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Eulerian polynomials

We let

• Sn be the group of permutations of [n] := {1, 2, . . . , n}

and for w ∈ Sn

• des(w) := # {i ∈ [n − 1] : w(i) > w(i + 1)}
• exc(w) := # {i ∈ [n − 1] : w(i) > i}

be the number of descents and excedances of w , respectively. The
polynomial

An(t) :=
∑
w∈Sn

tdes(w) =
∑
w∈Sn

texc(w)

is the nth Eulerian polynomial.
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Example

An(t) =



1, if n = 1

1 + t, if n = 2

1 + 4t + t2, if n = 3

1 + 11t + 11t2 + t3, if n = 4

1 + 26t + 66t2 + 26t3 + t4, if n = 5

1 + 57t + 302t2 + 302t3 + 57t4 + t5, if n = 6.
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Theorem

The polynomial An(t)

• is symmetric and unimodal,
• (Foata–Schützenberger, 1970) can be written as

An(t) =

b(n−1)/2c∑
k=0

γn,k t
k(1 + t)n−1−2k ,

where γn,k is the number of w ∈ Sn with des(w) = k, for which

• there is no i ∈ {2, . . . , n − 1} such that w(i − 1) > w(i) > w(i + 1),
• w(n − 1) < w(n).
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Example

An(t) =



1, if n = 1

1 + t, if n = 2

(1 + t)2 + 2t, if n = 3

(1 + t)3 + 8t(1 + t), if n = 4

(1 + t)4 + 22t(1 + t)2 + 16t2, if n = 5

(1 + t)5 + 52t(1 + t)3 + 186t2(1 + t), if n = 6.
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Derangement polynomials

The nth derangement polynomial is defined as

dn(t) :=
n∑

k=0

(−1)n−k
(
n

k

)
Ak(t) =

∑
w∈Dn

texc(w),

where Dn is the set of derangements in Sn.

Example

dn(x) =



0, if n = 1

x , if n = 2

x + x2, if n = 3

x + 7x2 + x3, if n = 4

x + 21x2 + 21x3 + x4, if n = 5

x + 51x2 + 161x3 + 51x4 + x5, if n = 6

x + 113x2 + 813x3 + 813x4 + 113x5 + x6, if n = 7.
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Theorem (by several authors)

The polynomial dn(t)

• is symmetric and unimodal,
• can be written as

dn(t) =

bn/2c∑
k=0

ξn,k t
k(1 + t)n−2k ,

where ξn,k is the number of w ∈ Sn with des(w) = k − 1, for which

• there is no i ∈ {2, . . . , n − 1} such that w(i − 1) > w(i) > w(i + 1),
• w(1) < w(2) and w(n − 1) < w(n).
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Binomial Eulerian polynomials

The nth binomial Eulerian polynomial is defined as

Ãn(t) := 1 + t
n∑

k=1

(
n

k

)
Ak(t).

Example

Ãn(t) =



1 + t, if n = 1

1 + 3t + t2, if n = 2

1 + 7t + 7t2 + t3, if n = 3

1 + 15t + 33t2 + 15t3 + t4, if n = 4

1 + 31t + 131t2 + 131t3 + 31t4 + t5, if n = 5

1 + 63t + 473t2 + 883t3 + 473t4 + 63t5 + t6, if n = 6.
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Theorem (Postnikov–Reiner–Williams, 2008; Shareshian–Wachs,
2017+)

The polynomial Ãn(t)

• is symmetric and unimodal,
• can be written as

Ãn(t) =

bn/2c∑
k=0

γ̃n,k t
k(1 + t)n−2k ,

where γ̃n,k is the number of w ∈ Sn with des(w) = k, for which there
is no index i ∈ {2, . . . , n − 1} such that w(i − 1) > w(i) > w(i + 1).
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Gamma-positivity

Definition

A polynomial f (t) ∈ R[t] is called γ-positive if

f (t) =

bn/2c∑
k=0

γkt
k(1 + t)n−2k

for some n ∈ N and nonnegative real numbers γ0, γ1, . . . , γbn/2c.

Writing f (t) = p0 + p1t + p2t
2 + · · ·+ pnt

n, we then have

• pi = pn−i for 0 ≤ i ≤ n,
• p0 ≤ p1 ≤ · · · ≤ pbn/2c.
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Recently, γ-positivity attracted attention after the work of

• Bränden (2004, 2008) on P-Eulerian polynomials,
• Gal (2005) on flag triangulations of spheres.

Gamma-positive polynomials arise often in enumerative, algebraic and
geometric contexts; see:

• A, Gamma-positivity in combinatorics and geometry, 2017.
• T.K. Petersen, Eulerian Numbers, Birkhaüser, 2015.
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Gessel’s identities

We let

• x = (x1, x2, x3, . . . ) be a sequence of commuting indeterminates,
• hn(x) be the complete homogeneous symmetric function of degree n

in x, defined by

H(x; z) :=
∑
n≥0

hn(x)zn =
∏
i≥1

1

1− xiz

and set

• xw = xw(1)xw(2) · · · xw(n)

for w : [n]→ Z>0.
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Gessel (unpublished) showed that

(1− t)H(x; z)

H(x; tz)− tH(x; z)
= 1 +

∑
n≥1

zn
∑
w

xw t
des(w)(1 + t)n−1−2des(w),

1− t

H(x; tz)− tH(x; z)
= 1 +

∑
n≥2

zn
∑
w

xw t
des(w)+1(1 + t)n−2−2des(w),

where the inner sums range over all w : [n]→ Z>0 for which

• w(n − 1) ≤ w(n) (respectively, w(1) ≤ w(2) and w(n − 1) ≤ w(n)),
• there is no i ∈ {2, . . . , n − 1} such that w(i − 1) > w(i) > w(i + 1).

14 / 60



These identities may be rewritten in the form

(1− t)H(x; z)

H(x; tz)− tH(x; z)
= 1 +

∑
n≥1

zn
b(n−1)/2c∑

k=0

γn,k(x) tk(1 + t)n−1−2k ,

1− t

H(x; tz)− tH(x; z)
= 1 +

∑
n≥2

zn
bn/2c∑
k=1

ξn,k(x) tk(1 + t)n−2k ,

where γn,k(x) and ξn,k(x) are Schur-positive symmetric functions of degree
n, whose coefficients in the Schur basis refine the numbers γn,k and ξn,k .
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They can be considered as Sn-equivariant analogues of the γ-expansions
of An(t) and dn(t). For instance, write

(1− t)H(x; z)

H(x; tz)− tH(x; z)
=
∑
n≥0

ch(Fn(t)) zn

for some graded Sn-representation Fn(t) =
∑n

i=0 Wn,i t
i , where ch deno-

tes Frobenius characteristic. Applying a suitable exponential specialization,

∑
n≥0

An(t)
zn

n!
=

(1− t)ez

etz − tez
=
∑
n≥0

(
n∑

i=0

dim(Wn,i ) t
i

)
zn

n!

and hence

An(t) =
n∑

i=0

dim(Wn,i ) t
i .

Thus, Fn(t) is an Sn-equivariant analogue of An(t).
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Gessel’s first identity implies that

Fn(t) ∼=Sn

b(n−1)/2c∑
k=0

Mn,kt
k(1 + t)n−1−2k

for some (non-virtual) Sn-representations Mn,k and provides an Sn-equiva-
riant analogue (and refinement) of the γ-positivity of An(t). Similar re-
marks apply to Gessel’s second identity, which may be written in the form

Gn(t) ∼=Sn

bn/2c∑
k=0

Nn,kt
k(1 + t)n−2k ,

and dn(t).
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Similarly, Shareshian and Wachs provided the Sn-equivariant analogue

(1− t)H(x; z)H(x; tz)

H(x; tz)− tH(x; z)
= 1 +

∑
n≥1

zn
bn/2c∑
k=0

γ̃n,k(x) tk(1 + t)n−2k

of the γ-positivity of Ãn(t), where the γ̃n,k(x) are Schur-positive symme-
tric functions of degree n, whose coefficients in the Schur basis refine the
numbers γ̃n,k .

Question: Are there more interesting equivariant analogues of γ-positivity
phenomena?

18 / 60



Equivariant γ-positivity

We let

• G be a finite group
• R(G ) be the representation ring of G .

Definition

A polynomial F (t) ∈ R(G )[t] is called γ-positive if

F (t) =

bn/2c∑
k=0

Mkt
k(1 + t)n−2k

for some n ∈ N and non-virtual G -representations M0,M1, . . . ,Mbn/2c.
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Writing

F (t) = P0 + P1t + P2t
2 + · · ·+ Pnt

n,

we then have

• Pi
∼=G Pn−i for 0 ≤ i ≤ n,

• P0 ≤G P1 ≤G · · · ≤G Pbn/2c, where P ≤G Q means that Q − P is a
non-virtual G -representation.
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Equivariant analogues of polynomials in combinatorics arise often from
group actions on:

• simplicial complexes and their face rings
• posets and their homology
• lattice polytopes and their Ehrhart rings
• matroids

and so on.
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Local face modules

We let

• Vn = {ε1, ε2, . . . , εn} be the set of unit coordinate vectors in Rn

• Σn be the geometric simplex with vertex set Vn

• Γ be a triangulation of Σn with vertex set VΓ

• C[Γ] be the face ring of Γ over C
• Θ be the ideal in C[Γ] generated by θ1, θ2, . . . , θn, where

θi =
∑
v∈VΓ

〈v , εi 〉 xv

• C(Γ) = C[Γ]/Θ.
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Definition (Stanley, 1992)

The local face module of Γ, denoted LVn(Γ), is defined as the image in
C(Γ) of the ideal of C[Γ] generated by the square-free monomials which
correspond to the faces of Γ lying in the interior of Σn.

The module LVn(Γ) is a finite-dimensional, graded C-algebra whose Hilbert
polynomial

`Vn(Γ, t) :=
n∑

i=0

dimC(LVn(Γ)i ) t
i

is the local h-polynomial of Γ (depends only on the face vectors of the re-
strictions of Γ to the faces of Σ).
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Theorem (Stanley, 1992)

The polynomial `Vn(Γ, t) is:

• symmetric,
• unimodal for every regular triangulation Γ of Σn.

Note: The polynomial `Vn(Γ, t) has been shown to be γ-positive for seve-
ral classes of flag triangulations of Σn.
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Example

For the barycentric subdivision Γn of Σn

{1}

{3}{2} {2, 3}

{1, 2} {1, 3}

{1, 2, 3}

Stanley showed that `Vn(Γn, t) = dn(t).
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Now let

• G be a subgroup of the automorphism group Sn of Σn which acts
simplicially on Γ.

Then G acts on LVn(Γ) as well, which becomes a G -equivariant analogue
of `Vn(Γ, t).

Proposition (Stanley, 1992)

For the Sn-action on the barycentric subdivision Γn of Σn, we have

∑
n≥0

zn
n∑

i=0

ch (LVn(Γn)i ) t
i =

1− t

H(x; tz)− tH(x; z)
.

Thus,
∑n

i=0 LVn(Γn)i t
i is γ-positive by Gessel’s second identity.

26 / 60



Question: Is there a Bn-analogue of this result? Is there an analogue for
the colored permutation groups Zr oSn?
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We let

• Kn be the barycentric subdivision of the standard subdivision of Σn

into n cubes.

Example

n = 3
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Theorem (A, 2018+)

For the Sn-action on Kn we have

∑
n≥0

zn
n∑

i=0

ch (LVn(Kn)i ) t
i =

H(x; tz)− tH(x; z)

H(x; tz)2 − tH(x; z)2
.

Moreover,
∑n

i=0 LVn(Kn)i t
i is γ-positive for every n.
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More generally, let

• Γn,r be the r -fold edgewise subdivision of the barycentric subdivision
Γn of Σn.

Example

n = r = 3 (on the right)
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Theorem (A, 2018+)

For the Sn-action on Γn,r we have

∑
n≥0

zn
n∑

i=0

ch (LVn(Γn,r )i ) t
i =

H(x; tz)r−1 − tH(x; z)r−1

H(x; tz)r − tH(x; z)r
.

Moreover,
∑n

i=0 LVn(Γn,r )i t
i is γ-positive for all n, r .

Question: Is there an analogous result for the r -fold edgewise subdivision
of Σn?
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Face rings of triangulations of spheres

We let

• ∆ be the complex associated to a complete simplicial fan F in Rn

• fi (∆) be the number of i-dimensional faces of ∆
• C[∆] be the face ring of ∆ over C
• C(∆) = C[∆]/Θ.

The ring C(∆) is a finite-dimensional, graded C-algebra whose Hilbert
polynomial

h(∆, t) :=
n∑

i=0

dimC(C(∆)i ) t
i =

n∑
i=0

fi−1(∆) t i (1− t)n−i

is the h-polynomial of ∆.
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Theorem

The polynomial h(∆, t) is:

• (Klee, 1965) symmetric,
• (Stanley, 1980) unimodal if ∆ is the boundary complex of a simpli-

cial polytope.

Note: The polynomial h(∆, t) has been shown to be γ-positive for several
classes of flag triangulations of the sphere.
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Note: When the fan F is rational, there is an associated complex proje-
ctive toric variety T∆. Danilov (1978) showed that

H2i (T∆;C) ∼= C(∆)i .

Now let

• G be a group of orthogonal transformations in Rn which acts simpli-
cially on F .

Then G acts on C(∆) as well, which becomes a G -equivariant analogue of
h(∆, t).
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Prototypical example: We let

• W be a finite crystallographic Coxeter group of rank n
• ∆W be the associated Coxeter complex.
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Coxeter complex of type B3
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Because of its interpretation in terms of the toric variety T∆W
, the graded

W -representation C(∆W ) was studied by:

• Procesi (1990)
• Stanley (1989)
• Dolgachev–Lunts (1994)
• Stembridge (1994)
• Lehrer (2008)

Question: Is
∑n

i=0 C(∆W )i t
i γ-positive?
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Theorem (Procesi, Stanley)

For the Sn-action on the Coxeter complex ∆Sn , we have

∑
n≥0

zn
n−1∑
i=0

ch (C(∆Sn)i ) t
i =

(1− t)H(x; z)

H(x; tz)− tH(x; z)
.

Thus
∑n−1

i=0 C(∆Sn)i t
i is γ-positive by Gessel’s first identity.
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Theorem (Dolgachev–Lunts, Stembridge, 1994)

For the Bn-action on the Coxeter complex ∆Bn , we have

∑
n≥0

zn
n∑

i=0

chB (C(∆Bn)i ) t
i =

(1− t)H(x; z)H(x; tz)

H(x; tz)H(y; tz)− tH(x; z)H(y; z)
.
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Proposition (A, 2018+)

We have

(1− t)H(x; z)H(x; tz)

H(x; tz)H(y; tz)− tH(x; z)H(y; z)
=
∑
n≥0

zn
bn/2c∑
k=0

γBn,k(x, y) tk(1 + t)n−2k

for some Schur positive functions γBn,k(x, y) ∈ Λ(x)⊗ Λ(y) of total degree

n. As a result,
∑n

i=0 C(∆Bn)i t
i is γ-positive for every n.

Note: No combinatorial interpretations for the coefficients of γBn,k(x, y) in
the Schur basis are known at present.
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Note: Given other evidence provided by results by Stembridge and Lehrer,
it seems reasonable to conjecture that

∑n
i=0 C(∆W )i t

i is γ-positive for e-
very finite (crystallographic) Coxeter group W .
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We now let

• ∆̃n be the boundary complex of the n-dimensional simplicial stellohe-
dron.

�
�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A
A�
�
�
��

HH
HHH

HHHH

41 / 60



We now let

• ∆̃n be the boundary complex of the n-dimensional simplicial stellohe-
dron.
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We now let

• ∆̃n be the boundary complex of the n-dimensional simplicial stellohe-
dron.
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Note: Postnikov–Reiner–Williams showed that h(∆̃n, t) = Ãn(t).
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Recall the Shareshian–Wachs identity

(1− t)H(x; z)H(x; tz)

H(x; tz)− tH(x; z)
=
∑
n≥0

zn
bn/2c∑
k=0

γ̃n,k(x) tk(1 + t)n−2k .

Theorem (Shareshian–Wachs, 2017+)

For the natural Sn-action on ∆̃n, we have

∑
n≥0

zn
n∑

i=0

ch
(
C(∆̃n)i

)
t i =

(1− t)H(x; z)H(x; tz)

H(x; tz)− tH(x; z)
.

In particular,
∑n

i=0 C(∆̃n)i t
i is γ-positive for every n.
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Question: Is there a Bn-analogue of this result? Is there an analogue for
the colored permutation groups Zr oSn?
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The triangulation ∆(Γ)

We let

• Γ be a triangulation of the simplex Σn

• ΓF be the restriction of Γ to the face F of Σn.

Then, there exists a triangulation ∆(Γ) of the standard n-dimensional cros-
spolytope which restricts to Γ on one of its facets and satisfies

h(∆(Γ), t) =
∑
F

tn−dim(F ) h(ΓF , t),

summed over all faces of Σn.
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Example

For the barycentric subdivision Γn of Σn we get

h(∆(Γn), t) =
n∑

k=0

(
n

k

)
tn−kAk(t) = 1 + t

n∑
k=1

(
n

k

)
Ak(t) = Ãn(t).

47 / 60



More generally, we may consider ∆(Γn,r ).

Theorem (A, 2018+)

For the Sn-action on ∆(Γn,r ) we have

∑
n≥0

zn
n∑

i=0

ch (C(∆(Γn,r ))i ) t
i =

H(x; z)H(x; tz)
(
H(x; tz)r−1 − tH(x; z)r−1

)
H(x; tz)r − tH(x; z)r

.

Moreover,
∑n

i=0 C(∆(Γn,r ))i t
i is γ-positive for r = 2 and every n.

Note: Gamma-positivity is open for r ≥ 3.
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Note: This construction motivates the definition

Ãn,r (t) =
n∑

k=0

(
n

k

)
tn−kAk,r (t)

of the binomial Eulerian polynomial for r -coroled permutations, where

An,r (t) :=
∑

w∈Zr oSn

tdes(w) =
∑

w∈Zr oSn

texc(w)

is the Eulerian polynomial for Zr oSn. One can then show that

Ãn,r (t) =

bn/2c∑
i=0

γ̃+
n,r ,i t

i (1 + t)n−2i +

b(n+1)/2c∑
i=1

γ̃−n,r ,i t
i (1 + t)n+1−2i

for some nonnegative integers γ̃±n,r ,i and that the first summand is equal to
h(∆(Γn,r ), t).
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Rees products of posets

We let

• P be a finite graded poset with rank function ρP ,
• Q be a finite graded poset with rank function ρQ .

Definition (Björner–Welker, 2005)

The Rees product of P and Q is defined as

P ∗ Q = {(p, q) ∈ P × Q : ρP(p) ≥ ρQ(q)},

with partial order defined by setting (p1, q1) ≤ (p2, q2) if and only if:

• p1 ≤ p2 holds in P,
• q1 ≤ q2 holds in Q, and
• ρP(p2)− ρP(p1) ≥ ρQ(q2)− ρQ(q1).
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Example
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We let

• Bn be the Boolean lattice of subsets of [n]
• Cn be the n-element chain.

For a finite poset P we let

• µ(P) = µP̂(0̂, 1̂),

where µP̂ is the Möbius function of P̂ := P ∪ {0̂, 1̂}.

Theorem (Johnsson, 2005)

The number |µ((Bn r∅) ∗ Cn)| is equal to the derangement number dn.
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Note: When the group G acts on P by order-preserving bijections, it acts
on P ∗ Q as well.

For positive integers n, t we let

• Cn,t be the poset whose Hasse diagram is a complete t-ary tree of
height n − 1, with root at the bottom.

Theorem (Shareshian–Wachs, 2009)

For the Sn-action on (Bn r∅) ∗ Cn we have∑
n≥0

ch H̃n−1((Bn r∅) ∗ Cn,t ;C) zn =
1− t

E (x; tz)− tE (x; z)
.
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For a graded poset P of rank n + 1 with minimum element 0̂, maximum
element 1̂ and rank function ρ : P → {0, 1, . . . , n + 1} we set

• P̄ = P r {0̂, 1̂}.

For S ⊆ [n] we set

• bP(S) = (−1)|S|−1µ(P̄S),

where
P̄S = {x ∈ P : ρ(x) ∈ S}

is a rank-selected subposet.
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Theorem (Linusson–Shareshian–Wachs, 2012)

For every EL-shellable poset P of rank n + 1 and every positive integer t

|µ(P̄ ∗ Cn,t)| =
∑

S∈Stab({2,...,n−1})

bP([n] r S) t |S | (1 + t)n−1−2|S | +

∑
S∈Stab({2,...,n−2})

bP([n − 1] r S) t |S |+1 (1 + t)n−2−2|S |,

where Stab(Θ) denotes the set of all subsets of Θ which do not contain
two consecutive integers.

Note: These authors proved a similar formula for

|µ(((P r {1̂}) ∗ Cn,t) r {0̂})|.
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Suppose now that G acts on P by order-preserving bijections and that P is
Cohen–Macaulay over C.

Theorem (A, 2017+)

H̃n−1(P̄ ∗ Cn,t ;C) ∼=G

∑
S∈Stab([2,n−1])

βP([n] r S) t |S | (1 + t)n−1−2|S| +

∑
S∈Stab([2,n−2])

βP([n − 1] r S) t |S|+1 (1 + t)n−2−2|S |,

where βP(S) is the (non-virtual) G-representation on H̃|S |−1(P̄S ;C).

Note: A similar result holds for H̃n−1(((P r {1̂}) ∗ Cn,t) r {0̂};C).
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Note: Gessel’s identities follow from the special case of the action of Sn

on Bn. Our other equivariant γ-positivity results follow by applying this
to the natural r -colored version of Bn. For instance, letting

• en(x) be the elementary symmetric function of degree n, defined by

E (x; z) :=
∑
n≥0

en(x)zn =
∏
i≥1

(1 + xiz)

we have:
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Corollary (A, 2017+)

We have

E (x; tz)− tE (x; z)

E (x; tz)E (y; tz)− tE (x; z)E (y; z)
=
∑
n≥0

zn
bn/2c∑
k=0

ξ+
n,k(x, y) tk(1 + t)n−2k

and

E (x; z)E (x; tz) (E (y; tz)− tE (y; z))

E (x; tz)E (y; tz)− tE (x; z)E (y; z)
=
∑
n≥0

zn
bn/2c∑
k=0

γ+
n,k(x, y) tk(1 + t)n−2k

for some Schur-positive functions ξ+
n,k(x, y), γ+

n,k(x, y) ∈ Λ(x)⊗ Λ(y) of to-
tal degree n.
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This corollary implies:

• Gessel’s second identity (set x = 0 to the first one)
• the γ-positivity of

∑n
i=0 LVn(Kn)i t

i (set x = y to the first one)
• the Shareshian–Wachs identity (set y = 0 to the second one)
• the γ-positivity of

∑n
i=0 C(∆Bn)i t

i (combine the two).
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Thank you for your attention!
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