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Face enumeration

Given an arrangement A of hyperplanes in Rn we let

fk(A) = # of k-dimensional faces of A,
r(A) = # of regions of A = fn(A).

Example: For
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we have

f0(A) = 4, f1(A) = 13 and r(A) = f2(A) = 10.
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Combinatorial invariants

The intersection poset LA consists of all nonempty intersections of hy-
perplanes of A, partially ordered by reverse inclusion: x ≤ y ⇔ x ⊇ y ;
the element 0̂ = Rn is the minimum of LA.

Example: With A as before,
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Combinatorial invariants

The Möbius function of LA is defined by

µ(x , y) =

 1, if x = y

−
∑

x≤z<y

µ(x , z), otherwise

for x , y ∈ LA with x ≤ y .

Example: With A as before, the values µ(0̂, x) are
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Combinatorial invariants

Theorem (Las Vergnas, Zaslavsky, 1975)

The number of k-dimensional faces of A is given by

fk(A) =
∑

(−1)dim(x)−dim(y) µ(x , y)

=
∑
|µ(x , y)|,

where the sums range over all elements x ∈ LA of dimension k and all
elements y ∈ LA with x ≤ y. In particular,

r(A) =
∑
x∈LA

|µ(0̂, x)|.
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The characteristic polynomial

The characteristic polynomial of a hyperplane arrangement A in Rn,
defined as the generating function

χ(A, q) =
∑
x∈LA

µ(0̂, x)qdim(x)

of µ(0̂, x) over LA, is a fundamental enumerative invariant of A.

Note: By the Las Vergnas - Zaslavsky theorem, (−1)n χ(A,−q) is a
monic polynomial in q of degree n with nonnegative coefficients and

r(A) = (−1)n χ(A,−1).
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Coxeter arrangements

Let

• W be an irreducible finite reflection group,
• AW be the corresponding Coxeter arrangement,
• ` be the rank of W ,
• e1, e2, . . . , e` be the exponents of W .
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Coxeter arrangements

Theorem (Brieskorn, 1971, Orlik–Solomon, 1980)

The characteristic polynomial of AW factors as

χ(AW , q) =
∏̀
i=1

(q − ei ).

In particular,

r(AW ) =
∏̀
i=1

(ei + 1).
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Deformations of AW

An arrangement A in Rn is called a deformation of AW if each hyperplane
of A is parallel to some hyperplane of AW . Their combinatorial study was
initiated by Richard Stanley (1996).

�
�
�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

10 / 27



Deformations of AW

Notable and well-studied examples include:

• the Catalan arrangements,
• the Linial arrangements,
• the Shi arrangements

and their generalizations. Their combinatorics relates to

• interval orders,
• trees,
• parking functions,
• rook placements

and so on.
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m-Catalan and m-Shi arrangements

Assume W is crystallographic and let

• Φ be a corresponding root system in V = R`,
• Φ+ be a positive subsystem,
• h be the Coxeter number of W .

The m-Catalan arrangement Am
Φ consists of the hyperplanes

(α, x) = −m,−m + 1, . . . ,m − 1,m, α ∈ Φ+

in V . The m-Shi arrangement SmΦ consists of the hyperplanes

(α, x) = −m + 1, . . . ,m − 1,m, α ∈ Φ+

in V .
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m-Catalan and m-Shi arrangements

Theorem (A, 2004)

The characteristic polynomial of Am
Φ is given by

χ(Am
Φ , q) = χ(AW , q −mh) =

∏̀
i=1

(q −mh − ei ).

In particular,

r(Am
Φ ) =

∏̀
i=1

(ei + mh + 1).

Note: The proof is uniform and uses the finite field method (A, 1996).
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m-Catalan and m-Shi arrangements

This method has been pushed further by Yoshinaga who gave a uniform
proof, among other results, of the following:

Theorem (Yoshinaga, 201x)

The characteristic polynomial of SmΦ factors as

χ(SmΦ , q) = (q −mh)`.

In particular,
r(SmΦ ) = (mh + 1)`.
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The Möbius function

Proposition

For the Möbius function µ of LAW
we have

µ(0̂, x) = (−1)codim(x) # {w ∈W : Fix(w) = x}

for x ∈ LAW
, where

Fix(w) = {v ∈ V : w(v) = v}

is the fixed space of w ∈W.

Example: For the symmetric group W = Sn,

µ(0̂, 1̂) = (−1)n−1 # {cyclic permutations w ∈ Sn}
= (−1)n−1 (n − 1)!.
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The Möbius function

Combined with results of Shephard–Todd (1954) and Solomon (1963), this
statement implies that

χ(AW , q) =
∑
w∈W

(−1)codim(Fix(w)) qdim(Fix(w)) =
∏̀
i=1

(q − ei ).

Problem

Find an analogous expression for the Möbius function of the interse-
ction poset of Am

Φ and use it to show that

χ(Am
Φ , q) =

∏̀
i=1

(q −mh − ei ).

Similarly for SmΦ .
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Faces of the braid arrangement

The braid arrangement An consists of the
(n

2

)
hyperplanes xi = xj in Rn.

The number of k-dimensional faces is given by

fk(An) =
k∑

i=0

(−1)k−i
(
k

i

)
in

= # of surjective maps {1, 2, . . . , n} → {1, 2, . . . , k}.

In particular,

r(An) = # of permutations of {1, 2, . . . , n} = n!.
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Faces of the Shi arrangement

The Shi arrangement Sn consists of the n(n − 1) hyperplanes

• xi − xj = 0, 1 ≤ i < j ≤ n,
• xi − xj = 1, 1 ≤ i < j ≤ n

in Rn. For n = 3
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f1(S3) = 6, f2(S3) = 21 and r(S3) = 16.
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Regions of the Shi arrangement

Several bijective proofs are known that

r(Sn) = # of trees on the vertex set {1, 2, . . . , n}
= # of parking functions on {1, 2, . . . , n},
= (n + 1)n−1.
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Faces of the Shi arrangement

Theorem (A, 1996)

The number of k-dimensional faces of Sn is given by

fk(Sn) =

(
n

k

) n−k∑
i=0

(−1)i
(
n − k

i

)
(n − i + 1)n−1

=

(
n

k

)
# {f : [n − 1]→ [n + 1] : [n − k] ⊆ Im (f )},

where [m] := {1, 2, . . . ,m} and Im (f ) is the image of the map f .

In particular, f1(Sn) = n! and r(Sn) = (n + 1)n−1.

Note: The proof uses the finite field method (A, 1996).
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Faces of the Shi arrangement

Problem

Find a bijective proof of this result.

The Tits product of a face F and a region C of A is defined as the region
FC which is closest to C among all regions of A whose closure contains F .

Problem

Describe the Tits product of a face and a region of Sn in terms of nice
combinatorial objects and operations.
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Regions of the Linial arrangement

The Linial arrangement Ln consists of the
(n

2

)
hyperplanes xi − xj = 1 for

1 ≤ i < j ≤ n in Rn. A tree T on the vertex {1, 2, . . . , n} is alternating if
every vertex of T is either smaller than all its neighbors, or larger that all
its neighbors.

Theorem (A, Postnikov-Stanley, 1996)

The number of regions of Ln is given by

r(Ln) =
1

2n

n∑
k=0

(
n

k

)
(k + 1)n−1

= # of alternating trees on {1, 2, . . . , n + 1}.
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Regions of the Linial arrangement

Problem

Find a bijection from the set of regions of Ln to that of alternating
trees on {1, 2, . . . , n + 1}.

Combinatorial interpretations for the number of relatively bounded regions
of Ln in terms of Postnikov’s local binary search trees have been found by
David Forge and Vasu Tewari.

Problem

Find analogues of this result for other Coxeter types.
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Deformations of rational arrangements

Consider n linear hyperplanes

Hi = {x ∈ Rd : αi (x) = 0}, 1 ≤ i ≤ n

in Rd , defined by rational linear forms αi spanning the dual space (Rd)∗,
and denote by Am the arrangement of affine hyperplanes

αi (x) = −m,−m + 1, . . . ,m, 1 ≤ i ≤ n

in Rd .

A0 Am
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Coordinate hyperplanes

Example: Suppose Hi = {x ∈ Rd : xi = 0} for 1 ≤ i ≤ d are the coordi-
nate hyperplanes in Rd . Then

χ(Am, q) = (q − 2m − 1)d .

Moreover, the arrangement Am has rA(m) = (2m + 2)d regions of which
bA(m) = (2m)d are bounded and

(−1)d rA(−m) = bA(m − 1).
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Deformations of rational arrangements

Theorem (A, 2010)

The characteristic polynomial χA(m, q) := χ(Am, q) is a quasi-polynomial
in m which satisfies the reciprocity law

χA(−m, q) = (−1)d χA(m − 1,−q).

In particular, the number rA(m) of regions of Am and the number bA(m)
of bounded regions are quasi-polynomials in m related by

(−1)d rA(−m) = bA(m − 1).

Note: For the Coxeter arrangement A = AW the reciprocity law reduces
to the known fact that {h − e1, h − e2, . . . , h − ed} = {e1, e2, . . . , ed}.
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Deformations of rational arrangements

Problem

Under what conditions is χ(Am, q) a polynomial in m and q?

Recall that, given a graph G on the vertex set {1, 2, . . . , d}, the graphical
arrangement AG consists of the hyperplanes

xi − xj = 0, {i , j} ∈ EG

in Rd . The function χ(Am
G , q) reduces to the chromatic polynomial of G

for m = 0.

Problem

Study the function χ(Am
G , q).
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