Equivariant γ -positivity

Christos Athanasiadis

University of Athens

August 29, 2018

Outline

- Gamma-positivity
- 2 Equivariant gamma-positivity
- 3 Group actions on simplicial complexes
- 4 Group actions on posets

Eulerian polynomials

We let

• \mathfrak{S}_n be the group of permutations of $[n] := \{1, 2, \dots, n\}$

and for $\mathbf{w} \in \mathfrak{S}_n$

- $des(w) := \#\{i \in [n-1] : w(i) > w(i+1)\}$
- $exc(w) := \#\{i \in [n-1] : w(i) > i\}$

be the number of descents and excedances of w, respectively. The polynomial

$$A_n(t) := \sum_{w \in \mathfrak{S}_n} t^{\operatorname{des}(w)} = \sum_{w \in \mathfrak{S}_n} t^{\operatorname{exc}(w)}$$

is the *n*th Eulerian polynomial.

Example

$$A_n(t) = \begin{cases} 1, & \text{if } n = 1\\ 1+t, & \text{if } n = 2\\ 1+4t+t^2, & \text{if } n = 3\\ 1+11t+11t^2+t^3, & \text{if } n = 4\\ 1+26t+66t^2+26t^3+t^4, & \text{if } n = 5\\ 1+57t+302t^2+302t^3+57t^4+t^5, & \text{if } n = 6. \end{cases}$$

Theorem

The polynomial $A_n(t)$

- is symmetric and unimodal,
- (Foata-Schützenberger, 1970) can be written as

$$A_n(t) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \gamma_{n,k} t^k (1+t)^{n-1-2k},$$

where $\gamma_{n,k}$ is the number of $w \in \mathfrak{S}_n$ with $\operatorname{des}(w) = k$, for which

- there is no $i \in \{2, ..., n-1\}$ such that w(i-1) > w(i) > w(i+1),
- w(n-1) < w(n).

Example

$$A_n(t) = \begin{cases} 1, & \text{if } n = 1\\ 1+t, & \text{if } n = 2\\ (1+t)^2 + 2t, & \text{if } n = 3\\ (1+t)^3 + 8t(1+t), & \text{if } n = 4\\ (1+t)^4 + 22t(1+t)^2 + 16t^2, & \text{if } n = 5\\ (1+t)^5 + 52t(1+t)^3 + 186t^2(1+t), & \text{if } n = 6. \end{cases}$$

Derangement polynomials

The *n*th derangement polynomial is defined as

$$d_n(t) := \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} A_k(t) = \sum_{w \in \mathcal{D}_n} t^{\operatorname{exc}(w)},$$

where \mathcal{D}_n is the set of derangements in \mathfrak{S}_n .

Example

$$d_n(x) = \begin{cases} 0, & \text{if } n = 1\\ x, & \text{if } n = 2\\ x + x^2, & \text{if } n = 3\\ x + 7x^2 + x^3, & \text{if } n = 4\\ x + 21x^2 + 21x^3 + x^4, & \text{if } n = 5\\ x + 51x^2 + 161x^3 + 51x^4 + x^5, & \text{if } n = 6\\ x + 113x^2 + 813x^3 + 813x^4 + 113x^5 + x^6, & \text{if } n = 7. \end{cases}$$

Theorem (by several authors)

The polynomial $d_n(t)$

- is symmetric and unimodal,
- can be written as

$$d_n(t) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{\xi_{n,k}}{\xi_{n,k}} t^k (1+t)^{n-2k},$$

where $\xi_{n,k}$ is the number of $w \in \mathfrak{S}_n$ with $\operatorname{des}(w) = k - 1$, for which

- there is no $i \in \{2, ..., n-1\}$ such that w(i-1) > w(i) > w(i+1),
- w(1) < w(2) and w(n-1) < w(n).

Binomial Eulerian polynomials

The *n*th binomial Eulerian polynomial is defined as

$$\widetilde{A}_n(t) := 1 + t \sum_{k=1}^n \binom{n}{k} A_k(t).$$

Example

$$\widetilde{A}_{n}(t) = \begin{cases} 1+t, & \text{if } n=1\\ 1+3t+t^{2}, & \text{if } n=2\\ 1+7t+7t^{2}+t^{3}, & \text{if } n=3\\ 1+15t+33t^{2}+15t^{3}+t^{4}, & \text{if } n=4\\ 1+31t+131t^{2}+131t^{3}+31t^{4}+t^{5}, & \text{if } n=5\\ 1+63t+473t^{2}+883t^{3}+473t^{4}+63t^{5}+t^{6}, & \text{if } n=6. \end{cases}$$

Theorem (Postnikov–Reiner–Williams, 2008; Shareshian–Wachs, 2017+)

The polynomial $\widetilde{A}_n(t)$

- is symmetric and unimodal,
- can be written as

$$\widetilde{A}_n(t) = \sum_{k=0}^{\lfloor n/2 \rfloor} \widetilde{\gamma}_{n,k} t^k (1+t)^{n-2k},$$

where $\widetilde{\gamma}_{n,k}$ is the number of $w \in \mathfrak{S}_n$ with $\operatorname{des}(w) = k$, for which there is no index $i \in \{2, \ldots, n-1\}$ such that w(i-1) > w(i) > w(i+1).

Gamma-positivity

Definition

A polynomial $f(t) \in \mathbb{R}[t]$ is called γ -positive if

$$f(t) = \sum_{k=0}^{\lfloor n/2\rfloor} \gamma_k t^k (1+t)^{n-2k}$$

for some $n \in \mathbb{N}$ and nonnegative real numbers $\gamma_0, \gamma_1, \dots, \gamma_{\lfloor n/2 \rfloor}$.

Writing
$$f(t) = p_0 + p_1 t + p_2 t^2 + \cdots + p_n t^n$$
, we then have

- $p_i = p_{n-i}$ for $0 \le i \le n$,
- $p_0 \leq p_1 \leq \cdots \leq p_{\lfloor n/2 \rfloor}$.

Recently, γ -positivity attracted attention after the work of

- Bränden (2004, 2008) on P-Eulerian polynomials,
- Gal (2005) on flag triangulations of spheres.

Gamma-positive polynomials arise often in enumerative, algebraic and geometric contexts; see:

- A, Gamma-positivity in combinatorics and geometry, 2017.
- T.K. Petersen, Eulerian Numbers, Birkhaüser, 2015.

Gessel's identities

We let

- $\mathbf{x} = (x_1, x_2, x_3, \dots)$ be a sequence of commuting indeterminates,
- $h_n(\mathbf{x})$ be the complete homogeneous symmetric function of degree n in \mathbf{x} , defined by

$$H(\mathbf{x}; \mathbf{z}) := \sum_{n\geq 0} h_n(\mathbf{x}) z^n = \prod_{i\geq 1} \frac{1}{1-x_i z}$$

and set

$$\bullet \mathbf{x}_{w} = x_{w(1)} x_{w(2)} \cdots x_{w(n)}$$

for
$$w: [n] \to \mathbb{Z}_{>0}$$
.

Gessel (unpublished) showed that

$$\begin{split} &\frac{(1-t)H(\mathbf{x};z)}{H(\mathbf{x};tz)-tH(\mathbf{x};z)} &= 1+\sum_{n\geq 1}z^n\sum_w\mathbf{x}_wt^{\mathrm{des}(w)}(1+t)^{n-1-2\mathrm{des}(w)},\\ &\frac{1-t}{H(\mathbf{x};tz)-tH(\mathbf{x};z)} &= 1+\sum_{n\geq 2}z^n\sum_w\mathbf{x}_wt^{\mathrm{des}(w)+1}(1+t)^{n-2-2\mathrm{des}(w)}, \end{split}$$

where the inner sums range over all $w:[n] \to \mathbb{Z}_{>0}$ for which

- $w(n-1) \le w(n)$ (respectively, $w(1) \le w(2)$ and $w(n-1) \le w(n)$),
- there is no $i \in \{2, ..., n-1\}$ such that w(i-1) > w(i) > w(i+1).

These identities may be rewritten in the form

$$\frac{(1-t)H(\mathbf{x};z)}{H(\mathbf{x};tz)-tH(\mathbf{x};z)} = 1 + \sum_{n\geq 1} z^n \sum_{k=0}^{\lfloor (n-1)/2\rfloor} \gamma_{n,k}(\mathbf{x}) t^k (1+t)^{n-1-2k},$$

$$\frac{1-t}{H(\mathbf{x};tz)-tH(\mathbf{x};z)} = 1 + \sum_{n\geq 2} z^n \sum_{k=1}^{\lfloor n/2\rfloor} \xi_{n,k}(\mathbf{x}) t^k (1+t)^{n-2k},$$

where $\gamma_{n,k}(\mathbf{x})$ and $\xi_{n,k}(\mathbf{x})$ are Schur-positive symmetric functions of degree n, whose coefficients in the Schur basis refine the numbers $\gamma_{n,k}$ and $\xi_{n,k}$.

They can be considered as \mathfrak{S}_n -equivariant analogues of the γ -expansions of $A_n(t)$ and $d_n(t)$. For instance, write

$$\frac{(1-t)H(\mathbf{x};z)}{H(\mathbf{x};tz)-tH(\mathbf{x};z)} = \sum_{n\geq 0} \operatorname{ch}(F_n(t)) z^n$$

for some graded \mathfrak{S}_n -representation $F_n(t) = \sum_{i=0}^n W_{n,i} t^i$, where ch denotes Frobenius characteristic. Applying a suitable exponential specialization,

$$\sum_{n\geq 0} A_n(t) \frac{z^n}{n!} = \frac{(1-t)e^z}{e^{tz} - te^z} = \sum_{n\geq 0} \left(\sum_{i=0}^n \dim(W_{n,i}) t^i \right) \frac{z^n}{n!}$$

and hence

$$A_n(t) = \sum_{i=0}^n \dim(W_{n,i}) t^i.$$

Thus, $F_n(t)$ is an \mathfrak{S}_n -equivariant analogue of $A_n(t)$.

Gessel's first identity implies that

$$F_n(t) \cong_{\mathfrak{S}_n} \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} M_{n,k} t^k (1+t)^{n-1-2k}$$

for some (non-virtual) \mathfrak{S}_n -representations $M_{n,k}$ and provides an \mathfrak{S}_n -equivariant analogue (and refinement) of the γ -positivity of $A_n(t)$. Similar remarks apply to Gessel's second identity, which may be written in the form

$$G_n(t) \cong_{\mathfrak{S}_n} \sum_{k=0}^{\lfloor n/2 \rfloor} N_{n,k} t^k (1+t)^{n-2k},$$

and $d_n(t)$.

Similarly, Shareshian and Wachs provided the \mathfrak{S}_n -equivariant analogue

$$\frac{(1-t)H(\mathbf{x};z)H(\mathbf{x};tz)}{H(\mathbf{x};tz)-tH(\mathbf{x};z)} = 1 + \sum_{n\geq 1} z^n \sum_{k=0}^{\lfloor n/2\rfloor} \widetilde{\gamma}_{n,k}(\mathbf{x}) t^k (1+t)^{n-2k}$$

of the γ -positivity of $\widetilde{A}_n(t)$, where the $\widetilde{\gamma}_{n,k}(\mathbf{x})$ are Schur-positive symmetric functions of degree n, whose coefficients in the Schur basis refine the numbers $\widetilde{\gamma}_{n,k}$.

Question: Are there more interesting equivariant analogues of γ -positivity phenomena?

Equivariant γ -positivity

We let

- G be a finite group
- R(G) be the representation ring of G.

Definition

A polynomial $F(t) \in R(G)[t]$ is called γ -positive if

$$F(t) = \sum_{k=0}^{\lfloor n/2 \rfloor} M_k t^k (1+t)^{n-2k}$$

for some $n \in \mathbb{N}$ and non-virtual G-representations $M_0, M_1, \ldots, M_{\lfloor n/2 \rfloor}$.

Writing

$$F(t) = P_0 + P_1 t + P_2 t^2 + \cdots + P_n t^n,$$

we then have

- $P_i \cong_G P_{n-i}$ for $0 \le i \le n$,
- $P_0 \leq_G P_1 \leq_G \cdots \leq_G P_{\lfloor n/2 \rfloor}$, where $P \leq_G Q$ means that Q P is a non-virtual G-representation.

Equivariant analogues of polynomials in combinatorics arise often from group actions on:

- simplicial complexes and their face rings
- posets and their homology
- lattice polytopes and their Ehrhart rings
- matroids

and so on.

Local face modules

We let

- $V_n = \{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n\}$ be the set of unit coordinate vectors in \mathbb{R}^n
- Σ_n be the geometric simplex with vertex set V_n
- Γ be a triangulation of Σ_n with vertex set V_{Γ}
- $\mathbb{C}[\Gamma]$ be the face ring of Γ over \mathbb{C}
- Θ be the ideal in $\mathbb{C}[\Gamma]$ generated by $\theta_1, \theta_2, \dots, \theta_n$, where

$$\theta_i = \sum_{v \in V_{\Gamma}} \langle v, \varepsilon_i \rangle x_v$$

• $\mathbb{C}(\Gamma) = \mathbb{C}[\Gamma]/\Theta$.

Definition (Stanley, 1992)

The local face module of Γ , denoted $L_{V_n}(\Gamma)$, is defined as the image in $\mathbb{C}(\Gamma)$ of the ideal of $\mathbb{C}[\Gamma]$ generated by the square-free monomials which correspond to the faces of Γ lying in the interior of Σ_n .

The module $L_{V_n}(\Gamma)$ is a finite-dimensional, graded \mathbb{C} -algebra whose Hilbert polynomial

$$\ell_{V_n}(\Gamma, t) := \sum_{i=0}^n \dim_{\mathbb{C}}(L_{V_n}(\Gamma)_i) t^i$$

is the local h-polynomial of Γ (depends only on the face vectors of the restrictions of Γ to the faces of Σ).

Theorem (Stanley, 1992)

The polynomial $\ell_{V_n}(\Gamma, t)$ is:

- symmetric,
- unimodal for every regular triangulation Γ of Σ_n .

Note: The polynomial $\ell_{V_n}(\Gamma, t)$ has been shown to be γ -positive for several classes of flag triangulations of Σ_n .

Example

For the barycentric subdivision Γ_n of Σ_n

Stanley showed that $\ell_{V_n}(\Gamma_n, t) = d_n(t)$.

Now let

• *G* be a subgroup of the automorphism group \mathfrak{S}_n of Σ_n which acts simplicially on Γ .

Then G acts on $L_{V_n}(\Gamma)$ as well, which becomes a G-equivariant analogue of $\ell_{V_n}(\Gamma, t)$.

Proposition (Stanley, 1992)

For the \mathfrak{S}_n -action on the barycentric subdivision Γ_n of Σ_n , we have

$$\sum_{n>0} z^n \sum_{i=0}^n \operatorname{ch} \left(L_{V_n}(\Gamma_n)_i \right) t^i = \frac{1-t}{H(\mathbf{x}; tz) - tH(\mathbf{x}; z)}.$$

Thus, $\sum_{i=0}^{n} L_{V_n}(\Gamma_n)_i t^i$ is γ -positive by Gessel's second identity.

Question: Is there a \mathcal{B}_n -analogue of this result? Is there an analogue for the colored permutation groups $\mathbb{Z}_r \wr \mathfrak{S}_n$?

We let

• K_n be the barycentric subdivision of the standard subdivision of Σ_n into n cubes.

Theorem (A, 2018+)

For the \mathfrak{S}_n -action on K_n we have

$$\sum_{n\geq 0} z^n \sum_{i=0}^n \operatorname{ch} (L_{V_n}(K_n)_i) t^i = \frac{H(\mathbf{x}; tz) - tH(\mathbf{x}; z)}{H(\mathbf{x}; tz)^2 - tH(\mathbf{x}; z)^2}.$$

Moreover, $\sum_{i=0}^{n} L_{V_n}(K_n)_i t^i$ is γ -positive for every n.

More generally, let

• $\Gamma_{n,r}$ be the r-fold edgewise subdivision of the barycentric subdivision Γ_n of Σ_n .

Example

$$n = r = 3$$

n = r = 3 (on the right)

Theorem (A, 2018+)

For the \mathfrak{S}_n -action on $\Gamma_{n,r}$ we have

$$\sum_{n>0} z^n \sum_{i=0}^n \operatorname{ch} \left(L_{V_n}(\Gamma_{n,r})_i \right) t^i = \frac{H(\mathbf{x}; tz)^{r-1} - tH(\mathbf{x}; z)^{r-1}}{H(\mathbf{x}; tz)^r - tH(\mathbf{x}; z)^r}.$$

Moreover, $\sum_{i=0}^{n} L_{V_n}(\Gamma_{n,r})_i t^i$ is γ -positive for all n, r.

Question: Is there an analogous result for the *r*-fold edgewise subdivision of Σ_n ?

Face rings of triangulations of spheres

We let

- Δ be the complex associated to a complete simplicial fan \mathcal{F} in \mathbb{R}^n
- $f_i(\Delta)$ be the number of *i*-dimensional faces of Δ
- $\mathbb{C}[\Delta]$ be the face ring of Δ over \mathbb{C}
- $\mathbb{C}(\Delta) = \mathbb{C}[\Delta]/\Theta$.

The ring $\mathbb{C}(\Delta)$ is a finite-dimensional, graded \mathbb{C} -algebra whose Hilbert polynomial

$$h(\Delta, t) := \sum_{i=0}^n \dim_{\mathbb{C}}(\mathbb{C}(\Delta)_i) t^i = \sum_{i=0}^n f_{i-1}(\Delta) t^i (1-t)^{n-i}$$

is the h-polynomial of Δ .

Theorem

The polynomial $h(\Delta, t)$ is:

- (Klee, 1965) symmetric,
- (Stanley, 1980) unimodal if Δ is the boundary complex of a simplicial polytope.

Note: The polynomial $h(\Delta, t)$ has been shown to be γ -positive for several classes of flag triangulations of the sphere.

Note: When the fan \mathcal{F} is rational, there is an associated complex projective toric variety \mathcal{T}_{Δ} . Danilov (1978) showed that

$$H^{2i}(\mathcal{T}_{\Delta};\mathbb{C}) \cong \mathbb{C}(\Delta)_i$$
.

Now let

• G be a group of orthogonal transformations in \mathbb{R}^n which acts simplicially on \mathcal{F} .

Then G acts on $\mathbb{C}(\Delta)$ as well, which becomes a G-equivariant analogue of $h(\Delta,t)$.

Prototypical example: We let

- W be a finite crystallographic Coxeter group of rank n
- Δ_W be the associated Coxeter complex.

Coxeter complex of type B_3

Because of its interpretation in terms of the toric variety \mathcal{T}_{Δ_W} , the graded W-representation $\mathbb{C}(\Delta_W)$ was studied by:

- Procesi (1990)
- Stanley (1989)
- Dolgachev–Lunts (1994)
- Stembridge (1994)
- Lehrer (2008)

Question: Is $\sum_{i=0}^{n} \mathbb{C}(\Delta_W)_i t^i \gamma$ -positive?

Theorem (Procesi, Stanley)

For the \mathfrak{S}_n -action on the Coxeter complex $\Delta_{\mathfrak{S}_n}$, we have

$$\sum_{n\geq 0} z^n \sum_{i=0}^{n-1} \operatorname{ch} \left(\mathbb{C}(\Delta_{\mathfrak{S}_n})_i \right) t^i = \frac{(1-t)H(\mathbf{x};z)}{H(\mathbf{x};tz) - tH(\mathbf{x};z)}.$$

Thus $\sum_{i=0}^{n-1} \mathbb{C}(\Delta_{\mathfrak{S}_n})_i t^i$ is γ -positive by Gessel's first identity.

Theorem (Dolgachev-Lunts, Stembridge, 1994)

For the \mathcal{B}_n -action on the Coxeter complex $\Delta_{\mathcal{B}_n}$, we have

$$\sum_{n\geq 0} z^n \sum_{i=0}^n \operatorname{ch}_{\mathcal{B}} \left(\mathbb{C}(\Delta_{\mathcal{B}_n})_i \right) t^i = \frac{(1-t)H(\mathbf{x};z)H(\mathbf{x};tz)}{H(\mathbf{x};tz)H(\mathbf{y};tz) - tH(\mathbf{x};z)H(\mathbf{y};z)}.$$

Proposition (A, 2018+)

We have

$$\frac{(1-t)H(\mathbf{x};z)H(\mathbf{x};tz)}{H(\mathbf{x};tz)H(\mathbf{y};tz)-tH(\mathbf{x};z)H(\mathbf{y};z)} = \sum_{n>0} z^n \sum_{k=0}^{\lfloor n/2 \rfloor} \gamma_{n,k}^{\mathcal{B}}(\mathbf{x},\mathbf{y}) t^k (1+t)^{n-2k}$$

for some Schur positive functions $\gamma_{n,k}^B(\mathbf{x},\mathbf{y}) \in \Lambda(\mathbf{x}) \otimes \Lambda(\mathbf{y})$ of total degree n. As a result, $\sum_{i=0}^n \mathbb{C}(\Delta_{\mathcal{B}_n})_i t^i$ is γ -positive for every n.

Note: No combinatorial interpretations for the coefficients of $\gamma_{n,k}^B(\mathbf{x},\mathbf{y})$ in the Schur basis are known at present.

Note: Given other evidence provided by results by Stembridge and Lehrer, it seems reasonable to conjecture that $\sum_{i=0}^n \mathbb{C}(\Delta_W)_i \, t^i$ is γ -positive for every finite (crystallographic) Coxeter group W.

We now let

• $\widetilde{\Delta}_n$ be the boundary complex of the *n*-dimensional simplicial stellohedron.

We now let

• $\widetilde{\Delta}_n$ be the boundary complex of the *n*-dimensional simplicial stellohedron.

We now let

• $\widetilde{\Delta}_n$ be the boundary complex of the *n*-dimensional simplicial stellohedron.

Note: Postnikov–Reiner–Williams showed that $h(\widetilde{\Delta}_n, t) = \widetilde{A}_n(t)$.

Recall the Shareshian-Wachs identity

$$\frac{(1-t)H(\mathbf{x};z)H(\mathbf{x};tz)}{H(\mathbf{x};tz)-tH(\mathbf{x};z)} = \sum_{n\geq 0} z^n \sum_{k=0}^{\lfloor n/2\rfloor} \widetilde{\gamma}_{n,k}(\mathbf{x}) t^k (1+t)^{n-2k}.$$

Theorem (Shareshian–Wachs, 2017+)

For the natural \mathfrak{S}_n -action on $\widetilde{\Delta}_n$, we have

$$\sum_{n>0} z^n \sum_{i=0}^n \operatorname{ch}\left(\mathbb{C}(\widetilde{\Delta}_n)_i\right) t^i = \frac{(1-t)H(\mathbf{x};z)H(\mathbf{x};tz)}{H(\mathbf{x};tz)-tH(\mathbf{x};z)}.$$

In particular, $\sum_{i=0}^{n} \mathbb{C}(\widetilde{\Delta}_n)_i t^i$ is γ -positive for every n.

Question: Is there a \mathcal{B}_n -analogue of this result? Is there an analogue for the colored permutation groups $\mathbb{Z}_r \wr \mathfrak{S}_n$?

The triangulation $\Delta(\Gamma)$

We let

- Γ be a triangulation of the simplex Σ_n
- Γ_F be the restriction of Γ to the face F of Σ_n .

Then, there exists a triangulation $\Delta(\Gamma)$ of the standard *n*-dimensional crosspolytope which restricts to Γ on one of its facets and satisfies

$$h(\Delta(\Gamma), t) = \sum_{F} t^{n-\dim(F)} h(\Gamma_{F}, t),$$

summed over all faces of Σ_n .

Example

For the barycentric subdivision Γ_n of Σ_n we get

$$h(\Delta(\Gamma_n),t) = \sum_{k=0}^n \binom{n}{k} t^{n-k} A_k(t) = 1 + t \sum_{k=1}^n \binom{n}{k} A_k(t) = \widetilde{A}_n(t).$$

More generally, we may consider $\Delta(\Gamma_{n,r})$.

Theorem (A, 2018+)

For the \mathfrak{S}_n -action on $\Delta(\Gamma_{n,r})$ we have

$$\sum_{n\geq 0} z^n \sum_{i=0}^n \operatorname{ch} \left(\mathbb{C}(\Delta(\Gamma_{n,r}))_i \right) t^i = \frac{H(\mathbf{x};z)H(\mathbf{x};tz) \left(H(\mathbf{x};tz)^{r-1} - tH(\mathbf{x};z)^{r-1} \right)}{H(\mathbf{x};tz)^r - tH(\mathbf{x};z)^r}$$

Moreover, $\sum_{i=0}^{n} \mathbb{C}(\Delta(\Gamma_{n,r}))_i t^i$ is γ -positive for r=2 and every n.

Note: Gamma-positivity is open for r > 3.

Note: This construction motivates the definition

$$\widetilde{A}_{n,r}(t) = \sum_{k=0}^{n} {n \choose k} t^{n-k} A_{k,r}(t)$$

of the binomial Eulerian polynomial for r-coroled permutations, where

$$A_{n,r}(t) := \sum_{w \in \mathbb{Z}_r \wr \mathfrak{S}_n} t^{\operatorname{des}(w)} = \sum_{w \in \mathbb{Z}_r \wr \mathfrak{S}_n} t^{\operatorname{exc}(w)}$$

is the Eulerian polynomial for $\mathbb{Z}_r \wr \mathfrak{S}_n$. One can then show that

$$\widetilde{A}_{n,r}(t) = \sum_{i=0}^{\lfloor n/2 \rfloor} \widetilde{\gamma}_{n,r,i}^{+} t^{i} (1+t)^{n-2i} + \sum_{i=1}^{\lfloor (n+1)/2 \rfloor} \widetilde{\gamma}_{n,r,i}^{-} t^{i} (1+t)^{n+1-2i}$$

for some nonnegative integers $\widetilde{\gamma}_{n,r,i}^{\pm}$ and that the first summand is equal to $h(\Delta(\Gamma_{n,r}),t)$.

Rees products of posets

We let

- P be a finite graded poset with rank function ρ_P ,
- Q be a finite graded poset with rank function ρ_Q .

Definition (Björner–Welker, 2005)

The Rees product of P and Q is defined as

$$P*Q = \{(p,q) \in P \times Q : \rho_P(p) \geq \rho_Q(q)\},$$

with partial order defined by setting $(p_1, q_1) \le (p_2, q_2)$ if and only if:

- $p_1 \leq p_2$ holds in P,
- $q_1 \leq q_2$ holds in Q, and
- $\rho_P(p_2) \rho_P(p_1) \ge \rho_Q(q_2) \rho_Q(q_1)$.

Example *

We let

- B_n be the Boolean lattice of subsets of [n]
- C_n be the *n*-element chain.

For a finite poset P we let

 $\bullet \ \mu(P) = \mu_{\hat{P}}(\hat{0}, \hat{1}),$

where $\mu_{\hat{P}}$ is the Möbius function of $\hat{P} := P \cup \{\hat{0}, \hat{1}\}.$

Theorem (Johnsson, 2005)

The number $|\mu((B_n \setminus \varnothing) * C_n)|$ is equal to the derangement number d_n .

Note: When the group G acts on P by order-preserving bijections, it acts on P * Q as well.

For positive integers n, t we let

• $C_{n,t}$ be the poset whose Hasse diagram is a complete t-ary tree of height n-1, with root at the bottom.

Theorem (Shareshian-Wachs, 2009)

For the \mathfrak{S}_n -action on $(B_n \setminus \varnothing) * C_n$ we have

$$\sum_{n>0} \operatorname{ch} \tilde{H}_{n-1}((B_n \setminus \varnothing) * C_{n,t}; \mathbb{C}) z^n = \frac{1-t}{E(\mathbf{x}; tz) - tE(\mathbf{x}; z)}.$$

For a graded poset P of rank n+1 with minimum element $\hat{\mathbf{0}}$, maximum element $\hat{\mathbf{1}}$ and rank function $\rho: P \to \{0, 1, \dots, n+1\}$ we set

• $\bar{P} = P \setminus \{\hat{0}, \hat{1}\}.$

For $S \subseteq [n]$ we set

•
$$b_P(S) = (-1)^{|S|-1} \mu(\bar{P}_S),$$

where

$$\bar{P}_S = \{x \in P : \rho(x) \in S\}$$

is a rank-selected subposet.

Theorem (Linusson–Shareshian–Wachs, 2012)

For every EL-shellable poset P of rank n+1 and every positive integer t

$$\begin{array}{lcl} |\mu(\bar{P}*C_{n,t})| & = & \displaystyle\sum_{S\in \operatorname{Stab}(\{2,\ldots,n-1\})} b_P([n] \smallsetminus S) \, t^{|S|} \, (1+t)^{n-1-2|S|} & + \\ \\ & & \displaystyle\sum_{S\in \operatorname{Stab}(\{2,\ldots,n-2\})} b_P([n-1] \smallsetminus S) \, t^{|S|+1} \, (1+t)^{n-2-2|S|}, \end{array}$$

where $\operatorname{Stab}(\Theta)$ denotes the set of all subsets of Θ which do not contain two consecutive integers.

Note: These authors proved a similar formula for

$$|\mu(((P \setminus \{\hat{1}\}) * C_{n,t}) \setminus \{\hat{0}\})|.$$

Suppose now that G acts on P by order-preserving bijections and that P is Cohen–Macaulay over \mathbb{C} .

Theorem (A, 2017+)

$$egin{aligned} ilde{\mathcal{H}}_{n-1}(ar{P}*C_{n,t};\mathbb{C}) &\cong_G & \sum_{S\in \mathrm{Stab}([2,n-1])} eta_P([n] \smallsetminus S) \, t^{|S|} \, (1+t)^{n-1-2|S|} &+ \ & \sum_{S\in \mathrm{Stab}([2,n-2])} eta_P([n-1] \smallsetminus S) \, t^{|S|+1} \, (1+t)^{n-2-2|S|} \end{aligned}$$

where $\beta_P(S)$ is the (non-virtual) G-representation on $\tilde{H}_{|S|-1}(\bar{P}_S; \mathbb{C})$.

Note: A similar result holds for $\tilde{H}_{n-1}(((P \setminus \{\hat{1}\}) * C_{n,t}) \setminus \{\hat{0}\}; \mathbb{C})$.

Note: Gessel's identities follow from the special case of the action of \mathfrak{S}_n on B_n . Our other equivariant γ -positivity results follow by applying this to the natural r-colored version of B_n . For instance, letting

• $e_n(\mathbf{x})$ be the elementary symmetric function of degree n, defined by

$$E(x; z) := \sum_{n>0} e_n(x)z^n = \prod_{i>1} (1+x_iz)$$

we have:

Corollary (A, 2017+)

We have

$$\frac{E(\mathbf{x};tz) - tE(\mathbf{x};z)}{E(\mathbf{x};tz)E(\mathbf{y};tz) - tE(\mathbf{x};z)E(\mathbf{y};z)} = \sum_{n>0} z^n \sum_{k=0}^{\lfloor n/2 \rfloor} \xi_{n,k}^+(\mathbf{x},\mathbf{y}) t^k (1+t)^{n-2k}$$

and

$$\frac{E(\mathbf{x};z)E(\mathbf{x};tz)\left(E(\mathbf{y};tz)-tE(\mathbf{y};z)\right)}{E(\mathbf{x};tz)E(\mathbf{y};tz)-tE(\mathbf{x};z)E(\mathbf{y};z)} = \sum_{n\geq 0} z^n \sum_{k=0}^{\lfloor n/2\rfloor} \gamma_{n,k}^+(\mathbf{x},\mathbf{y}) t^k (1+t)^{n-2k}$$

for some Schur-positive functions $\xi_{n,k}^+(\mathbf{x},\mathbf{y}), \gamma_{n,k}^+(\mathbf{x},\mathbf{y}) \in \Lambda(\mathbf{x}) \otimes \Lambda(\mathbf{y})$ of total degree n.

This corollary implies:

- Gessel's second identity (set x = 0 to the first one)
- the γ -positivity of $\sum_{i=0}^{n} L_{V_n}(K_n)_i t^i$ (set $\mathbf{x} = \mathbf{y}$ to the first one)
- the Shareshian-Wachs identity (set y = 0 to the second one)
- the γ -positivity of $\sum_{i=0}^{n} \mathbb{C}(\Delta_{\mathcal{B}_n})_i t^i$ (combine the two).

Thank you for your attention!