Combinatorics of uniform triangulations

Combinatorics and Geometry
in Ioannina
September 4, 2024

Christos Athanasiadis University of Athens

Supported by the Hellenic Foundation for Research and Innovation

HFRI-FM20-04537

Combinatorics of uniform triangulations

- I. Introduction
- II. Definitions and Examples
- III. Main results
- IV. Some questions

I. Introduction to face enumeration

We are interested in the face enumeration of simplicial complexes. Let

 Δ = simplicial complex of dimension n-1

 $f_{K}(\Delta) = \# K-dimensional faces$ of Δ .

Definition. The f,h-polynomials of Δ are defined as

$$f(\Delta, x) = \sum_{k=0}^{n} f_{k-1}(\Delta) x^{k}$$

$$h(\Delta, x) = \sum_{k=0}^{n} f_{k-1}(\Delta) x^{k} (1-x)^{n-k}$$

$$= (1-x)^{n} f(\Delta, \frac{x}{1-x}).$$

Remark.

(a) $h(\Delta, x)$ has nonnegative coefficients if Δ is Cohen-Macaulay over some field.

(b)
$$h(\Delta,1) = f_{n-1}(\Delta)$$
.

Example.

$$n = 3$$

$$f_0(\Delta) = 8$$
, $f_1(\Delta) = 15$, $f_2(\Delta) = 8$

•
$$f(\Delta, x) = 1 + 8x + 15x^{2} + 8x^{3}$$

•
$$h(\Delta, x) = (1-x)^3 + 8x(1-x)^2 + 15x^2(1-x) + 8x^3$$

= $1+5x+2x^2$.

Question. How are $f(\Delta, x)$ and $h(\Delta, x)$ affected by simplicial subdivision of Δ ?

$$h(\cdot, \mathbf{x}) = 1 + 5\mathbf{x} + 2\mathbf{x}^2$$

Let

V = n-element set

\[\tau = \tau = \tangulation of 2^V \]

F = restriction of Fon Feq.

Definition (Stanley 1992). The 10-cal h-polynomial of Γ (with respect to V) is defined as

$$\ell_{V}(\Gamma, x) = \sum_{F \subseteq V} (-1)^{n-|F|} h(\Gamma, x).$$

Example.

•
$$\ell(\Gamma_{V}, \mathbf{x}) = (1+5\mathbf{x}+2\mathbf{x}^{2}) - (1+2\mathbf{x}) - (1+\mathbf{x}) - 1 + 1 + 1 + 1 - 1$$

= $2\mathbf{x} + 2\mathbf{x}^{2}$

Theorem (Stanley 1992). For every triangulation Δ' of a pure simplicial complex Δ ,

$$h(\Delta',x) = \sum_{F \in \Delta} \ell_F(\Delta',x) h(\operatorname{Link}_{\Delta}(F),x)$$

where Δ_F' is the restriction of Δ' to $F \in \Delta$.

- Theorem (Stanley 1992). The polynomial ly (F, x)
 - is symmetric, with center of symmetry n/2, for every triangulation Γ of the simplex 2^V
- has nonnegative coefficients for every triangulation Γ of the simplex 2^V
- is unimodal for every regular triangulation Γ of the simplex 2^{V} .

II. Uniform triangulations: Definitions and examples

Barycentric subdivision. Let

 Δ = simplicial complex of dimension n-1

 $sd(\Delta) = barycentric subdivision$ of Δ .

Theorem (Brenti - Welker, 2008)

(a) There exist $p_{n,k,j} \in \mathbb{N}$ such that

$$h_j(sd(\Delta),x) = \sum_{k=0}^{n} P_{n,k,j} h_k(\Delta)$$

for every (n-1)-dimensional simplicial complex Δ .

(b) If $h_{K}(\Delta) \ge 0$ for $0 \le k \le n$, then $h(sd(\Delta), x)$ has (nonnegative coefficients and) only real roots.

Theorem (Kubitzke-Nevo, 2009)

If Δ is cohen-Macaulay (over some field) of dimension n-1, then $h(sd(\Delta),x)$ is unimodal with a peak in one of the middle positions n/2 or $(n\pm 1)/2$, i.e.

•
$$h_0(sd(\Delta)) \le h_1(sd(\Delta)) \le \cdots \le h_1(sd(\Delta)) \ge \cdots \ge h_1(sd(\Delta))$$

$$\ge h_1(sd(\Delta))$$

$$\ge h_1(sd(\Delta))$$

with je { n/2, (n±1)/2}.

Edgewise subdivision. Let

r = positive integer

 Δ = simplicial complex of dimension n-1

esd (Δ) = r-fold edgewise subdivision of Δ .

r=3

Theorem. Fix an reZ,0.

(a) (Brenti - Welker, 2009) There exist pn, k,j ∈ IN such that

$$h_j(esd(\Delta),x) = \sum_{k=0}^{n} P_{n,k,j} h_k(\Delta)$$

for every (n-1)-dimensional simplicial complex Δ .

(b) (Jochemko, 2018) If $r \ge n$ and $h_k(\Delta) \ge 0$ for $0 \le k \le n$, then $h(esd(\Delta), x)$ has (nonnegative coefficients and) only real roots.

Remark. The Pnki EIN:

- can be interpreted in terms of permutation enumeration, in the case of $sd(\Delta)$,
- are essentially the entries of Holte's amazing matrices studied by Diaconis Fulman (2009), in the case of esd (Δ).

Remark. There are similar results for antiprism triangulations (A-Brunink-kubitzke, 2022) Definition. A triangulation Δ of a simplicial complex Δ is called uniform if $f(\Delta_F, x)$ depends only on dim(F), $F \in \Delta$.

Prototypical examples of uniform triangulations of Δ are

- · the trivial subdivision
- sd(Δ) and esd (Δ)

Example (Hetyei-Nevo, 2016)

Tchebyshev triangulations of Δ are obtained by edge subdividing Δ along each edge in some order.

$$= \Delta_3'$$

$$\Delta =$$

$$\rightarrow$$

$$= \Delta'_4$$

All Tchebyshev triangulations of Δ are uniform triangulations ons with the same f-vector.

Other examples of uniform triangulations include

- · antiprism triangulations
- · interval triangulations
- r-colored barycentric subdivisions.

III. Main results.

Let

- Δ = simplicial complex of dimension n-1
- Δ' = uniform triangulation of Δ
- fij = number of (i-1)-dimensional faces of Δ'_{F} for any (j-1)-dimensional Fe Δ .

Terminology. We call $\Delta' F$ -uniform, where $F = (f_{ij})_{0 \le i \le j \le n}$.

Theorem (A, 2022). Given F, there exist $P_{F,n,k,j} \in IN$ such that

$$h_{j}(\Delta',x) = \sum_{k=0}^{n} P_{F,n,k,j} h_{k}(\Delta)$$

for every (n-1)-dimensional simplicial complex Δ and every F-uniform triangulation Δ' of Δ . Equivalenly,

$$h(\Delta', x) = \sum_{k=0}^{n} h_k(\Delta) P_{F,n,k}(x)$$

for some $P_{F,n,\kappa}(x) \in \mathbb{N}[x]$, $0 \le \kappa \le n$.

For barycentric subdivision and n=3

$$PF, n, k^{(x)} = \begin{cases} 1+4x+x^{2}, & k=0 \\ 4x+9x^{2}, & k=1 \\ 9x+4x^{2}, & k=2 \\ x+4x^{2}+x^{3}, & k=3. \end{cases}$$

Notation.

 $\sigma_n = (n-1) - dimensional$ simplex

 $h_{F}(\Delta, x) = h(\Delta', x)$ for any F-uni form triangulation Δ' of Δ .

Theorem (A, 2022).

(a)
$$P_{F,n,o}(x) = h_F(\sigma_n,x)$$
 and

$$P_{F,n,K}(x) =$$

$$P_{F,n,K-1}(x) + (x-1) P_{F,n-1,K-1}(x)$$

for 15Ksn.

(b)
$$x^n P_{F,n,K}(1/x) = P_{F,n,n-K}(x)$$

for $0 \le K \le n$.

$$P_{F,n,K}(x) = \sum_{r=0}^{n} \ell_{F}(\sigma_{r}, x).$$

$$\sum_{i=0}^{r} {n-k \choose i} {k \choose r-i} x^{k-r+i}$$

where

$$\ell_{\mathsf{F}}(\sigma_{\mathsf{n}},\mathbf{x}) = \sum_{\mathsf{k}=0}^{\mathsf{n}} (-1)^{\mathsf{n}-\mathsf{k}} \binom{\mathsf{n}}{\mathsf{k}} h_{\mathsf{F}}(\sigma_{\mathsf{k}},\mathbf{x})$$

is the local h-polynomial of any F-uniform triangulation of σ_n .

(d) $P_{F,n,K}(x)$ is equal to the h-polynomial of the relative simplicial complex obtained from any F-uniform triangulation of σ_n by removing all faces lying on K facets of $\partial \sigma_n$.

$$P_{F,3,1}(x) = 4x + 9x^{2}$$

$$P_{F,3,2}(x) = 9x + 4x^2$$

Example. For the trivial subdivision we have

$$P_{F,n,K}(x) = x^{K}$$

for 0 ≤ K ≤ n.

Example. For barycentric subdivision we have

$$P_{F,n,k}(x) = \sum_{\mathbf{x}} des(w)$$

$$w \in \mathcal{G}_{n+1} : w(1) = k+1$$

where

$$des(w) = \# \{i \in (n-1]: w(i)\}$$

$$for w \in G_n.$$

Question. For which uniform triangulations $h(\Delta) \ge 0$ implies that $h_{\mathcal{F}}(\Delta, \mathbf{x})$ is real-rooted?

Recall that for real-rooted polynomials p(x), $q(x) \in \mathbb{R}[x]$ with roots

•
$$\cdots \le \alpha_{2} \le \alpha_{1}$$

• $\cdots \le \beta_{2} \le \beta_{1}$

we say that p(x) interlaces q(x) if $\cdots \leq \alpha_{q} \leq \beta_{q} \leq \alpha_{1} \leq \beta_{1}$ and write p(x) < q(x).

A sequence

$$(p_0(x), p_1(x), \dots, p_n(x))$$

of real-rooted polynomials is called interlacing if $\rho_i(x) < \rho_j(x)$ for $0 \le i < j \le n$.

Fact. If $(p_0(x), p_1(x), ..., p_n(x))$ is an interlacing sequence of real-rooted polynomials with nonnegative coefficients, then

$$\sum_{k=0}^{n} c_{k} p_{k}(x)$$

is real-rooted for all c_k≥0.

Definition. We say that F

(a) has the interlacing prope-

 $(P_{F,m,\kappa}(x))_{0 \le k \le m}$

is an interlacing sequence of real-rooted polynomials for every m < n

- (b) has the strong interlacing property if
 - $h_{f}(\sigma_{m},x)$ is real-rooted for m < n

•
$$\theta_{F}(\sigma_{m}, x) :=$$

$$h_{F}(\sigma_{m}, x) - h_{F}(\partial \sigma_{m}, x)$$

is either identically zero, or a real-rooted polynomial of degree m-1 which is interlaced by $h_{F}(\sigma_{m-1}, x)$:

 $h_{\mathcal{F}}(\sigma_{m-1}, \mathbf{x}) \wedge \theta_{\mathcal{F}}(\sigma_{m}, \mathbf{x}),$ for $m \leq n$.

Remark. The strong interlacing property can be verified in several special cases of interest. Theorem (A, 2022). Suppose that F has the strong interlacing property. Then, F has the interlacing property.

In particular, $h_{\mathcal{F}}(\Delta, \mathbf{x})$ has only real roots, provided that $h(\Delta) \ge 0$ for every k.

Example. Let Δ' be obtained by the antiprism construction from the barycentric subdivision of the (n-2)-skeleton of Δ .

For n=4 F has the interlacing property but not the strong one, since $\theta_F(\sigma_4,x) = 3x + 11x^2 + 3x^3$ is not interlaced by $h_F(\sigma_3,x) = 1 + 4x + x^2$.

Symmetric decompositions. We recall that every polynomial $f(x) \in \mathbb{R}[x]$ of degree $\leq n$ can be written uniquely as

$$f(x) = \alpha(x) + xb(x)$$

where

- deg(a(x)) ≤ n
- $deg(b(x)) \leq n-1$
- $x^{n-1}b(1/x) = b(x)$

This expression is the symmetric decomposition of f(x) with respect to n.

This decomposition is called

- nonnegative, if both a(x)
 and b(x) have nonnegative
 coefficients
- real-rooted, if so are a(x) and b(x)
- real-rooted and interlacing
 if a(x) and b(x) are realrooted and b(x) < a(x).

Note. If f(x) has a nonnegative and real-rooted symmetric decomposition with respect to n, then f(x) is unimodal with a peak at position L(n+1)/2J.

Note. If Δ triangulates an (n-1) - dimensional ball and

 $\Theta(\Delta, x) = h(\Delta, x) - h(\partial \Delta, x),$

then

 $h(\Delta,x) = h(\partial\Delta,x) + x \cdot \theta(\Delta,x)/x$ is the symmetric decomposition of $h(\Delta,x)$ with respect to n-1. Theorem (A-Tzanaki, 2021).

Suppose that F has the strong interlacing property.

(a) $h_F(\Delta, x)$ has a nonnegative, real-rooted symmetric decomposition with respect to n for every (n-1)-dimensional simplicial complex Δ such that $h_k(\Delta) \ge 0$ and

$$\sum_{i=0}^{K} h_i(\Delta) \leq \sum_{i=0}^{K} h_{n-i}(\Delta)$$

for Osksn (special case of bary-centric subdivision due to Brände'n-Solus, 2021).

(b) This decomposition is interlacing if, additionally,

$$\frac{h_{o}(\Delta)}{h_{n}(\Delta)} \leq \frac{h_{1}(\Delta)}{h_{n-1}(\Delta)} \leq \dots \leq \frac{h_{n}(\Delta)}{h_{o}(\Delta)}. \quad (*)$$

Note. The inequalities (*) imply the inequalities

$$h_i(\Delta) \leq h_{n-i}(\Delta)$$

for Osisn, studied by Swartz, 2006, Adiprasito-Papadakis-Petrotou, 2021.

II. Some questions

Question. Which Cohen-Macauly simplicial complexes Δ satisfy the inequalities (*)?

Do these hold for every doubly Cohen-Macaulay simplicial complex Δ of dimension n-1?

Note (Mu-Welker, 2024). They hold iff

$$\begin{pmatrix} h_n(\Delta) & h_{n-1}(\Delta) & \cdots & h_0(\Delta) \\ h_0(\Delta) & h_1(\Delta) & \cdots & h_n(\Delta) \end{pmatrix}$$

is TP (totally positive).

Moreover, if Δ satisfies (*) and

$$H_{F} = (P_{F}, n, \kappa, j) o \leq \kappa, j \leq n$$

is TP_{Q} (true for barycentric and edgewise subdivisions), then every F-uniform triangulation of Δ satisfies (*) as well.

Note. The interlacing property implies that H_f is TP₂.

Question. Does the strong interlacing property imply that H_f is TP?

Question. Does the strong interlacing property imply that the local h-polynomial

$$\ell_{\mathcal{F}}(\sigma_{n},x) = \sum_{k=0}^{n} (-1)^{n-k} {n \choose k} h_{\mathcal{F}}(\sigma_{k},x)$$

is real-rooted?

Question. Does the strong interlacing property imply that $\ell_V(\Delta, \mathbf{x})$ is real-rooted for every F-uniform triangulation Δ of any triangulation Γ of $\mathbf{2}^{\mathsf{Y}}$?

Theorem (A, 2024). True for barycentric and edgewise subdivisions. Question. Does the strong interlacing property imply that

$$\sum_{k=0}^{n} {n \choose k} x^{n-k} h_{f}(\sigma_{k}, x)$$

is real-rooted?

- Question. Which uniform trian-gulations satisfy the strong interlacing property? E.g.
- (a) Is the strong interlacing property preserved by barycentric subdivision?
- (b) Is the strong interlacing property preserved by r-fold edgewise subdivision?

Note (A, 2024). (b) holds for r=2.

Thank you for your attention Ευχαριστώ χια την προσοχή σας Cπασμόο za βμιναμιμε!