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The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering,
environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric
information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures,
etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and
they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their
detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small
objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections
from such targets.
This paper introduces a method to de-noise GPR data and extract geometric information from scale-and-dip
dependent structural features, based on one-dimensional B-Spline Wavelets, two-dimensional directional
B-Spline Wavelet (BSW) Filters and two-dimensional Gabor Filters. A directional BSW Filter is built by side-
wise arranging s identical one-dimensional wavelets of length L, tapering the s-parallel direction (span) with
a suitable window function and rotating the resulting matrix to the desired orientation. The length L of the
wavelet defines the temporal and spatial scale to be isolated and the span determines the length over
which to smooth (spatial resolution). The Gabor Filter is generated by multiplying an elliptical Gaussian by
a complex plane wave; at any orientation the temporal or spatial scale(s) to be isolated are determined by
the wavelength. λ of the plane wave and the spatial resolution by the spatial aspect ratio γ, which specifies
the ellipticity of the support of the Gabor function. At any orientation, both types of filter may be tuned at any
frequency or spatial wavenumber by varying the length or the wavelength respectively. The filters can be
applied directly to two-dimensional radargrams, in which case they abstract information about given scales
at given orientations. Alternatively, they can be rotated to different orientations under adaptive control, so
that they remain tuned at a given frequency or wavenumber and the resulting images can be stacked in
the LS sense, so as to obtain a complete representation of the input data at a given temporal or spatial scale.
In addition to isolating geometrical information for further scrutiny, the proposed filtering methods can be
used to enhance the S/N ratio in a manner particularly suitable for GPR data, because the frequency response
of the filters mimics the frequency characteristics of the source wavelet. Finally, signal attenuation and tem-
poral localization are closely associated: low attenuation interfaces tend to produce reflections rich in high
frequencies and fine-scale localization as a function of time. Conversely, high attenuation interfaces will pro-
duce reflections rich in low frequencies and broad localization. Accordingly, the temporal localization charac-
teristics of the filters may be exploited to investigate the characteristics of signal propagation (hence material
properties). The method is shown to be very effective in extracting fine to coarse scale information from
noisy data and is demonstrated with applications to noisy GPR data from archaeometric and geotechnical
surveys.

© 2012 Published by Elsevier B.V.

1. Introduction

The purpose of this paper is to investigate methods of S/N
enhancement and information retrieval from Ground Probing Radar
(GPR) data,with particular emphasis placed on the problemof recovering

features associated with specific temporal or spatial scales and geometry
(orientation/dip). The Ground Probing Radar (GPR) has become a valu-
able, almost indispensablemeans of exploring thin and shallowstructures
for geological, geotechnical, engineering, environmental, archaeological
and other work. GPR images frequently contain geometric (orientation/
dip-dependent) information from point scatterers (e.g. diffraction hyper-
bolae), dipping reflectors (geological bedding, structural interfaces,
cracks, fractures, joints) and other conceivable structural configurations.
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In geological, geotechnical and engineering applications, this information
is valuable and frequently the target of the GPR survey.

At the same time, the GPR method is notoriously susceptible to
noise. For example, boulders, animal burrows, tree roots, and other
small scale objects and structures can cause unwanted reflections or
scattering. Analogous interference is produced by anthropogenic struc-
tures and can include reflections from nearby vehicles, buildings,
fences, power lines, and trees. Electromagnetic transmissions from cel-
lular telephones, two-way radios, television, and radio and microwave
transmittersmay also cause noise on GPR records. These types of reflec-
tions are only partially countered with shielded antennae while the in-
terference by extraneous or reflected airwaves, critically refracted
airwaves and groundwaves cannot be easily suppressed during acquisi-
tion. Finally, there is systemic noise, frequently manifested in the
form of ringing. Because the GPR source wavelet is tuned at a single
operating frequency, the information returned by the subsurface
structure is usually limited to a relatively narrow band around it
(plus a tail due to dispersion) and, quite frequently, the rest of
the spectrum is swamped in noise. Raw GPR data require post-
acquisition processing, as they usually provide only approximate
target shapes and distances (depths).

Wavelet-based processing and analysis methods have been exten-
sively applied to images (extraction of information, compression and
de-noising). Two-dimensional geophysical data, either in the form of
potential field anomaly maps, seismic sections, GPR sections, etc., are
very similar to an image if each data point is taken to be a pixel. As a
consequence, the same wavelet-based methods have been quite
extensively adapted to the processing of seismic and potential-field
geophysical data. However, they have quite rarely been applied to
GPR data.

The wavelet-based method commonly used for the treatment of
geophysical data is Multi-Resolution Analysis (MRA, see Chui, 1992;
Mallat, 1999). This is the design method of most of the practically
relevant discrete wavelet transforms and the justification of the fast
wavelet transform; it is commonly applied for image compression
(e.g. Stollnitz et al., 1995) and de-noising (e.g. Mohideen et al., 2008).
MRA allows a space L2 Rð Þ (image) to be decomposed into a sequence
of nested subspaces (images) L2 Rð Þ⊃…⊃Vn⊃…⊃V0⊃… 0f g, arranged
in order of increasing detail (scale), that satisfies certain self-similarity
relations in time/space and scale/frequency, as well as completeness
and regularity relations. This way, the MRA provides an efficient tool
to suppress events of specific scales locally but leave the rest of the
data unaffected. The MRA has been introduced to the processing of re-
flection seismics fairly recently, with most of the related studies
attempting to develop efficient noise suppression procedures in a
time-frequency sense. Inasmuch as the GPRmethod is effectively equiv-
alent to reflection seismics, GPR data can be processed with similar
techniques. The pertinent literature (seismic and GPR) is not rich, but
is steadily growing in numbers and applications (e.g. Deighan and
Watts, 1997; Jeng et al., 2009; Leblanc et al., 1998; Matos and Osorio,
2002; Miao and Cheadle, 1998; Nuzzo and Quarta, 2004).

MRA, as applied in the literature quoted above, is not suitable for pro-
cessing orientation-dependent data. This problem has been addressed by
advanced MRA-like algorithms such as the Ridgelet Transform (Candès,
1999; Candès and Donoho, 1999) and the second generation Curvelet
Transform (Candès and Donoho, 2003a, 2003b); these will be the subject
of a follow-up investigation and will not be examined herein. One may
also mention a host of similar “X-let transforms”, such as wedgelets
(Donoho, 1999), beamlets (Donoho and Huo, 2002), bandlets (Mallat
and Peyré, 2007), contourlets (Do and Vetterli, 2005), wave atoms
(Demanet and Ying, 2007), surfacelets (Lu and Do, 2007) and others
that are certain to have escaped the Author's attention. All these have
been proposed independently to identify and restore geometric features.

All these algorithms are pyramidal type decompositions in which
the self-similarity relations in time/space and frequency/scale com-
prise a small number of scaling steps, usually arranged in powers of

2. This allows for a computationally compact decomposition, but is
somewhat “inefficient” if one wishes to look into particular temporal
or spatial scales. Increasing the order of the decomposition may not
always be feasible or effective and may introduce cumbersome
redundancy. Moreover, pyramidal decompositions may not always
be suitable for GPR data because the source wavelet is tuned at a
single operating frequency and, although the signal spreads as it
propagates, the information returned by the subsurface structure is
usually limited to a relatively narrow band around the nominal fre-
quency. As a consequence, the GPR signal often contains a lot of redun-
dant information (including noise), which may introduce analogous
redundancy in the decomposition.

If one wishes to study specific scales and geometrical characteristics
(orientations), an alternative approach is to implement Directional
Filters (Directional Wavelets). These are useful in many image process-
ing tasks such as texture analysis, edge detection, image and data com-
pression, motion analysis, and image enhancement. SteerableWavelets
are an early form of Directional Filters (Freeman and Adelson, 1991;
Simoncelli et al., 1992) and are closely related to the Gabor wavelets
(e.g. Feichtinger and Strohmer, 1998, 2003; Lee, 2008). In comparison
to separable orthonormal wavelets, the Steerable Wavelets provide
translation-invariant and rotation-invariant representations of theposi-
tion and the orientation of image structures at the expense of high
redundancy. Gabor wavelets have mainly been applied to image classi-
fication and texture analysis. The main differences between the “early
methods” (Steerable Wavelets, Gabor wavelets, etc.) and other “ad-
vanced” X-lets is that the early methods do not allow for a different
number of directions at each scale; in order to acquire a complete
representation of all directions at each scale, it is often required to
apply the same filter rotated to different angles under adaptive control
and combine the filter outputs.

Finally, it is worth noting that almost all of the methods reviewed
above have been developed for application to images, i.e. functions in
which the independent variables are of the same nature (spatial) and
have identical or comparable sampling rates. In this case, the applica-
tion of the same filter (wavelet, X-let, etc.) at different orientations
has no effect on scale. On the other hand, GPR (or seismic) data are
functions in which the independent variables are of different nature
(time vs. space) and have incomparable sampling rates. In conse-
quence, as also will be shown later on, the straightforward applica-
tion of the same filter at different orientations may cause unwanted
mixing of different temporal and spatial scales. This is a rather
unappreciated factor and (occasionally) may result in poor localiza-
tion of distinct temporal or spatial data features.

To summarize, there are two lines of approach in analyzing
scale-and-orientation dependent data: a) to implement orientation-
sensitive MRA type analysis, which may not always be efficient at
targeting specific scales, and, b) to use directional filters which may
generate redundancy but are tuneable at specific (temporal/spatial)
scale-and-orientation dependent features. This work follows the sec-
ond approach, while trying to devise techniques to reduce redundancy,
avoidmixing of different temporal and spatial scales andmaintain sim-
plicity of design and operation. To this effect, it will introduce a set of di-
rectional filters based on 2-D semi-orthogonal wavelet arrays and
evaluate a set of 2-D orthogonal wavelets, both of which can bemanip-
ulated to select specific frequencies/scales at any orientation. The for-
mer set is based on B-Spline wavelet filters and the latter on the well
known Gabor Filter. At a given orientation, both these filters are
shown to be highly adaptive and efficient. For instance, it will be
shown that it is possible to discriminate between reflections from con-
stant dip— small aperture cracks as opposed and reflections from con-
stant dip (larger) fractures. Moreover, a method will be demonstrated,
by which to combine the same frequency or scale selected at different
orientations, so as to recover a complete representation of the input
data at a single, orientation-independent frequency or scale (for in-
stance, variable dip— small aperture cracks vs. variable dip— fractures).
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2. One-dimensional B-Spline Wavelet Filters

The wavelet transform can decompose a spatial or temporal data
series into a spectrum of energy levels at given wavelength bands
and given locations. In effect, the wavelet transform matches the
spatial or temporal localization of the data to the wavelength of inter-
est, providing fine resolution at short wavelengths and broad localiza-
tion at long wavelengths. This is much more versatile and informative
than the Fourier transform, which will provide the power spectrum at
given wavelength bands but for the entire data series, smoothing out
any wavelength-local characteristics. On a single scale the wavelet
transform is based on a linear, narrow-band filter. For multi-scale
analysis the wavelet can be rescaled to longer and shorter lengths,
providing a suite of different size filters, which are convolved with
the data to pick out features with wavelengths matching the filters'
bandwidths: small-scale events will match small wavelets but not
large wavelets and vice versa. By applying the suite of filters it is
possible to identify local spatio-temporal characteristics, as well as
to distinguish features on different scales (or even identify regions
where events of certain scales are missing).

The filters discussed herein are based on B-Spline wavelets,
constructed by a shifting, weighting and summing of the B-Spline
functions Nm(x), where x is a temporal or spatial variable and m is
the order of the spline (B-Spline is shorthand for Basis Spline). Details
on B-Splines and the construction of B-Spline wavelets can be found
in Chui (1992), Daubechies (1992), Ueda and Lodha (1995) and
others, while Unser (1997) argues the case for using B-Spline
wavelets. Consequently, only basic information will be given here.

Typically, the m-th order B-Spline is defined recursively by
convolution:

N1 xð Þ ¼
0 xb0
1 0≤xb1
0 x≥1

;Nm xð Þ ¼ ∫∞
−∞Nm−1N1 tð Þdt ¼ ∫1

0Nm−1 x−tð Þdt:
8<
:

It is apparent that Nm(x)>0 for 0bxbm and that the 1st order
B-Spline N1(x) is the Haar scaling function. The two-scale relation
for B-Spline scaling functions of general order m is written as

Nm xð Þ ¼
Xm
k¼0

pkNm 2x−1ð Þ ¼
Xm
k¼0

2−mþ1 m
k

� �
Nm 2x−1ð Þ; 0≤kbm:

where pk is the two-scale sequence. The B-Splines have compact sup-
port in the interval [0,m] and they are symmetric with respect tom/2
for every x∈ℜ. Finally, ∑k=−∞

∞ Nm(x−k)=1, meaning that they
have partition of unity.

Since B-Splines Nm are scaling functions, they can be associated
with wavelets βm: the two-scale relation for B-Spline wavelets of
general order m is given by

βm xð Þ ¼
X3m−2

k¼0

qkNm 2x−kð Þ; qk ¼ −1ð Þk21−mXm
l¼0

m
l

� �
N2m kþ 1−lð Þ

ð1Þ
where qk comprise finite series (only 3 m−1 terms are non-zero).
The support of βm is [0, 2 m−1] for m=1, 2, … and is compact;
they are symmetric for even m, i.e. βm(x)=βm(2m−1−x) ∀m=2j,
anti-symmetric for odd m, i.e. βm(x)=−βm(2m−1−x)∀m=2j+1
and exhibit complete oscillation property. Moreover, they have
vanishing moments (∫−∞

∞ βm(x)xidx=0, i=0,1, … m−1) and are

orthogonal at different scales, that is βm 2j1x−k1
� �

;βm 2j2x−k2
� �h i

¼ 0

if j1≠ j2, although different translates of the samewavelet are not orthog-
onal at the same scale, that is [βm(2jx−k1), βm(2jx−k2)]≠0 if m≠1;
this property is referred to as semi-orthogonality.

B-Spline wavelets (i.e. the wavelet coefficients) can be constructed
directly from (1), but the result may not always have the desirable
spectral properties. For instance, the cubic B-Spline wavelet β4(x)

calculated by Ueda and Lodha (1995) turns out with a non-trivial dc
component and exhibits a significant phase shift at the lower frequency
range and phase instability at higher frequencies and large scales. In
consequence, and after due consideration of their spectral characteris-
tics, the numerical realizations of the B-Spline wavelets to be used in
this study were chosen as follows:

For the linear and quadratic wavelets, the direct construction
based on the two-scale B-Spline function and Eq. (1) turned out to
be the optimal alternative. Thus, the linear B-Spline wavelet is

β2 xð Þ ¼ 1
12

N2 2xð Þ−6N2 2x−1ð Þ þ 10N2 2x−2ð Þ−6N2 2x−3ð Þ þ N2 2x−4ð Þ½ �

and the quadratic wavelet is

β3 xð Þ ¼ 1
480

�
N3 2xð Þ−29N3 2x−1ð Þ þ 147N3 2x−2ð Þ−303N3 2x−3ð Þ

þ303N3 2x−4ð Þ−147N3 2x−5ð Þ þ 29N3 2x−6ð Þ−N3 2x−7ð Þ�

These are also the realizations proposed by Ueda and Lodha
(1995).

For the cubic B-Spline wavelet β4(x), the realization of Katunin
and Korczak (2009) was adopted. These authors construct an elabo-
rate piecewise approximation of the wavelet with cubic polynomials
over short intervals of its support. The analytic form of the approxi-
mation is lengthy and is not presented herein for the sake of brevity,
but it turns out to comprise a consistent function with stable and
smooth spectral characteristics. Finally, the derivative of the cubic
B-Spline N4(x) also comprises a wavelet (Canny, 1986). It can be
computed analytically, directly from N2(x).

B-Spline wavelet filters comprise a family with a broad spectrum of
frequency localization properties. The top panel of Fig. 1 shows the fre-
quency responses of the B-Spline wavelet family when tuned at the
nominal frequency of 400 MHz, for data recorded with a sampling
rate of 0.1957 ns. The bottom panel of Fig. 1 is the same but for a tuning
frequency of 100 MHz and a sampling rate of 0.7828 ns. The tuning of
the different filters at the same frequency is achieved by adjusting
(expanding or contracting) their lengths. The shape of the frequency re-
sponses asserts that different order filters extract different information.
The Cubic B-SplineDerivative allows quite a broad spectral band around
the tuning frequency, while the Linear, Quadratic and Cubic B-Splines
pass progressively narrower bands, thus facilitating progressively finer
frequency localization and temporal scale extraction.Moreover, the fre-
quency responses are all shaped like slightly asymmetric bells; in this
capacity theymimic, more or less, the shape of the radar sourcewavelet.
Based on this property, it may be argued that this type of filter is
particularly suitable (adaptive) for GPR data. Notably, the Ricker (or
Mexican Hat) wavelet, one of the commonly implemented models of
the radar source pulse, can also be approximated by derivatives of Car-
dinal B-Splines (Brinks, 2008).

2.1. GPR data Analysis with One-dimensional B-Spline Wavelet Filters

Anumber of exampleswill nowbepresented, in order to demonstrate
how thesewavelets operate onGPRdata and provide ameasure of the in-
formation to be mined with this approach. The wavelets will be applied,
first to individual traces (also known as A-scans) for a detailed study of
their performance and, then, to complete two-dimensional radargrams
(also known as B-scans).

The first example is a trace from an archaeometric survey at the
ancient Agora (Forum) of Argos, Greece, in an attempt to locate the
temple of Apollo Lyceus. The 16-bit data was collected in B-scan
mode with a GSSI SIR-2000 system and 400 MHz antenna. The trace
shown in Fig. 2a contains strong reflections from buried targets
(man-made structures) in the two-way traveltime interval 18–30 ns
and weak reflections buried in heavy noise in the interval 60–80 ns.
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The data is also contaminated by long period noise which appears
after 30 ns and short period noise localized between 40 and 50 ns
(low amplitude) and 60–80 ns (high amplitudes). However, the most
distressing and possibly misleading characteristic of the noise is a se-
ries of reverberations spread between 100 and 200 MHz and exhibiting
three spectral peaks at 110 MHz, 140 MHz and 170 MHz; this is clearly
a structured process of uncertain origin, possibly antenna self-clutter,
with power comparable to the power content of the data (if the data
is assumed to be spread mainly in the interval 200–600 MHz). An ex-
pression of this noise can be seen quite clearly between 30 and 50 ns,
but at later times it fuses with the data and other noise processes, so
that its amplitude and temporal extent cannot be certain.

This trace is treated with a cubic B-Spline derivative wavelet. Fig. 2b
shows the output of a 5-point wavelet; the frequency response of this
filter peaks at ~1.28 GHz and is tunedwith data features having tempo-
ral scales of the order of 0.6–1.6 ns. This is actually the scale of the short
period noise; therefore, the output of the filter is effectively a represen-
tation (model) of the short-period noise, although some attenuated
data components also appear to leak into the output series around the
18–30 ns interval. Fig. 2c shows the output of a 110-point wavelet
with frequency response tuned at ~0.06 MHz; these are the longest
periods in the input data series and correspond to the temporal scales
of long period noise: the output of the filter is effectively a model of
the long period noise. Fig. 2d shows the output of a 42-point wavelet
tuned at 140 MHz and processes with temporal scales of the order
4–16 ns. The power of the output series ismainly to be found in the fre-
quency interval 60–200 MHz, therefore it comprises a model of the re-
verberating noise described above. It is now evident that this process
has variable amplitude which is significant and comparable to the am-
plitude of reflections from buried targets, particularly at the early part
of the trace; moreover, it maximizes at 30–40 ns and 60–75 ns and

practically disappears after the 80th ns. Finally, Fig. 2e shows the output
of a 15-point wavelet. The frequency response of this wavelet peaks at
~399 MHz, almost in tune with the nominal central frequency of the
antenna and selects data features with temporal scales of the order of
2–5 ns. This is comparable to the duration of the main reflection events
and very different from the temporal scale of the noise: this output trace
essentially comprises noise-free data!

In this example the cubic B-Spline derivative wavelet was almost
adequate. However, in the very next scan, only 1 m to the left and
5 minutes later, the distributed 100–200 MHz noise processes have
coalesced into a single, powerful and dominant spectral peak at
approx. 200 MHz (Fig. 3a). The cubic B-Spline derivative wavelet
tuned at 400 MHz cannot suppress this feature due to its broad
frequency response (Fig. 3b). In this case it is the linear B-Spline
wavelet which provides adequate noise suppression (Fig. 3c), while
the tuned quadratic and cubic wavelets offer finer frequency locali-
zation and scale extraction (Fig. 3d–e). Fig. 4a illustrates the raw
(B-scan) radargram whence the trace of Fig. 3 was extracted;
Fig. 4b is the same data, after application of a 27-point linear
B-Spline wavelet tuned at 400 MHz. The noise comprises sporadic
high frequency bursts possibly related to the operation of communi-
cation devices (the data was collected in a semi-urban environ-
ment), a long period air-wave between 0 and 20 m from a nearby
reflector and persistent banding with a peak at approx. 200 MHz,
which is attributed to antenna self-clutter. The existence of a pecu-
liar X-shaped noise process at approx. 10 m down the scan line and
between 20 and 60 ns is also of interest. The presence of buried, pre-
sumably man-made objects is also evident at several locations along
the radargram. The filter appears to have effectively removed the noise
(Fig. 4b), while some residual banding can be easily eliminated with con-
ventional methods (e.g. subtraction of a global background). The inset

Fig. 1. Normalized frequency responses of the B-Spline wavelet family, assuming a nominal central frequency of 400 MHz for data recorded with a sampling rate of 0.1957 ns (top)
and a nominal central frequency/sampling rate of 100 MHz/0.7828 ns respectively (bottom). The corresponding frequency response of the well known Morlet wavelet is also
shown for reference.
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figure points to steep reflections and diffractions from (presumably)
man-made structures that have previously been almost completely ob-
scured by the X-shaped interference.

3. Two-dimensional oriented and tuneable B-spline wavelet filters

When the data depend on two spatial dimensions, (a matrix or
image), the wavelet transform decomposes it into a series of images,
each of which contains information at a specific location, of features at
a single scale. In GPR data, the existence of two independent variables
(time/space) allows each component of the f–k spectrum to be coupled
with a particular orientation (dip). Thus, it appears feasible to design a
matrix filter in which the temporal/spatial scale and dip can be varied
so as to be tuneable at any trait in the data. In such a filter the scale
would be determined by the dimensions of the matrix and the dip by
the orientation of the matrix relative to the time (t) and space (x)
axes. It follows that the precision in location (resolution) of any feature
in the wavelet transform will depend on its scale. Fig. 5 illustrates how
to design such a two-dimensional filter:

1. Generate a one-dimensional wavelet of the desired order and
length (e.g. Fig. 5a). The length (L) of the wavelet comprises the
longitudinal dimension of the matrix filter.

2. Sidewise arrange a number of identical one-dimensional wavelets
to create a 2-D matrix. The number of parallel wavelets comprises
the transverse dimension of the matrix filter and will henceforth
be referred to as the span (s) of the filter.

3. Taper the transverse (span-parallel) direction with a smoothing
window function (e.g. Gaussian or Hanning window — see Fig. 5b).

4. If the length of the wavelet is parallel to the time axis and the span
parallel to the space axis, the resulting filter should have the form of
the example in Fig. 5c. It is also possible to design a transposed filter
with its length parallel to the space axis and its span parallel to the
time axis. If b(t, x) denotes any such matrix filter, note that although
the condition ∫ t∫xb(t,x)dxdt=∫x∫ tb(t,x)dtdx=0 is satisfied, this
comprises a departure from strict biorthogonal wavelet construction
because the span-parallel direction is not a wavelet!

5. Let the time axis (t) correspond to the direction of 0° and the space
axis (x) to the direction of 90°, i.e. let the azimuth bemeasured clock-
wisewith respect to the time axis. In order to de-noise and/or isolate
dipping reflectors rotate thematrix filter to the desired azimuth (dip
direction), so that the span of the filter will be parallel to the align-
ment of reflections and the length perpendicular to it (Fig. 5e).

This matrix operator will henceforth be referred to with the
acronym BSW Filter (for B-Spline Wavelet Filter). It should also be

Fig. 2. Application of a cubic B-spline derivativewavelet filter to a 16-bit data trace collected with a 400 MHz antenna and contaminated by noise of different temporal scales. The left
column shows raw and processed traces; the right column the corresponding frequency responses. (a) The raw trace. (b) The frequency response of a 5-point filter peaks at approx.
1.28 GHz; the filter essentially yields a model of the short-period noise. (c) The response of a 110-point filter peaks at approx. 0.06 MHz; the filter yields a model of the long period
noise. (d) A 42-point wavelet with peak frequency at 140 MHz recovers a model of noise introduced by antenna self-clutter. (e) A 15-point filter has a frequency peaking at approx.
399 MHz and yields a model of the data with minimal contamination.
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noted that the concept of the BSW Filter originated with the work of
Little et al. (1993) and Little (1994) who applied it to the analysis of
topographic and bathymetric data.

The rotation of the BSW Filter should be understood thus: Let
there be an operator R{θ} capable of rotating real functions b(t, x)
of a fixed coordinate system through an angle θ. Then, the operation
R{b(t, x): θ} creates a new function bθ(t, x) which is numerically
equal to b(tθ, xθ), where the superscript θ indicates that the coordi-
nate system has been rotated by R{θ} through an angle θ. For instance,
the transformation of first column of b(t, x) would be:

xθ1
tθ1
xθ1
tθ2
⋮
xθ1
tθM

2
6666666664

3
7777777775
¼

cosθ − sinθ 0 0 ⋯ 0 0
sinθ cosθ 0 0 ⋯ 0 0
0 0 cosθ − sinθ ⋯ 0 0
0 0 sinθ cosθ ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ cosθ − sinθ
0 0 0 0 ⋯ sinθ cosθ

2
666666664

3
777777775
⋅

x1
t1
x1
t2
⋮
x1
tM

2
66666664

3
77777775

The mapping applied to the m-th element of the first column is
b(tm,x1)↔b(tmθ ,x1θ)=bθ(tm,x1), so that when the transformation is
applied to the entire matrix operator b(t, x), the result will be b(tθ,
xθ)=bθ(t,x).

At a given angle θ the f–k spectrum of the BSW Filter bθ(t, x) will
be

Bθ f ; kð Þ ¼ ∫
∞

−∞
∫
∞

−∞
bθ t; xð Þ⋅e−j2πkxe−j2πf tdxdt ð2Þ

At the rotated coordinate system the f–k spectrum of b(tθ, xθ) will
be

B f θ; kθ
� �

¼ ∫
∞

−∞
∫
∞

−∞
b tθ; xθ
� �

⋅e−j2πkθxe−j2πf θtdxdt ð3Þ

Because bθ(t,x)=b(tθ,xθ), it is possible to have Bθ(f,k)=B(fθ,kθ)
only when f≡ fθ and k≡kθ. This is a heuristic way of showing that
the f–k spectrum of the matrix operator rotates identically with its
t–x counterpart (Fig. 5d, f).

The f–k spectrum consists of two lobes symmetric with respect to
the origin. Owing to the scaling properties of the B-Spline wavelets, it
is straightforward to verify that the location of the peak with respect
to the frequency axis (fθ) and wavenumber axis (kθ), is determined
exclusively by the length (scale) of the wavelet which thus defines
the temporal and spatial scale(s) to be isolated. The shape of the
lobes is determined by the type/order and length of the wavelet, the

Fig. 3. Application of the B-spline wavelet family to a 16-bit data trace collected with a 400 MHz antenna and contaminated by noise of different temporal scales. (a) The principal
source of noise is antenna self-clutter with a dominant spectral peak at approx. 200 MHz. (b) The cubic B-spline derivative at 400 MHz cannot suppress this feature. (c) The linear
B-spline wavelet at 400 MHz provides adequate noise suppression. (d-e) The quadratic and cubic B-spline wavelets at 400 MHz offer sharper frequency localization and finer-scale
extraction.
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Fig. 4. (a) The raw radargram whence the trace of Fig. 3 was extracted; the trace is located at 9.62 m from the beginning of the section. (b) The same radargram after application of a
27-point linear B-spline wavelet tuned at 400 MHz. The inset figure shows (presumably) man-made structures previously obscured by the noise.

Fig. 5. Construction and spectral properties of a two-dimensional B-spline wavelet filter (see text for details).
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span of the filter— equivalently the aspect ratio γ=L/s— and the type
of the smoothing window. The span determines the spatial extend
over which to smooth: increasing (decreasing) the span contracts
(expands) the lobes in the azimuthal direction and therefore influ-
ences spatio-temporal localization, but does not change the location
of the peak, hence the resolvable data scale. The shape of the smooth-
ing window influences the slope (roll-off rate) of the spectral lobes in
the azimuthal direction and thus has a small effect on the temporal
and spatial localization characteristics of the filter.

It is also easy to see that for θ≠φ, b(tθ,xθ)≠b(tφ,xφ), therefore,
B(fθ,kθ)≠B(fφ,kφ) and fθ≠ fφ, kθ≠kφ. Assuming that the data is
collected at θ=0°, let the reference peak frequency for a filter of any
given length be fmax

0 . As a result of the rotation, the peak moves
away from its reference location and desired scale. In the example
of Fig. 5, if the sampling rate is 1 s, then for θ=0° the peak of the
positive frequency lobe is located at fmax

0 =0.08 Hz (Fig. 5d), while
for θ=50° it is located at fmax

50 =0.0371 Hz (Fig. 5f). It follows that
upon rotation by θ, in order for the peak to remain focused (tuned)
on a given reference scale fmax

0 , one must adjust the length of the
wavelet so that fmax

θ → fmax
0 .

Fig. 6 shows examples of tuning the BSW Filter at a given temporal
scale (reference frequency). Let us assume that the size of the radargram
to be treated is 512×512 samples and that it has been obtained with a
400 MHz antenna, a sampling rate of 0.1957 ns and a trace spacing of
0.025 m. Also let the mother filter at θ=0° be based on a Quadratic
B-Spline wavelet and have a span of 21 points. Finally, let the target
(reference) frequency fmax

0 be equal to 400 MHz. For themother filter
(θ=0°) this will be achieved when L=54 sample points along the
time axis, thus resulting in a 54×21 matrix filter (Fig. 6a—top). At
θ=30°, a Quadratic B-Spline/21-point Hanning Window filter will
have fmax

30 ≈400 MHz if the length of the mother filter (L) is reduced to
33 points (Fig. 6a—middle) and at θ=60°, it will have fmax

60 ≈400 MHz if
L=19 points (Fig. 6a—bottom).

If the span remains constant, the aspect ratio changes and so does
the shape of the spectral lobes. For the particular filter design of
Fig. 6a, the spectral lobes change from oblate with respect to the radial
direction at θ=0° (Fig. 6a—top) to oblong at θ=60° (Fig. 6a—bottom);
this means that at low rotation angles the filter would tend to admit
proportionally more arrivals from sub-horizontal interfaces, while at
high rotation angles more arrivals from sub-vertical interfaces. In

Fig. 6. a. Tuning a BSW filter at a given temporal scale (reference frequency) for different rotation angles. The basic design (mother filter) is a Quadratic B-spline/21-point Hanning
Window matrix. If the tuning frequency is set to 400 MHz, then, for a rotation angle of θ=0° the mother filter must be a 54 (length)×21 (span) matrix, for a rotation angle of θ=
30° a 33×21 matrix and for a rotation angle of θ=60° a 19×21 matrix. b. Tuning a BSW filter at a given temporal scale (reference frequency) for different rotation angles while
preserving the aspect ratio. The basic design (mother filter) is a Quadratic B-spline/21-point Hanning Window matrix. If the tuning frequency is set to 400 MHz, then, for a rotation
angle of θ=0° the mother filter must be a 54 (length)×21 (span) matrix with an aspect ratio of 2.57. For a rotation angle of θ=30°, the aspect ratio will be preserved if the mother
filter is a 33×15 matrix; for a rotation angle of θ=60° the aspect ratio will be preserved if the mother filter is a 19×9matrix. c. Tuning a BSW filter at a given spatial scale (reference
wavenumber) for different rotation angles. The basic design (mother filter) is a Linear B-spline/21-point HanningWindowmatrix. If the tuning wavenumber is set to 2 m−1, then for
a rotation angle of θ=90° the mother filter must be a 21 (span)×50 (length) matrix, for a rotation angle of θ=60° a 21×33 matrix and for a rotation angle of θ=30° a 21×18
matrix.
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general, this would not be a problem, unless there is powerful interfer-
ence from sources positioned sub-horizontally or sub-verticallywith re-
spect to the receiver, the latter being the more probable due to the
nature of the GPR data. In such cases, the shape of the spectral lobes
can be preserved by adjusting the span, so as to preserve the aspect
ratio of the mother filter. In the example of Fig. 6b the aspect ratio of
the 54×21 mother filter (Fig. 6b—top) is preserved, along with the
shape of the spectral lobes, if at θ=30° the span is reduced to 15 points
(Fig. 6b—middle) and at θ=60° to 9 points (Fig. 6b—bottom). The
downside of this process is that the half-response bandwidth expands
at high rotation angles (the spectral lobes broaden), due to the overall
contraction of the BSW Filter. Experiencewith using the filter, however,
shows that this is of little practical consequence for its performance.

It is important to note that this type of tuning breaks down as the ro-
tation angle approaches ±90° because the filter becomes prohibitively
short. The breakdown occurs abruptly at an angle dependent on the
sampling interval. A remedy would be to resample the data at higher
rates, or to use higher orderwavelets (albeit at the expense of higher lo-
calization). Nevertheless, there is still a limit beyond which the tuning
procedure is impractical: this is at rotation angles of approx. ±90°±
5°. As, however, will be argued in Section 7 (Epilogue), this does not
pose practical limitations to the resolving power of the method.

The same procedure can be applied for tuning the BSW Filter at a
given reference wavenumber. The difference here is that the mother
filter must be defined at the angle θ=90°, so that the span will
align with the time axis. Let the reference wavenumber be kmax

90 =
2 m−1. Fig. 6c—bottom shows the mother filter which is based on a
Linear B-Spline wavelet and has a span of 21 points. At θ=90° this

filter will tune at the reference wavenumber for L=50. At θ=60°
the filter will remain tuned at the reference wavenumber if L is re-
duced to 31 points (21×31 mother filter, Fig. 6c—middle) and at
θ=30° if L=18 points (21×18 mother filter, Fig. 6c—top). As per
Fig. 6a, if the span remains constant, the aspect ratio changes and
the shape of the spectral lobes changes accordingly. Again as per
Fig. 6b, the shape of the spectral lobes can be preserved by changing
the span. Details will not be shown for the sake of brevity.

It is also important to note that wavenumber tuning breaks down
as the rotation angle approaches 0° and 180° because the filter again
becomes prohibitively short. The breakdown occurs abruptly at an
angle dependent on trace spacing. An analogous remedy would be
to resample the data at shorter spacing, or to use higher order wave-
lets but this would still leave a range of approx. 0°±5° and 180°±5°
where the tuning procedure would be impractical. Again, as will be
argued in Section 7, this does not pose practical limitations to the
resolving power of the method.

It is straightforward to automate the determination of the optimal
wavelet length L. Let

χ⊙ ¼ f 0max > 0
k90max > 0

(

be the target (reference) frequency or wavenumber. Also let

χθ
⊙ ¼

f̂
θ
max Lð Þ

��� ���
k̂
θ
max Lð Þ

��� ���
8<
:

be the abscissa or ordinate of the peak of the spectral lobe that lies in
the positive frequency or wavenumber half-plane, for a rotation angle
θ and length L. If one would like to preserve the aspect ratio this
definition would have to be modified thus:

χθ
⊙ ¼

f̂
θ
max L; s Lð Þð Þ

��� ���
k̂
θ
max L; s Lð Þð Þ

��� ��� :
8<
:

Then, the optimal L can be obtained by minimizing a simple loss
function of the form

ρ Lð Þ ¼ χ⊙−χθ
⊙

��� ���:
3.1. Example

The data of Fig. 7a was collected as part of the Argos archaeometric
survey (see above), with a GSSI SIR-2000 system and an antenna with
a nominal central frequency of 400 MHz. The raw radargram is shown
asmeasured: it is quite noisy and comprises a 512 sample×1024 traces
sectionwith a sampling rate of 0.1957 ns (total timewindow=100 ns)
and trace spacing 0.01075 m (section length=11 m). One apparent
and significant feature in this section is an up-dipping reflector which
is clearly seen between the coordinates (60 ns, 6 m) and (49 ns,
7.8 m), while there is quite clear indication that it may extend bilateral-
ly to later times/shorter distances (approx. 66 ns/5 m) and earlier
times/longer distances (approx. 37 ns/10 m).

The design of a BSW Filter to extract the reflector can be based on
a few simple considerations: The main pulse of this reflection shows a
positive–negative–positive polarity sequence and its duration can be
measured at a few locations: the time between the positive peaks aver-
ages at 1.76 ns. This is clearly an event rich in high frequencies — if
it was a sinusoid, it would have a frequency of approx. 570 MHz. Con-
versely, the width of the pulse parallel to the scan line can be
considered, although in this case it is rather difficult to measure due
to the intense interference parallel to the scan line. At any rate, it can
be estimated in the range 0.19 m to 0.32 m with an average at

Fig. 6 (continued).
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0.24 m. This implies spatial wavenumbers in the range 5.3 m−1 to
3 m−1 with an expectation value of 4.2 m−1. Notably, tuning of the fil-
ter at both the expectation frequency and wavenumber is possible only
in a narrow range of rotation angles around 20° and 160°. Given this in-
formation, one may design the filter in three ways:

i. Estimate the dip angle, rotate the filter to an angle perpendic-
ular to the dip and vary the length until it is tuned at the expec-
tation frequency.

ii. Estimate the dip angle, rotate the filter to an angle perpendic-
ular to the dip and vary the length until it is tuned at the expec-
tation wavenumber.

iii. Vary the length and rotation angle until the filter is tuned at
both the expectation frequency and wavenumber; the final ro-
tation angle should be approximately perpendicular to the dip.

After the filter is tuned to the expectation values, onemay experiment
by adjusting the length, span and rotation angle, until an “optimal” result

Fig. 7. (a) B-scan radargram featuring a linear up-dipping reflector between the ordinates 49–60 ns and abscissae 6–7.8 m buried in noise. There is compelling indication that the
reflector may extend bilaterally to later times/shorter distances and earlier times/longer distances. (b) The same radargram after application of a 21×13 Linear B-spline/Gaussian
window mother filter rotated to θ=160°, so that the wavenumber would be tuned at k=4.16 m−1. (c) The same radargram after application of a Gabor filter with design param-
eters b=1.5, γ=0.5, λ=7 and θ=160°; the wavenumber is tuned at the reference scale of k=4.15 m−1.
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is obtained. This is because the span of thefilter inversely affects its spatial
localization properties. In the inevitable absence of an objective measure,
(for instance in the form of a simple metric), the optimality of the output
is a matter of expert judgment in relation to the objective of the
application.

One such optimal result is shown in Fig. 7b, after treating the
radargram with a 13×21 Linear B-Spline/Gaussian window filter
rotated to θ=160°, so that the frequency is tuned at 628 MHz
(fmax

160 =628 MHz) and the wavenumber at 4.16 m−1 (kmax
160 =

4.16 m−1). The dipping reflector stands out clearly and its lateral
extent beyond the initially observable range is confirmed.

In addition to the “apparent” reflection discussed above, the filter
detects a “hidden” reflector with similar geometrical characteristics be-
tween (40 ns, 1.3 m) and (23 ns, 4.2 m). This feature deserves some
scrutiny because in the raw data it is heavily obscured by other powerful
reflection events andnoise, so that it can be observed only after careful in-
spection. Consider that the BSW Filter is highly selective; if parts of the
data contain geometrical components associated with a specific orienta-
tion, the filter will pick them out and obliterate any irrelevant informa-
tion. However, if these components do not belong to an extended
dipping reflector, they will either be unorganized and scattered (noise),
or they will be arranged vertically as a consequence of them having
been produced by sharp lateral changes in buried structures (e.g. walls)
or noise (e.g. ringing). In Fig. 7b one may observe several “small” dipping
reflections that exhibit such traits. In the case of the “hidden reflector”
however, they are arranged along a single dipping line for an extended
part of the section. This is hardly a coincidence; rather, it is the signature
of a dipping interface with apparently weak reflectivity, obscured by in-
terference of higher intensity. In a final comment, note that the “hidden
reflector” is for real — it can be observed with the same characteristics
in neighbouring parallel sections and over the same span as the deeper,
apparent reflector. In this particular section it happened to be heavily
obscured, which is why it was selected for demonstration.

4. Two-dimensional Gabor Wavelet Filters

A 2-D Gabor Filter is a Gaussian kernel function modulated by a
sinusoidal plane wave. Its impulse response is defined by a harmonic
function multiplied by a Gaussian function (Gabor function). The
filter has a real and an imaginary component representing orthogonal
directions. The two components may be formed into a complex quan-
tity or be used individually. Details can be found in the abundant per-
tinent literature, as for instance are the monographs edited by
Feichtinger and Strohmer (1998, 2003) and the numerous contribu-
tions therein. The parameterization adopted herein follows the
formulation proposed by Daugman (1985) and further developed by
Kruizinga and Petkov (1999), Grigorescu et al. (2002), Grigorescu
et al. (2003) and others, at the Institute of Mathematics and Comput-
ing Science, University of Groningen (Netherlands):

g x; t;λ; θ;ψ;σ ;γð Þ ¼ exp −
xθ
� �2 þ γ2 tθ

� �2
2σ2

0
B@

1
CA exp j 2π

xθ

λ
þ ψ

 ! !

ð4aÞ

where

xθ ¼ x cosθþ t sinθ
tθ ¼ −x sinθþ t cosθ:

ð4bÞ

The parameter λ represents the wavelength of the sinusoidal
factor, θ represents the orientation of the normal to the parallel
stripes of a Gabor function (e.g. Feichtinger and Strohmer, 1998,
2003), ψ is the phase offset, σ is the standard deviation of the Gauss-
ian factor and γ is the spatial aspect ratio which specifies the elliptic-
ity of the support of the Gabor function. For γ=1 the support is

circular. For γb1 the support is oblong in the orientation of the paral-
lel stripes of the Gabor function (i.e. in the azimuthal direction). For
γ>1 the support is oblong perpendicularly to the orientation of the
parallel stripes of the Gabor function (i.e. in the radial direction).
The half-response spatial frequency bandwidth b of a Gabor Filter
(in octaves) is related to the ratio σ/λ as follows:

b ¼ log2
σ
λπ þ ffiffiffiffiffi

ln2
2

p
σ
λπ−

ffiffiffiffiffi
ln2
2

p
 !

;
σ
λ
¼ 1

π

ffiffiffiffiffiffiffiffi
ln2
2

r
⋅2

b þ 1
2b−1

Thus, the value of σ may not be specified directly and may be set
through the more intuitive parameter b. The smaller the bandwidth,
the larger is σ, the support of the Gabor function and the number of
visible parallel excitatory and inhibitory stripe zones.

Fig. 8. a. A Gabor filter with aspect ratio γb1 at different rotation angles. b. A Gabor
filter with aspect ratio γ>1 at different rotation angles.
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Because of the convolution theorem, the Fourier transform of the
impulse response is the convolution of the Fourier transform of the
Gaussian kernel and the Fourier transform of the sinusoidal term.
Both transforms can be computed analytically (in the rotated
co-ordinate system). The Gaussian kernel gives:

Gg f θ; kθ
� �

¼ 2πσ2

γ
exp −2π2σ2 kθ

� �2 þ f θ
� �2
γ2

2
64

3
75

0
B@

1
CA:

The f–k transform of the modulation term can also be computed
analytically:

GS f θ; kθ
� �

¼ 2π⋅ exp iψð Þ⋅δ 2πkθ þ 2π
λ

� �
;

where δ is a Dirac delta sequence function. The convolution of these
two expressions gives the analytic form of the Gabor f–k spectrum

G f θ; kθ
� �

¼ 4π2σ2

γ
exp −2π2σ2 kθ

� �2 þ f θ
� �2
γ2

2
64

3
75

0
B@

1
CA⋅ exp iψð Þ

It is easy to see that this function consists of two lobes symmetric
with respect to the origin and that the f–k and t–x representations of
the Gabor Filter have identical orientations. For γ=1 the lobes are
circular. For γb1 the lobes are oblong in the radial direction
(Fig. 8a). For γ>1 the lobes are oblate in the radial direction
(Fig. 8b). It is also straightforward to verify that owing to the scaling
properties of the Gabor wavelet, the coordinates of the peaks of the
spectral lobes are determined exclusively by the wavelength λ,
which thus defines the temporal or spatial scale to be isolated. The
width of the pass-band and the sharpness (roll-off rate) of the spec-
tral lobes are determined by the bandwidth b, while the span of the
filter (size of the smoothing window) is determined by the aspect
ratio γ. In consequence, the combination bandwidth/aspect ratio con-
trols the dilation or contraction of the filter, hence the amount of
information allowed through the filter at the given scale. With respect
to the BSW Filters discussed above, the length of the B-Spline wavelet
corresponds to the wavelength of the Gabor Filter and the combina-
tion span/smoothing window to the combination bandwidth/aspect
ratio.

Also as above, for θ≠φ, g(xθ,tθ)≠g(xφ,tφ), therefore, G(fθ,kθ)≠G(fφ,
kφ) and fθ≠ fφ, kθ≠kφ. Again assuming that the data is collected at
θ=0°, the reference scale (peak frequency/wavenumber) for a given
wavelength λ are fmax

0 or kmax
90 respectively. At any θ≠0, the peak

moves away from its reference location, thus changing the selectable
scale. It follows that in order for the peak to remain focused on a given ref-
erence scale, one must adjust λ so that fmax

θ → fmax
0 or kmax

θ →kmax
90 .

Gabor Filters are directly related to Gabor wavelets, since they can
be designed for different dilations and rotations. The most usual
application is to create a filter bank with various scales and rotations,
which are convolved with the signal, resulting in a so-called Gabor
space. Last, but not least, the Gabor Filters and B-Spline wavelets are
closely related. In fact, Unser (1992) has shown that B-Spline wavelets
converge to Gabor functions (modulated Gaussian) pointwise and in
all Ln-norms with 1≤nb+∞ as the order of the spline tends to infinity;
the approximation error for the cubic B-Spline wavelet is already less
than 3%. The exact relationship between the BSW Filter and the Gabor
Filter will not be investigated in the context of this presentation.

Fig. 7c illustrates the output of a 2-D (real part) Gabor Filter operating
on the data of Fig. 7a. The design parameters were b=1.5, γ=0.5, λ=7
and θ=160°, so that the filter is exactly parallel to the hidden reflection
and the wavenumber tuned at the reference scale of k90=4.15 m−1.
The result is absolutely comparable to that of Fig. 7b: the primary dipping
reflector stands out clearly and its lateral extent beyond the originally

observable range is also confirmed. The second reflector between coordi-
nates (40 ns, 1.3 m) and (23 ns, 4.2 m) is also efficiently detected.

5. Scale and geometrical feature extraction — de-noising

In the general case a radargram may contain reflections from
variable-dip reflectors, multiple reflectors with different dips, etc.
A single-dip BSW or Gabor Filter will extract only part of the avail-
able dip-dependent information because it is highly selective.
Although the high selectivity is desirable if one wishes to isolate
scale-and-dip dependent information, it is very restrictive when
one wishes to extract scale-dependent information only, over a
broad or narrow range of dips (multiple- or variable-dip geometric
features). In such cases, a more sophisticated approach is required.
The application of directional filters to image processing (e.g. edge
and contour detection) often involves the combination of partial im-
ages obtained by application of the same filter rotated to different di-
rections (e.g. see Freeman and Adelson, 1991, for SteerableWavelets,
or Grigorescu et al., 2003, for Gabor Filters). This procedure is fine for
common images, where both dimensions are of the same nature
(spatial) and the location of the peak remains locked at a constant ra-
dius during rotation. However, it may not be always suitable for GPR
data, where the dimensions are of different nature (one temporal
and one spatial).

The solution proposed herein borrows insight from the techniques
used in edge detection, but with adaptations that render them suit-
able for GPR data. Letting D be the f–k transform of the data and F
the normalized f–k transform of the filter at angle θ and length L, so
that F(θ,L)=B(θ,L)⋅‖B(θ,L)‖∞−1 or, F(θ,L)=G(θ,L)⋅‖G(θ,L)‖∞−1, the
proposed procedure entails:

i) Application of the BSW or Gabor Filter rotated to different angles
under adaptive control so that it will remain tuned at a given fre-
quency or wavenumber. This will yield a series j=1, … N of
orientation-dependent outputs:

D̂ j θj;χ⊙

� �
¼ D⋅F θj; Lj : χ⊙−χθ

⊙

��� ���→0
n o

ii) Stacking of the orientation-dependent outputs in the weighted
least-squares sense

�D θ1 : θN ;χ⊙ð Þ ¼
XN
j¼1

D̂
j

θj;χ⊙

� �
⋅w θj;χ⊙

� �2
4

3
5⋅ XN

j¼1

w θj;χ⊙
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4

3
5−1

:

The stacking weight can have several forms — the weights
implemented herein are generally functions of a measure of the ener-
gy contained in the output data normalized by the same measure of
the energy contained in the input data in the sense:

w θj;χ⊙

� �
¼ ‖D̂ θj;χ⊙

� �
‖n⋅‖D‖n

−1
;

where n can be 1 (Manhattan norm), 2 (Euclidean norm), or ∞ (infin-
ity norm). It is also possible to set w(θj,χ⊙)=1, (i.e. obtain a straight
arithmetic average of the outputs at different rotation angles). This
weighting scheme guarantees that the final output will not be
disproportionally dominated by powerful spectral components and
that it will be a faithful representation of the scale-dependent infor-
mation originally contained in the input data. Moreover, the stacking
will tend to smear dip-dependent noise features eluding the filter at a
given temporal or spatial scale, further enhancing the S/N ratio.

The filtering scheme described above facilitates the combination
of several “partial” (same-scale-and-dip-dependent) data subsets
into an image that is scale-dependent but dip-independent over an
arc ⌢θ1θN . The output image will account for any variation in the
angle of dip, including the case of (smoothly or sharply) curved
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interfaces. In order to demonstrate how this process works, a number
of characteristic examples will now be provided.

5.1. Examples

The first example may be familiar to several GPR practitioners: it is
the radargram distributed with the GPR analysis package of Lucius
and Powers (2002). The original section was measured in B-scan
equal time spacing mode at the Norman (Oklahoma) Landfill with a
GSSI SIR-2000 systemand a 500 MHz lowpower antenna; it was subse-
quently pre-processed (transformed to equal trace spacing and
resampled to 1024 samples×1024 traces), so that it nowhas a sampling
rate of 0.099 s (time window equals to 101.7 ns) and a trace spacing of
0.0194 m (section length is 19.8 m). The section is shown in Fig. 9 and
can be seen to suffer from crossing clutter, characteristic of multiple
small targets or rough reflective surfaces. The noise can be locally
strong, but it does not completely overshadow the data which is still
interpretable; this is one reasonwhy this examplewas chosen: the per-
formance of the adaptivefilteringprocess can beprecisely evaluated be-
cause the observer can see exactly what lies behind the noise.

The clutter waveforms have short spatial widths which can be
roughly measured at several locations on the radargram (see also
Section 3.1): they average to approx. 0.25 m, which would imply
expected wavenumber(s) of the order of 4 m−1. It is then possible to
tune a BSW Filter at these wavenumber(s), so as to isolate the clutter.
The optimal aspect ratio can be decided through experimentation.
Fig. 10a illustrates a model of the clutter derived by an adaptive Qua-
dratic B-Spline/5-point Hanning Window filter sweeping the arc [10°,
170°] in steps of 10° while tuned at k=4 m−1. The span of the filter
was kept short (5 points) in order to maintain high spatial resolution.

It is also possible to obtain noise-free data without significant loss of
information. A simple inspection of the data will show that themain re-
flections from subsurface interfaces have spatial widths (scales) ofmet-
ric order. Likewise, an inspection of individual trace spectra, aswell as of
the f–k spectrumwill show that the data is disproportionally rich in low
frequencies, with the peak located in the neighbourhood of 300 MHz
(on average). Accordingly, the de-noising filters can be tuned at spa-
tial scales of metric-order, or temporal scales significantly longer
than those corresponding to the nominal central frequency of the an-
tenna (300–400 MHz). To this effect, Fig. 10b illustrates a represen-
tation of the data after application of a Linear B-Spline/11-point
Hanning Window filter tuned at k=1 m−1 over the arc [10°, 170°].
Fig. 10c is the same for a Linear B-Spline/21-point Hanning Window
filter tuned at 350 MHz over the arc [−80°, 80°]. It is noteworthy
that the more significant volume of Earth-structural information is

recovered at longer wavelengths and lower frequencies and this
may be telltale of the ground conditions through which the signal
propagates. This issue will be revisited in the next example, after ad-
ditional observations have been presented.

The second example data set was collectedwith aMåla GPR system
and 250 MHz antenna on a ridge (Mt Ktenias, altitude ~1600 m, NE
Peloponnesus, Greece), where high-rising wind-powered electricity
generators were to be erected, as part of a geotechnical survey to
investigate the conditions and consistency of the foundation ground
(e.g. to detect voids). This radargram has also been presented and
treated by Tzanis (2010), as an illustratory example of the matGPR
software. The geological setting is shown in Fig. 11. The ground com-
prises dipping, thin-plated limestone with intercalations of argilla-
ceous material, intensely fragmented and karstified (as in Fig. 11b, c
and d). The fragmentation of the limestone is due to faulting and
(apparently) multi-phase jointing. Karstification has subsequently
nucleated at the loci of faults and major joints. As evident in the
photographs, many cracks and voids are filled with lateritic material
with a considerable argillaceous component. Fig. 12a shows the exam-
ple section after time-zero adjustment, global background removal,
AGCwith a 20 ns Gaussian-taperedwindow and elimination of anten-
na self-clutter (see Tzanis, 2010). The later parts of the data traces,
(after approx. 80 ns), are infested with apparently random noise
which is amplified by the AGC and may mask other useful reflections.
Fig. 12b is the same data after F–K time migration — this is the actual
data set used in the ensuing analysis.

The existence of numerous linear or quasi-linear reflection events
with variable length and dip can be easily recognized at several loca-
tions in Fig. 12. These may be due to small aperture fractures and joints
as well as due to the bedding (as per Fig. 11a and c). Since the detection
of fractures has always been amajor application of GPR, this data is suit-
able for demonstrating the applicability of the adaptive filtering proce-
dure to such problems. Careful inspection of the data shows that there
are two kinds of linear reflections with different andmeasurable spatial
widths that cluster around approx. 0.27 m and 0.5 m. This would imply
the existence of two kinds of fractures with different aperture, respec-
tively associated with expected wavenumbers of the order 4 m−1 and
2 m−1. This possibility can be investigated with rotating BSW Filters
tuned at the different wavenumbers.

Fig. 13a illustrates the information extracted from the data of Fig. 12b
by a Quadratic B-Spline/11-point Hanning Window filter sweeping the
arc [20°, 160°] in steps of 10° and tuned at k≈4 m−1. Likewise, Fig. 13b
illustrates the information extracted by a Quadratic B-Spline/11-point
Hanning Window filter sweeping the arc [10°, 170°] in steps of 10° and
tuned at k≈2 m−1. In both cases, the quadratic B-Spline and the

Fig. 9. The B-scan radargram distributed with the GPR analysis package of Lucius and Powers (2002), transformed to equal trace spacing and resampled to a 1024×1024 matrix. The
data suffer from crossing clutter, characteristic of multiple small targets or rough reflective surfaces.
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relatively short spanwere selected in order tomaintainmoderate— high
spatial localization. It is apparent that the filter tuned at the longer
wavenumber (Fig. 13a) detects mainly steep linear reflections; these are
both down- and up-dipping and will henceforth be referred to as “Type
A reflections”. The filter tuned at the shorter wavenumber (Fig. 13b)
picks out the shorter wavelength components of Type A reflections, but
also detects out a second set of gently dipping linear reflections, hence-
forth to be called “Type B reflection.” These are generally closely spaced,
almost entirely down-dipping, and cannot be observed at times longer
than 80 ns approx.

Type A reflections exhibit consistent angular relationship and dip
at ±50° to ±60°: they correspond to joints and to synthetic and
antithetic fractures.1 They cannot be classified as faults due to the
apparent absence of displacement between the foot and hanging
walls, as observed both in the field and the GPR section. The largest
representative of this group is the steep up-dipping series of aligned

1 These, and all subsequent angle measurements were conducted on a depth migrat-
ed section which is not shown for the sake of brevity and were verified by field obser-
vations (also see Fig. 11).

Fig. 10. (a) The data of Fig. 9 after application of a Quadratic B-spline/5-point Hanning Window filter sweeping the arc [10°, 170°] in steps of 10° while tuned at k=4 m−1. This
application effectively isolates the crossing noise process. (b) The same data after application of a Linear B-spline/11-point Hanning Window filter sweeping the arc [10°, 170°]
while tuned at k=1 m−1. This application yields a representation of noise-free data. (c) The same data after application of a Linear B-spline/21-point Hanning Window filter
sweeping the arc [−80°, 80°] while tuned at f=350 MHz. This application yields an alternative representation of noise-free data.
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reflectors at the far right of the radargram, between (43 m, 107 ns)
and (47 m, 43 ns). The fractures generating Type A reflections may
be gaping (as per Fig. 11d) or filled with lateritic material (as per
Fig. 11c). The dip of Type B reflections is 10°–20° and is consistent
with the dip of the thin-plated limestone bedding and the limestone
strata in general, (Fig. 11a, b and c); this is observable at places
because the aperture of the interfaces has been widened by damage
and weathering and has been filled with lateritic material. Finally, in
both Figs. 12 and 13 and at the far left of the radargram one may
observe linear reflections dipping up at an angle of −20° to −30°:
There are Type C reflections and may correspond to up-dipping
primary joints, as indicated in Fig. 11a and b. A similar reflection can
be observed at the far right of the section, between (41 m, 85 ns) and
(46 m, 42 ns) just in front if the fault mentioned above, while there is
clear indication of such features at other parts of the section.

Another way of abstracting and interpreting information will now
be discussed. The visual inspection of the data clearly indicates the
existence of areas rich in low frequencies; these are quite apparent
in the unmigrated section (Fig. 11a) and can also be observed in the
migrated section (Fig. 11b). The effect should be a consequence of
the properties of the material filling these areas, i.e. preferential ab-
sorption of high frequencies in high attenuation domains, and will
be investigated in the following.

A synopsis of the spectral content, hence a measure of changes in
propagation conditions can be afforded by mapping the frequency of
the spectral centroid (or centroid frequency), i.e. the location of the
centre of mass of the signal spectrum. This is calculated as a weighted
mean of the frequencies present in the signal:

f c ¼
∫∞
0 f S fð Þdf
∫∞
0 S fð Þdf

;

where S(f) is the amplitude spectrum. The centroid frequency is expected
to decrease (increase) as a function of time, when the signal enters high
(low) attenuation domains and is also expected to exhibit consistent
gradual downshift in cases of dispersive propagation (e.g. Irving and
Knight, 2003). Herein, the calculation of the centroid frequency was
performed on the basis of an ultra-high resolution time-frequency repre-
sentation of the data, (i.e. of the amplitude spectrum at each instant along
a trace), computed with the S-transform (Stockwell et al., 1996; also see
Irving and Knight, 2003).

Fig. 14a illustrates the centroid frequency (henceforth CF) com-
puted for the migrated section (Fig. 12b). It is straightforward to
observe areas where the CF is significantly lower than the antenna
frequency, and areas where it is significantly higher. At the left half

Fig. 11. The geological setting of the Ktenias ridge. (a) Damaged thin-plated limestone with fractures and joints. (b) Heavily fragmented and damaged limestone block overlying
healthier bedrock of the same composition. (c) Fragmented thin plated limestone with fractures filled with lateritic material; the bedding is also apparent. (d) Gaping fracture in
fragmented limestone block; such structures are abundant in the subsurface. In (a) and (b) the location of some significant faults, joints and interfaces is indicated with white lines.
All photographs are courtesy of Mr P. Sotiropoulos, Terra-Marine Ltd (http://www.terramarine.gr).
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of the section low CFs are generally observed above the 100 ns line
and high CFs below it, although pockets of normal (comparable to
the antenna frequency) to high CF domains can still be observed
above the 100 ns line. At the right half of the section, the low CFs
retreat to 60–70 ns. The low CF domain is rather broad between 12
and 28 m and extends to at least 140 ns between 20 and 25 m. An
up-dipping low CF area wedging in the high CF domain can also be
observed at the far right of the section, collocated with the fault
detected in Fig. 13. No gradual shift of the CF is observed, implying
that dispersion is not strong. In general, the distribution of the CF
indicate the existence of a complex propagation medium in which
there are areas of severe high-frequency attenuation and areas of
low, or altogether low attenuation from which there are no returns
(reflections) and the CF is heavily influenced by the characteristics
of random of noise (e.g. below the 100 ns line).

It is possible to use the BSW Filters to isolate the geometry of high
or low frequency reflections, hence outline the low or high attenua-
tion domains. Fig. 14b shows the output of a Linear B-Spline/
31-Point Hanning Window filter applied over the interval [−80°,
80°] in steps of 10° while tuned at f≈380 MHz, quite higher than
the nominal frequency of the antenna but lower than the CF associat-
ed with random noise. Fig. 14c is the same but with the filter tuned at
120 MHz, almost half that of the nominal frequency and approxi-
mately centred on the lower frequency end of the spectra that yield
the low CF domains. The span of the filter, hence the spectral ratio,
was assigned so as to restrain spatial localization (equivalently
increase the lateral resolution of extended interfaces). As expected,
the results are very different and correspond to reflectors with very

different material properties. Thus, Fig. 14b depicts sharp reflections
originating at low attenuation interfaces: these are highly localized
in time and rich in high frequencies so that they can be observed at
short periods (finer temporal scales). Conversely, Fig. 14c depicts
broadly localized dull reflections from high attenuation interfaces
that absorb high frequencies and enrich the long period content of
the signal. This result compares directly with the result of Fig. 10c.

The dull reflectors can be seen to comprise quasi-continuous anas-
tomosing horizons, or to cluster in relatively narrow and vertically
extended complexes. Given the geological situation of the study
area, the former comprise interfaces between limestone fragments
filled with high attenuation material, in which the larger and inter-
nally less damaged blocks appear in the form of lenses (hence the
anastomoses). The latter (clusters of reflections) are signatures of
cavities filled with high attenuation material. Examples of such struc-
tures can be observed between 20– 30 m and 20–150 ns, which is the
signature of a karstic cavity beneath a bowl-shaped sinkhole, and the
up-dipping fault at the far right of the section. In all cases, the dull
reflectors are collocated with the low CF domains and the filling
material is lateritic in composition.

Asmentioned above, at travel times longer than about 100 ns the CF
is very high and the radargram is void of any significant reflection.
Inasmuch as the signal penetrates to the corresponding depths –dull re-
flections from the karstic cavity are observed to at least 150 ns— these
areas comprise minimally damaged or even healthy rock, in which the
bedding and tectonic interfaces have small apertures, are closed and/
or dry and do not respond to the wavelengths of the 250 MHz antenna.
The fact that the filled cavity extends well into the healthy bedrock is

Fig. 12. (a) Example radargram obtained at the ridge of Mt. Ktenias, Greece. The data has been pre-processed with time-zero adjustment, global background removal, AGC and elim-
ination of antenna self-clutter (banding). (b) The radargram of Fig. 12a after time migration with a velocity of 0.0975 m/ns; the velocity was obtained by direct measurement.

63A. Tzanis / Journal of Applied Geophysics 89 (2013) 48–67



Author's personal copy

evidence of its tectonic origin, i.e. that it nucleated in a fault or junction
of faults. In a final note, typical geological sections with the characteris-
tics described above can be studied in Fig. 11b and 11c.

The Gabor Filter is as effective in extracting the same information.
However, because the results are absolutely comparable to those of the
BSW Filter, corresponding applications will not be presented for the
sake of brevity. In conclusion, it is quite clear that the adaptive filter-
ing schemes proposed herein can be focused in many different ways,
so as to extract correspondingly different pieces of information at dif-
ferent temporal and spatial scales.

6. BSW Filters or Gabor filters?

As shown (or indicated) above, BSW Filters and Gabor Filters have
very comparable performance, quite arguably due to the close relation-
ship of B-Spline wavelets and Gabor functions and the similarities in
their design. Nevertheless, the BSWFilter depends on only three param-
eters (length, span and orientation), whilst the real part Gabor Filter,
even following the parameterization of Daugman (1985), depends on
five parameters (wavelength, aspect ratio, bandwidth, orientation and
phase). Even if the phase is kept constant at zero, the BSWFilter is easier
and possibly more intuitive to design. In consequence it may well be a
natural first choice.

On the other hand, the half-response bandwidth of the BSW Filter
is not adjustable; it is exclusively determined by the choice (order) of
the B-Spline wavelet and is marginally affected by the type of the
smoothing window. The half-response bandwidth of the Gabor Filter
is adjustable and so is the size (breadth) of the spectral lobes (pass

bands): it is feasible to design a highly localized Gabor Filter that will
be optimally adapted to the data at hand. Thus, whereas in usual condi-
tions it should not make much of a (practical) difference whether to use
a BSW or Gabor Filters, there may be demanding circumstances in
which the Gabor Filter can be more adaptive and effective than the BSW
filter.

Fig. 15a shows a pre-processed 16-bit radargram comprising a 512
samples×512 traces section with a sampling rate of 0.099 s and a trace
spacing of 0.068 m. The data has been collected as part of the Argos sur-
vey, with a GSSI SIR-2000 system and 400 MHz antenna. The data is se-
verely contaminated by random noise and the powerful response of
several small metallic objects buried just below the surface, which were
easy to exhume and identify. Fig. 15b illustrates the output of a 55×9
Quadratic B-Spline/Gaussian Window filter, tuned at 400 MHz for
θ=0°. Fig. 15c is the output of a (real part) Gabor Filter with b=0.65,
γ=8, ψ=0° and λ=13, so as to be tuned at 400 MHz for θ=0°. Finally,
the inset in Fig. 15a shows a typical Fourier spectrum of a trace contami-
nated by the response of the metallic objects. It comprises a main har-
monic at approx. 270 MHz and several higher and lower order
harmonics, some of which are indicated in the diagram. The inset in
Fig. 15c shows the spectrum of the same trace after application of the
BSW filter (continuous line) and Gabor Filter (thick broken line).

In both Fig. 15b and c the noise is effectively removed. However, in the
output of the BSWfilter, and as also evident in the inset of Fig. 15c, there is
still some serious residual contamination in the more severely affected
traces. Conversely, the noise is almost completely obliterated by the
Gabor Filter, albeit at the expense of some information between 300
and 400 MHz. In fact, the Gabor Filter is more effective at suppressing

Fig. 13. (a). The data of Fig. 12b after application of a Quadratic B-spline/11-point HanningWindow filter sweeping the arc [20°, 160°] in steps of 10° and tuned at k≈4 m−1. (b) The data
of Fig. 12b after application of a Quadratic B-spline/11-point Hanning Window filter sweeping the arc [10°, 170°] in steps of 10° and tuned at k≈2 m−1. The two applications focus on
fractures, joints and interfaces with different apertures (of the order of 0.25m and 0.5m respectively).
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the noise than a Cubic BSW filter. The outlines of buried reflective struc-
tures are clearly recovered in both Fig. 15b and c; they comprise parts
of thefloors, thewalls and foundations ofwhatwas found to be a building
with the geometrical characteristics of the temple of Apollo Lyceus as
described by Pausanias (confirmation is still pending). However, the
tradeoff between complete noise suppression and partial loss of informa-
tion depends on the specific objectives of the survey and has to be
decided by the user.

In a final note, one might ask: in this case, why not apply a suffi-
ciently narrow-band general purpose filter to effectively isolate
uncontaminated data? The answer is that the output depends heavily
on the second dimension of the filter (span). It is straightforward to
demonstrate that any simple (N×1) narrow-band filter would not
return the same result as per Fig. 15a and b— the residual contamina-
tion would still be significant and the loss of information much more
severe than any loss of information effected by the BSW and Gabor

Fig. 14. (a). Map of the centroid frequency in MHz, computed from the data of Fig. 12b using the S-transform. (b). The data of Fig. 12b after application of a Linear B-Spline/31-Point
Hanning Window filter applied over the interval [−80°, 80°] in steps of 10°, while tuned at f≈380 MHz. This application isolates sharp reflections from low attenuation interfaces:
these are rich in high frequencies and can thus be observed at short periods. (c) The data of Fig. 12b after application of a Linear B-Spline/31-Point Hanning Window filter applied
over the interval [−80°, 80°] in steps of 10°, while tuned at f≈120 MHz. This application isolates dull reflections from high attenuation interfaces.
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Filters. Such examples will not be given, however, for the sake of
brevity.

7. Epilogue

The present work introduces a directional filtering technique based
on the (continuous) wavelet transform and designed to facilitate
the study of geometrical information in two-dimensional (B-scan)
GPR data. Albeit computationally intensive, the technique is simple

to use and very powerful: with a little trial and error the analyst
may isolate/extract information about any resolvable structural
scale at any resolvable frequency or wavenumber (temporal or spatial
scale).

The filters studied herein comprise (a) one-dimensional B-Spline
Wavelets, (b) two-dimensional arrays of parallel B-Spline Wavelets
(longitudinal direction) tapered by a window function in the
transverse direction and, (c) two-dimensional Gabor Filters. These
may produce scale-and-dip-specific representations of the input

Fig. 15. (a) Pre-processed 16-bit radargram collected with a GSSI SIR-2000 system and 400 MHz antenna; the data is severely contaminated by random noise and the powerful
response of several small metallic objects buried just below the surface. The inset figure illustrates the Fourier spectrum of trace 452 at 30.754 m, contaminated by the response
of a metallic object; this comprises a fundamental at approx. 270 MHz and several higher and lower order harmonics. (b) The same data after application of a 55×9 Quadratic
B-Spline/Gaussian Window filter, tuned at 400 MHz (for θ=0°). (c) The same data after application of a (real part) Gabor filter with b=0.65, γ=8, ψ=0° and λ=13, tuned at
400 MHz (for θ=0°). The inset figure illustrates the spectrum of trace 452 after application of the BSW filter (continuous line) and the Gabor filter (thick broken line).
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GPR-data as they can be rotated to any desired orientation and applied
under adaptive control, so as to focus (tune) at specific frequencies or
wavenumbers. Furthermore, it is shown that the same-scale and dip-
specific representations obtained at different orientations may be com-
bined in the least-squares sense to reconstruct dip-independent repre-
sentations of the data at specific temporal or spatial scales (frequencies
or wavenumbers). Both types of filter perform comparably, although
Gabor Filters appears to be more adaptive in some extreme cases than
BSW Filters. Conversely, the latter are quite simpler to design and exper-
iment with, as they depend on only three parameters (length, span and
orientation).

The proposed filtering method can be used to:

a) Enhance the S/N ratio in a manner particularly suitable for GPR
data, because the frequency response of the filters, especially
that of the B-Spline wavelets, mimics the frequency characteristics
of the source wavelet.

b) Isolate/enhance geometrical information for further scrutiny.
c) Exploit the temporal localization characteristics of the filter outputs

to investigate the characteristics of signal propagation (hencemate-
rial properties), albeit indirectly. This is possible because signal at-
tenuation and temporal localization are closely associated. Thus,
interfaces in low attenuation domainswill tend to produce sharp re-
flections rich in high frequencies and fine-scale localization as a
function of time. Conversely, interfaces in high attenuation domains
will tend to produce dull reflections rich in low frequencies and
broad localization.

The techniquehas its caveats! For instance, caution is requiredwhen
the rotation angle approaches nπ/2 with n integer: Frequency-tuning
breaks down when n is odd and wavenumber-tuning breaks down
when n is even. In both cases this happens because the length or wave-
length of the filter becomes prohibitively short. Although there are rem-
edies, e.g. to resample the data at higher temporal or spatial rates, there
are still limits beyond which tuning is no longer practical. On the other
hand it should be reasserted that this limitation does not have serious
practical consequences. In the first case (frequency-tuning) and at dip
angles of the order of (2n+1)π/2, the arrivals are reflected from (sub)
vertical interfaces and propagate (sub)horizontally. Essentially, they
comprise spatial features dependent on the wavenumber and may,
therefore, be processed with wavenumber-tuneable filters. Likewise,
in the case wavenumber-tuning and at dip angles of the order of nπ,
the arrivals are reflected from (sub)horizontal interfaces and propagate
(sub)vertically; they are essentially temporal features dependent on the
frequency and can be processed with frequency-tuneable filters.

A final questionwould be ofwhether other techniques exist, capable
of the same results. The answer is affirmative. For instance theremay be
cases where conventional f–k filters will perform equally well with the
proposed filtering scheme, or even better. However, with increasing
structural and/or noise complexity, such filters may be very difficult to
design. The advanced orientation-sensitive X-let transforms may also
offer efficient alternatives — their merits and limitations have already
been briefly discussed in Section 1 (Introduction). Inasmuch as they
will be the subject of follow-up research, they will not be elaborated
herein. At any rate, none of the alternative methods is as simple and in-
tuitive as the filtering scheme proposed herein.

In a final note, it should be mentioned that a MATLAB™ imple-
mentation of the proposed filtering scheme (complete with a detailed
user's manual) is freely available as part of an updated distribution
(Release 3) of the matGPR software (Tzanis, 2010).
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