot)| = Z bp([n] ~ S) tI°1 (1 + t)" 17281 4
SeStab({2,...,n—1})

Z bp([n _ 1] N 5) t\5|+1 (1 + t)n7272|5|’
SeStab({2,...,n—2})

where Stab(©) denotes the set of all subsets of © which do not contain
two consecutive integers.

Note: These authors proved a similar formula for
(P~ {1}) % Goe) N {OD)]-
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Suppose now that G acts on P by order-preserving bijections and that P is
Cohen—Macaulay over C.

Theorem (A, 2017+)

I:In—l(F_’ * Cot; C) =¢ Z Bp([n] ~ S) ¢1SI 1+ t)n7172|5\ +
SeStab([2,n—1])

> Be([n—1] ~ §) tISH! (1 4 £)n—27213

SeStab([2,n—2])

where $p(S) is the (non-virtual) G-representation on I:I|5‘_1(F_’5; C).

Note: A similar result holds for I:In_l(((P ~ {i}) * Cn,t) < {ﬁ} C).
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Note: Gessel's identities follow from the special case of the action of G,
on B,. Our other equivariant ~y-positivity results follow by applying this
to the natural r-colored version of B,. For instance, letting

® e,(x) be the elementary symmetric function of degree n, defined by

E(x;z) = Zen(x)z" = H(l—i—x,-z)

n>0 i>1

we have:
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Corollary (A, 2017+)

We have
Ln/2]
E(x; tz) — tE(x; z) « .
1 n
E(x; tz)E(y; tz) — tE(x; 2) E(y; 2) ;}Z ankXy (1+1)
and

E(x 2)E(x; tz) (E(y; tz) — tE(y: 2) & )
E(x; tz)E(y; tz) — tE(x; 2)E(y; z) Zz Z VIk(X=Y) t( )

for some Schur-positive functions &, (x,y), v, (x,y) € A(x) @ A(y) of to-
tal degree n.
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This corollary implies:

Gessel's second identity (set x = 0 to the first one)

the y-positivity of Y7o Ly, (K,)i t' (set x =y to the first one)
the Shareshian—Wachs identity (set y = 0 to the second one)
the y-positivity of Y7, C(Ag,); t' (combine the two).
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Thank you for your attention!
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