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Abstract 

The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, 
engineering, environmental, archaeological and other work. GPR data frequently contain 

anisotropic geometric information from various structures such as bedding, cracks, fractures 

etc. Such features are generally recorded as wavefronts and are frequently the target of a 

survey. However, they are usually not good reflectors and they are highly localized in time 
and in space. Their scale is therefore a factor significantly affecting detectability. At the same 

time, GPR is sensitive to broadband noise from buried small objects, electromagnetic 

anthropogenic activity and systemic factors, which frequently obscures reflections from such 
targets. This presentation discusses the case of de-noising GPR data and retrieving geometric 

information with advanced scale-and-orientation-sensitive filtering methods. These include 

orthogonal steerable wavelet arrays and the Gabor wavelet in particular,  as well as 

multiscale/multidirectional optimally sparse representations of bivariate functions with 
singularities on curves, the archetypal example of the latter being the Curvelet Transform. 

This approach to processing is demonstrated with examples to be exceptionally adaptive and 

highly effective. It is also not limited to GPR data.  

 

1 Introduction  

The Ground Probing Radar (GPR) is an almost indispensable means of imaging near surface 

structures and enjoys a very diverse and broad range of applications. Two-dimensional GPR 

images of the subsurface frequently contain geometric information from small scatterers 
(diffraction hyperbolae) as well as dip-dependent information from dipping reflectors such as 

geological bedding, structural interfaces, cracks, fractures, joints, empty or filled cavities 

associated with jointing or faulting and other conceivable structural configuration. The second 

group of targets, especially fractures, are usually not good reflectors and are spatially 
localized; in geological, geotechnical and engineering applications their detection is 

frequently a primary objective. At the same time, GPR is notoriously susceptible to noise. An 

innumerable variety of natural and artificial buried objects can cause unwanted reflections 
and scattering. Anthropogenic noise is worse and includes reflections from nearby structures, 

interference from power lines and telecommunication devices etc. This type of noise is only 

partially countered with shielded antennae while the extraneous or reflected airwaves, 
critically refracted airwaves and groundwaves are not easily suppressed during acquisition. 

Finally, there’s systemic noise, frequently manifested as ringing (antenna self-clutter). In 

many cases, the noise has definite geometrical characteristics (e.g. high-angle crossing 

clutter). Because the GPR source wavelet is tuned at a single frequency, the information 
returned by the subsurface structure is usually limited to a relatively narrow band around it 

and the rest of the spectrum is swamped in noise. Raw GPR data usually require post-

acquisition processing, as they provide only approximate target shapes and depths.  

This presentation will introduce and demonstrate the application of advanced filtering 

methods of information retrieval to GPR data, with emphasis on recovering features 

associated with specific spatial or temporal scales and geometry (dip). The requirement to 

manipulate geometrical (dip-dependent) information limits the methods suitable for this 
purpose to two general categories: Directional Filters (or Directional Wavelets) and multi-

directional Multi-Resolution Analysis (MRA).  

Directional Filters are a relatively diverse group, for which an almost complete recount exists 
in Jacques et al. (2011). The more advanced designs generally comprise anisotropic 2-D 

waveforms based on steerable semi-orthogonal or orthogonal wavelet arrays, whose 

frequency and/or wavenumber localization can be manipulated by changing their scale 
(wavelength) and orientation (dip); this way, directional filters can be tuned at any resolvable 

trait of the data. The present will focus on tuneable orthogonal Gabor wavelets (e.g. 
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Feichtinger and Strohmer, 1998, 2003) which have been applied to the analysis GPR data and 

shown to be very effective (Tzanis, 2013).  

Multi-Resolution Analysis (e.g. Chui, 1992; Mallat, 1999) is the design method of most of the 

practically relevant discrete wavelet transforms and the justification of the fast wavelet 

transform. MRA allows an image, to be decomposed into a sequence of nested (sub)images 

arranged in order of increasing detail (decreasing scale), so as to satisfy certain self-similarity 
relations in time/space, as well as completeness and regularity relations. This provides a 

means to manipulate localized events but leave the rest of the data generally unaffected. MRA 

has been applied to GPR data fairly recently, with most of the relevant studies focusing on 
noise suppression in a time-frequency sense.  

Remarkably, the wavelet-based MRA is not efficient in processing geometrical information: 

just as Fourier methods are not suitable for the analysis of aperiodic phenomena, (which led 
to the wavelet transform), wavelets are isotropic and unsuitable for application to anisotropic 

phenomena, as for instance are wavefronts. This problem has been addressed by advanced 

MRA-like algorithms that are collectively referred to as the “X-let Transform” (for a 

comprehensive review see Jacques et al. (2011). One very effective and versatile approach is 
the 2

nd
 generation Curvelet Transform (Candès and Donoho, 2003a; 2003b; 2004), which is 

specifically designed to associate scale with orientation. It comprises a multiscale and 

multidirectional expansion that formulates an optimally sparse representation of objects with 
edges (specifically of objects which are smooth except for discontinuities along general 

curves with bounded curvature). The CT traces its origin in Harmonic Analysis, where 

curvelets were introduced as expansions for asymptotic solutions of wave equations (Smith, 
1998; Candès, 1999). In consequence, curvelets can be viewed as primitive and prototype 

waveforms – they are local in time/space and highly anisotropic, therefore well adapted to 

detect wavefronts at different angles and scales because curvelets at a given scale can only 

locally correlate with aligned wavefronts of the same scale. A welcome consequence of 
optimal sparsity is optimal image reconstruction in case of severely ill-posed problems: one 

can recover curved objects from noisy data by curvelet shrinkage (analogous to wavelet 

shrinkage) and obtain a mean squared error that is far better than what was affordable with 
more traditional methods (Candés et al. 2006).  

The main body of the presentation is organized as follows: Succinct introductions of Gabor 

wavelet filters and the 2
nd

 Generation CT will be given in Sections 2 and 3 respectively. This 

will be followed by example applications to data featuring straight and curved reflections in 
complex propagation media and to data contaminated by high levels of noise (Section 4). A 

brief recapitulation and discussion of the results will conclude the presentation.  

2 Gabor Wavelet Filter 

In GPR data, the existence of two independent variables (time/ space) allows each component 

of the f-k spectrum to be coupled with a particular orientation (dip). Thus, it is feasible to 

design a matrix filter (operator) in which the temporal and/or spatial scale and dip can be 
varied and tuned at any trait in the data. A Gabor Filter is a Gaussian kernel function 

modulated by a sinusoidal plane wave. Its impulse response is defined by a harmonic function 

multiplied by a Gaussian function (Gabor function). The filter has a real and an imaginary 
component which may be used in combination or individually. The parameterization adopted 

herein follows the work of Daugman (1985) as further developed by Kruizinga and Petkov 

(1999) and Grigorescu et al (2002): 
2 2 2
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The parameter λ represents the wavelength of the sinusoidal factor, θ the orientation of the 

normal to the parallel stripes of a Gabor function, ψ the phase offset, σ the standard deviation 
of the Gaussian factor and γ the spatial aspect ratio which specifies the ellipticity of the 

support of the Gabor function. For γ=1 the support is circular; contracting (dilating) γ 

contracts (dilates) the support in the direction normal to the parallel stripes of the Gabor 

function. The half-response spectral bandwidth b of a Gabor Filter (in octaves) is related to 
the ratio σ/λ as follows:  

ln 2
2

2
ln 2
2

1 ln 2 2 1
log ,

2 2 1

b

b
b
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   

     
Thus, the value of σ may not be specified directly and may be set through the more intuitive 

parameter b. The smaller the bandwidth, the larger is σ, the support of the Gabor function and 

the number of visible parallel excitatory and inhibitory stripe zones.  
 

 
Figure 1. The real part of a Gabor wavelet filter (impulse response) at different orientations. The time 

axis (t) corresponds to =0 and the space axis (x) to =90. To isolate dipping reflectors the filter 
must be rotated so that the sinusoidal parallel excitatory and inhibitory stripe zones are aligned with 
the reflector. The f-k spectrum comprises two lobes symmetric with respect to the origin, which 
rotate identically with the impulse response and whose peak coordinates are controlled by the 
wavelength and the orientation.  

 

The f-k spectrum of the Gabor wavelet rotates identically with its t-x counterpart and is (e.g. 
Tzanis, 2013) 

2 2 2
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It consists of two lobes symmetric with respect to the origin. The location of the peak of the 

lobes with respect to the frequency (f


) and wavenumber axis (k

) axes is determined by the 

wavelength (Fig. 1). The breadth of the pass-band and the sharpness (roll-off rate) of the 

spectral lobes are determined by the bandwidth b. It follows that these parameters control the 
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temporal/spatial scale to be isolated and the degree of frequency/wavenumber localization. 

The aspect ratio determines the shape of the lobes and the spatial extend over which to 
smooth: for γ=1 the lobes are circular while contracting (dilating) the aspect ratio dilates 

(contracts) the spectral lobes in the radial direction. It is easy to see that the rotation of the 

filter shifts the peak frequency. Let 
maxf   be the peak frequency at the angle . In the example 

of Fig. 1, if the sampling rate is 1s, then for =20 20

maxf  = 0.13Hz, while for =50 50

maxf

=0.0936Hz. It follows that in order for the peak to remain focused (tuned) on a given target 

frequency 
maxf , one must adjust the length of the wavelet so that 

max maxf f  . Fig. 2 shows 

an example of tuning the filter at a given frequency. The same procedure is followed for 

tuning the filter at a given target wavenumber.  

 

 
Figure 2. Tuning a Gabor Filter at a given target frequency (scale). Assume a radargram of size 512 

samples  512 traces, obtained with a 400MHz antenna, sampling rate of 0.1957 ns and a trace 

spacing of 0.025m. Let the invariant design parameters be γ = 0.75, b=1 and =0. Also let the target 

frequency maxf  be 400 MHz. For a Gabor filter at =0 this will be achieved when  = 13.2 (top). At 

=30, 30

max maxf f   400MHz when  = 11.4 (middle) and at =60, when  = 6.5 (bottom). 
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In the general case a radargram may contain reflections from variable-dip reflectors or 

multiple reflectors with different dips. A single-dip Gabor filter will extract only part of the 
dip-dependent information because it is highly selective. This is restrictive when one wishes 

to extract scale-dependent information over a range of dips, in which case a more 

sophisticated approach is needed. The application of directional filters to edge and contour 

detection often involves the combination of partial images obtained by the same filter rotated 
to different directions. The solution used herein borrows insight from these techniques, but 

with adaptations for GPR data. Let  be the target frequency or wavenumber, D the f-k 

transform of the data and F the normalized f-k transform of the filter at angle  and length L, 

so that 
1

( , ) ( , ) ( , )L L L  



 F G G . The procedure entails application of the filter rotated to 

different angles under adaptive control so as to remain tuned at a given  ; this yields a 

series m = 1,…M of orientation-dependent outputs ˆ ( , ) , { , }m m m mL  D D F  which are 

stacked in the WLS sense to yield the final output  

1( : , )m  D = 
1 1
ˆ ( , ) ( , ) ( , )

M M

m m m mm m
w w     

  D .  

The stacking weight is generally a function of the form  
1ˆ( , ) ( , )m m nn
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

 D D ,  

n = 1, 2 or , which guarantees that the final output will not be disproportionally dominated 
by powerful spectral components; stacking also enhances the S/N ratio. This scheme 

facilitates the combination of several “partial” same-scale-and-dip outputs into an image that 

is scale-dependent and may account for variations of the angle of dip. 

3 Second Generation Discrete Curvelet Transform (DCT) 

A curvelet frame is a wave packet frame on L
2
(2

) based on a second dyadic decomposition 

which, in effect, comprises an extension of the isotropic MRA concept to include anisotropic 
scaling and directionality while maintaining rotational invariance. Consider a vector of time 

or/and space variables x = [x1 x2]
T
 and a vector of frequency or/and wavenumber variables  = 

[1 2]
T
. In Cartesian coordinates curvelets are obtained by parabolic dilation, rotation and 

translation of a specifically shaped (mother) function j,0,0(x)  j,0,0() and have the form  
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1 2,k k   

represent the translation parameters. Accordingly, curvelets are indexed by their scale 2
j

 , j  

0 , orientation l and location xk . 

In the -domain the curvelets j,l,k=0() are constructs like those illustrated in Fig. 3a and are 

supported in parabolically scaled, sheared trapezoidal wedges bounded as 

 1

1 2 1( , ) : 2 2j j     , 2

1

/2 /22 tan 2j j

l




     ; when completed by symmetry with 

respect to the origin and rotation by ±/2 radians they generate the concentric partitioning of 
the Fourier plane, whose geometry is shown in Fig. 3b. Examples of x-domain Cartesian 

curvelets are shown in Fig 3d; they are long and slender waveforms with length proportional 

to 2
-j/2

 and width proportional to 2
-j
 (parabolically scaled); they oscillate in their transverse 

direction and are low-pass in their longitudinal direction.  

A curvelet coefficient comprises the inner product between a function f(x)  L
2
(2

) and a 
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curvelet j,l,k: 
1 2

, , , ,,
( , , ) , ( ) ( )j l k j l kx x

c j l k f f   x x . The collection of curvelet 

coefficients over j, l and k comprises the forward DCT. The inverse DCT is appropriately 

defined by the reconstruction formula , ,, ,
( ) ( , , ) ( )j l kj l k

f c j l k x x .  

 

 

Figure 3. (a) Two examples of -domain curvelets. (b) Illustrative example of the partitioning (tiling) of 

the -plane in Cartesian coordinates with trapezoidal wedges. The pyramidal (scale) partitioning is 
based on N=6 scales. The inner (coarsest) scale corresponds to j = 1 and is isotropic because it cannot 
be partitioned with wedges. The angular partitioning begins at j=2 with Lj=2=16 wedges; the number of 
wedges doubles in every second scale. Each wedge supports a curvelet of a given scale (j) and slope 
(l). The angular indexing of the wedges (l) counts clockwise from the top-left corner of each scale. The 
finest-scale partition (j=6) is also isotropic and is not shown (see text). The solid black wedges at j=3, 
l=5 and j=3, l=15 indicate the right-hand side support of the curvelets shown in (a). The grey wedges 

indicate the supports of the curvelets shown in Fig. 3c, d. (c) Amplitudes of complex -domain 
curvelets at different scales and orientations; the supports of these curvelets are shown grey-shaded 

in (b). (d) Arbitrarily translated x-domain curvelets, corresponding to the -domain curvelets of (c). 

 

Curvelets interact with curved objects f(x) in three ways as shown in Fig. 4: (1) When 

curvelet and object intersect when aligned in their longitudinal directions, the transverse 
oscillatory part of the curvelet will locally match the same-scale component of the object the 

resulting coefficient will be significant. (2) When the curvelet and the object intersect at 

arbitrary angles information is lost to the curvelet’s low-pass longitudinal action: the 
coefficients will have small amplitudes. (3) When the curvelet and the object do not intersect, 
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the coefficients will be near zero. Thus it is easy to see how one may use curvelets of 

appropriate scales and orientations to retrieve different traits of the data.  

 

 
Figure 4. Demonstration of data and curvelet interactions: (i) The data comprises a 512512 matrix 
with a set of uniformly up-dipping wavy reflections. (ii) The coefficients, (left) and a partial 

reconstruction of the data (right) generated by the curvelet {j = 4, l = 5}. This has a slope of 110, 
perfectly aligned with the reflections, and extracts a strong component of the signal. (iii) As in (ii) but 

for {j = 4, l = 7}. The curvelet has a slope of 94 and intercepts the reflections at an angle of 14; it 
cannot match signal of significant amplitude, hence coefficients and reconstruction are weak. (iv) As 
in (ii) and (iii) but for {j = 3, l = 5}. The curvelet has the right alignment but the wrong scale (weak 
coefficients). 
 

In the applications shown herein, the DCT is computed with the “wrapping method” (Candès 

et al, 2006) found in the CurveLab software package (http://www.curvelet.org). The 

algorithm requires the number of scales N and the number of wedges Lj=2 at the second 
coarser scale (j = 2), at which the angular decomposition begins (L doubles in every second 

scale). The finest-level scale is associated with spectral content near the Nyquist. Because 

GPR data is typically oversampled, this usually consists of random noise; it is easier (and 
recommended) to assign wavelets instead of curvelets to that scale and treat it as isotropic. 

Once the DCT is computed, information can be manipulated by selecting coefficients 

according to their scale (j) and slope (l) and applying hard or soft thresholding; the data can 
then be totally or partially reconstructed by inverse DCT.  

4 Examples 

Two examples will be shown. The first illustrates the capability of multidirectional Gabor 
filtering and the CT to extract localized geometrical information at any scale or combination 

of scales. Figs. 6a and 7a illustrate a radargram collected with a Måla GPR system and 

250MHz antenna at a levelled surface above massive fragmented limestone (Fig. 5). The data 
is shown after time-zero adjustment, global background removal and amplification with the 

“inverse amplitude decay” technique (e.g. Tzanis, 2010, p25). The dimensions of the data 

matrix are 1024 samples  1340 traces (sampling rate of 0.1909ns, trace spacing 0.01996 m). 
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Noise is not a significant problem with the exception of some peculiar, interference of 

unknown origin, intermediate strength and “checkerboard” spatio-temporal characteristics 
appearing at different locations of the radargram. The main structural features are: (a) Down-

dipping reflections attributed to synthetic fractures; examples of such reflections are marked 

with white arrows. (b) Very faint, up-dipping quasi-linear reflections attributed to antithetic 

fractures; these are marked with yellow arrows. Their apparent spatial widths can be 
measured on the radargram to 0.2 – 0.4 m, therefore their expected wavenumbers should be of 

the order of 2.5 – 5 m
-1

. Their apparent azimuth can also be measured and ranges between 

65 and 50. (c) Clusters of strong reflections appearing along the traces of the fractures 
and mainly at their intersection, (e.g. between 5–10m and 40–80ns), corresponding to areas of 
intense fragmentation that are usually associated with filled karstic cavities.  

 

 
Figure 5. Geological setting in which the data of Example 1 were recorded. The subsurface comprises 
massive limestone, heavily fragmented due to conjugate normal faulting and jointing. Karstification 
has nucleated at the loci of faults and many of the voids and gaps were subsequently filled with 
lateritic material. All photographs are courtesy of Mr P. Sotiropoulos, Terra-Marine Ltd., Greece 
(http://terra-marine.gr). 

 

Fig. 6 illustrates a (multi-directional) application of the Gabor. The expected wavenumbers 
associated with the up-dipping reflections indicates the design parameters: the target 

wavenumber was set to k = 0.3m
-1

 and spatio-temporal localization was moderate so as to 

admit the entire expected range (b = 1.5). The aspect ratio was set to  = 0.5 so as to favour 
linear features. Moreover, the range of expected dips defines the arc over which to apply the 

filter. Fig. 6b illustrates the output of a multidirectional application over the arc [115, 130] 

in steps of 5. It is straightforward to see that albeit very weak and practically obscured by 
other data components, the up-dipping reflections of the antithetic fractures have generally 

been successfully detected. Fig. 6c illustrates the output of the same filter over the arcs [50, 

65]  [115, 130], so as to isolate reflections from both synthetic and antithetic fractures. In 
both cases fractures are detected at locations at which it was previously not possible, as for 

instance between distances 5 – 10 m and traveltimes 80 – 150 ns. Moreover, the relative 
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importance of synthetic and antithetic fractures becomes evident: the former have larger 

apertures and are filled with reflective material, thus generating stronger reflections and 
indicating that when they were active, they were the main carriers of local deformation. 

 

 
Figure 6. (a) Radargram collected with a Måla GPR system and 250MHz antenna at a levelled surface 
above massive fragmented limestone (Fig. 5). The white and yellow arrows point at faint down and up 
dipping reflections from synthetic (main) and antithetic fractures. The data was collected in 
association with Terra-Marine Ltd., Greece (http://terra-marine.gr) and is used courtesy of Mr. P. 
Sotiropoulos. (b) Reflections from antithetic fractures isolated by multidirectional application of a 

Gabor filter tuned at k = 0.3m
-1

 over the arc [115, 130]. (c) Reflections from synthetic and antithetic 

fractures isolated by multidirectional application of the same filter over the arcs [50, 65]  [115, 

130]. 

 

The corresponding application of the Curvelet Filter is illustrated in Fig. 7. The complexity 

and fine texture of the targets (fractures) indicates that the curvelet decomposition should also 
be fine and was set to comprise 7 scales and 40 angles at the second coarser (j = 2) scale. In 

such a scheme, the up-dipping reflections belong to the 4
th

 (2.07 m
-1

 < k < 4.18 m
-1

) and 5
th

 

(4.18 m
-1

 < k < 8.33 m
-1

) scales. Accordingly, the reconstruction was based only on these two 

scales and only on curvelets supported on wedges with slopes 112 – 133, (normal and sub-

normal to the apparent dip of the reflections). The remaining coefficients were shrunk to zero 
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(hard-thresholded). The results are shown in Fig. 7b. As scrutiny may show, the 

reconstruction successfully recovers the reflections of the antithetic fractures which can now 
be identified, mapped and analyzed easier. Fig. 7c shows a partial reconstruction of the data 

based on scales four and five and slopes [112, 133]  [48, 66]; this is counterpart to Fig. 
6c and isolates reflections from both the synthetic and antithetic fractures since the second set 

of slopes is (sub)normal to the apparent dip of the synthetic fractures. As previously, 

information about both sets of reflections is successfully recovered.  

 

 
Figure 7. (a) As per Fig. 6a. The pyramidal decomposition of this data comprised seven scales and the 
angular decomposition began with 40 angles (wedges) at the second coarser scale. (b) Reflections 

from antithetic fractures isolated by and partial reconstruction from the coefficients {j = 4, j=5, l  

[112, 133]}. (c) Reflections from synthetic and antithetic fractures isolated by partial reconstruction 

from the coefficients {j = 4, j=5, l  [112, 133]  [48, 66]}. 

 

The second example illustrates the de-noising power of multidirectional Gabor filtering and 

the CT. Fig. 8a illustrates a data set collected over ground consisting of thick, generally moist 
Holocene alluvial sediments with a significant argillaceous component, including a shallow 

(< 10m) unconfined aquifer. The surface was flat but rough, significantly vegetated and 

littered with small scatterers such as rocks and occasional metallic objects. The data was 
collected with a GSSI SIR-2000 system and Subecho-40 antenna (central frequency 40MHz) 
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and is shown after minimal pre-processing (global background removal). The dimensions of 

the data matrix are 512 samples  2048 traces (sampling rate of 0.5889ns, trace spacing 0.02 

m). The data is contaminated by severe, high-angle, high-wavenumber (> 2m
1

) crossing 
clutter, random noise, reverberation from shallow scatterers (e.g. at distances 6m, 24.9m, 

25.5m, 35m etc.). The noise is overwhelming at distances ca. 15m and 25–32m and 
everywhere at traveltimes > 180ns, obscuring the principal reflection from the aquifer 

(between 150–200ns) and any other information.  

 

 
Figure 8. (a) Noisy data collected with a GSSI SIR-2000 system and Subecho-40 antenna over moist 
Holocene alluvial sediments; the main structural features comprise reflection(s) from an unconfined 

aquifer at travel times 150250ns. (b) Noise-free data after multidirectional application of a Gabor 
filter (see text for details). (c) Noise-free data after curvelet decomposition  and partial reconstruction 
(see text for details). 

 

Fig. 8b shows the output of a multidirectional Gabor filter. Inasmuch as the noise is 

associated with wavenumbers > 2m
1

 and there’s no natural high frequency content in the 

data, the filter was tuned at k = 1.75m
1

 and applied over the arc [10, 170] in steps of 10; 
the localization characteristics were somewhat relaxed so as to avoid severe narrow band-

passing action (b = 2;  = 0.75). The result is an almost faithful reproduction of the large-scale 
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data components and complete elimination of the clutter with particular reference to 

traveltimes > 150ns.  

Fig. 8c shows the corresponding application of the curvelet filter. The data was decomposed 

into 6 scales (the highest permissible for the size of the time axis). The aspect ratio of the data 

matrix requires fine angular partitioning so as to obtain a sufficiently detailed representation 

of the shallow-dipping or sub-horizontal wavefronts that make up most of the useful data. 
Accordingly, the angular decomposition started with 40 angles at the second coarser (j = 2) 

scale. The output shown in Fig. 8c comprises a partial reconstruction based on coefficients of 

scales and slopes {j = 2, l  [22, 22]}  {j = 3, l  [60, 60]}  {j = 4, l  [60, 

60]}  {j = 5, l  [66, 66] \ [17, 17]}. The remaining coefficients were shrunk to 
15% their original amplitude (soft-thresholded). The result is a faithful reproduction of the 

data less the noise and some larger scale, steeply dipping (> |60|) features, as for instance the 
one seen at the distance of 30m and traveltimes 100–200ns. Scrutiny will show that these are 
the only practical differences between the outputs of the Curvelet and Gabor filters, with the 

latter performing slightly better in this case.  

5 Conclusions  

This work introduces the application of scale and orientation sensitive filtering methods to 

signal enhancement and geometric information retrieval from 2-D GPR data. These are a 

multi-directional adaptation of directional filtering techniques based on the 2-D Gabor 

wavelet and the Curvelet Transform which formulates an optimally sparse representation in 
terms of a pyramidal multiscale/multidirectional decomposition into highly anisotropic and 

localized elements. Both techniques are simple to use and very powerful, given that they can 

extract information about any recoverable trait of the data, sometimes with surgical precision. 
Notably, the CT has optimal reconstruction properties meaning that any recoverable piece of 

information can be retrieved from a noisy data set as if it was noise-free.  

In general, these methods make it possible to:  
a) Suppress directional noise wavefronts of any scale and angle of emergence in such an 

adaptive way, as not to interfere with any part of recoverable data components.  

b)  Retrieve waveforms of specific scale and geometry for further scrutiny, as for instance 

distinguish signals from small and large aperture fractures and faults, different phases of 
fracturing and faulting, bedding etc.  

Although there is no objective metric to quantitatively assess their relative performance (since 

they are very different in design) their results are very comparable at least in terms of 
similitude in their outputs and where the degree of similitude is a matter of common sense. It 

is also obvious that applications are not limited to GPR! 

Both types of filter are easy to automate for routine operation. However, they are more than 
“black boxes” since their real power rests on their exceptional adaptivity (within, of course, 

the limitations associated with the f-k transform on which the filters operate). Manual 

operation with some trial and error experimentation may come up with elaborate filtering 

schemes that frequently allow “surgical” operations on the data (with particular reference to 
the CT).  

Plentiful additional information exists in the cited reference and also in Tzanis (2013), Tzanis 

(2014) and the extensive documentation accompanying the matGPR software (which also 
includes interactive MATLAB

TM
 implementations and is currently available in 

http://users.uoa.gr/~atzanis/matgpr/matgpr.html). The later references include discussion of 

the inevitable caveats, which were not mentioned herein for shortage of space.  
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