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Abstract: - The theory of self-organized criticality (SOC) is now actively used for modeling complex processes in various 
multiscale dissipative dynamical systems. Applications include geophysical and environmental systems related to Earth's 
lithosphere, atmosphere, ionosphere, and magnetosphere. It has been shown that SOC methods can be successfully 
applied for explaining a number of stochastic and critical phenomena in such systems: interaction between small and large 
earthquakes, multiscale magnetospheric and ionospheric disturbances, atmospheric turbulence and cyclones, etc. Here, we 
discuss a novel teaching approach to modeling and visualization of self-organized critical processes in geophysical 
systems based on several classes of numerical SOC models. As an educational tool, these models represent basic physical 
scenarios of self-organization and catastrophes in complex geophysical systems in an easy-to-understand and illustrative 
way. Working with these models gives students of research and engineering departments an excellent opportunity to 
obtain further insight into most complicated aspects of the investigated phenomena. As a particular example, we show 
how a non-Abelian SOC model can be used for explaining critical spatiotemporal dynamics of complex geophysical 
systems such as fractal tectonic systems exhibiting power-law earthquake statistics and magnetospheric disturbances. 
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1   Introduction 
The quality of research and engineering education 
depends essentially on the level of knowledge of the 
physical properties of the investigated objects. In 
geophysics, the objects under consideration are usually 
complex dynamical systems such as the Earth’s 
lithosphere, atmosphere, ionosphere, and magnetosphere. 
One of the methods to study complex dynamical systems 
is their numerical modeling. It is now widely recognized 
that many instabilities developing in the Earth’s interior 
and environment, such as earthquakes, volcano eruptions, 
magnetospheric storms, ionospheric disturbances, 
atmospheric cyclones etc., belong to the class of 
nonequilibrium critical phenomena. Their cooperative 
nature contradicts the majority of traditional concepts 

based on low-dimensional models, and requires a 
development of adequate modeling methods and 
corresponding teaching approaches. One of the most 
promising approaches was suggested in 1987 by Bak, 
Tang, and Wiesenfeld (BTW approach) [1]. The authors 
have introduced the concept of  SOC (Self-Organized 
Criticality) providing a universal framework for studying 
scale-invariant spatiotemporal fluctuations in complex 
disordered systems, such as 1/f noise in natural and 
artificial devices, multidimensional clustering of 
earthquake epicenters, complex evolutionary processes, as 
well as some other processes in physical, biological and 
social systems. The first detailed description of the SOC 
concept has been published by the same authors in 1988 
[2]. They have shown that certain extended dissipative 
dynamical systems may naturally evolve into a critical 
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state with no characteristic time or length scales. The 
characteristic signature of SOC dynamics is scale-free 
coupling between temporal and spatial fluctuations 
manifesting itself in the form of power-law scaling 
dependences in various domains of analysis. At present, 
the concept of SOC is considered as one of the most 
important general principles governing the behavior of 
complex dissipative dynamical systems. In particular, it is 
successfully applied for explanation of different 
geophysical phenomena. The SOC theory is now widely 
used for investigation of the dynamics of natural hazard 
systems, including the hazard system of earthquakes (see 
[3-10] and references therein). The SOC concept is a 
principal component of the diversified approach for 
studying earthquake preparation processes developed by 
Russian researches from St.Petersburg University together 
with their Japanese colleagues [7].  
    In spite of the wide application of the SOC theory in 
contemporary scientific research, it is currently not 
included in most of existing teaching programs of 
educational institutions.  In this paper, we discuss our 
teaching methods of modeling and visualization of self-
organized critical processes in geophysical systems based 
on several types of numerical SOC models (Section 2). As 
an educational tool, these models represent basic physical 
scenarios of self-organization and catastrophes in complex 
geophysical systems in an easy-to-understand and 
illustrative way. Working with these models gives 
students of research and engineering departments an 
opportunity to obtain further insight into basic principles 
governing complex dynamical systems. As particular 
examples, we show how SOC simulations can be used for 
understanding spatiotemporal dynamics of fractal tectonic 
systems and magnetospheric disturbances (Section 3).  
 
2 Teaching approach to the SOC modeling  
Our teaching approach to SOC-based modeling of 
complex geophysical phenomena consists of the following 
steps: 
- A short qualitative explanation on what the state of self-
organized criticality means, including basic terminology 
and modeling principles used in this field of study, 
complemented by a historic review of SOC concept 
development during the past two decades (Subsection 
2.1).  
- Description of simple and illustrative discrete sandpile 
SOC model which is rarely used in applied research but is 
a useful teaching tool allowing students to understand 
complex features of various dynamical system 
(Subsection 2.2). We show that modeling results depend 
essentially on boundary conditions, and demonstrate 
mechanisms of propagation of SOC avalanches (scale-free 
disturbances) in systems with closed and opened 
boundaries.  
- Introduction of the block-spring model of earthquakes 
(Subsection 2.3) reproducing the Guttenberg-Richter 
statistics of earthquake magnitudes.  

- Description of more advanced SOC models based on the 
directed sandpile algorithms (Subsection 2.4). These 
models are in some respects closer to reality and now 
actively used for investigation of the dynamics of fractal 
tectonic systems, magnetospheric disturbances, solar 
flares and the other hazard systems [8-11].  
- Comparison of Abelian and non-Abelian approaches in 
SOC modeling (Subsection 2.5), explanation of 
advantages of non-Abelian algorithms providing 
visualization of emergent spatial structures. 
- Discussion of some important geophysical results 
obtained with the use of SOC models; conclusions related 
to future steps in SOC modeling and its role in 
contemporary research and engineering education. 
 
2.1 What is SOC and how it works 
According to the BTW concept, a system is said to be in 
the state of self-organized criticality if it is maintained at 
or near a globally-stable critical point by internal feedback 
mechanisms. When perturbed from this state, it evolves 
back to criticality without the need to tune any of external 
parameters. In the critical state, there are no natural length 
or time scales so that fractal statistics are applicable [11, 
12]. The simplest physical model of self-organized 
criticality is a “sandpile” model. Consider a pile of sand 
on a circular table. Grains of sand are randomly dropped 
on the pile until the slope of the pile reaches the critical 
angle of repose. This is the maximum slope that a 
granular material can maintain without additional grains 
sliding down the slope. One hypothesis for the behavior of 
the sandpile would be that individual grains could be 
added until the slope is everywhere at an angle of repose. 
Additional grains would then simply slide down the slope. 
This is not what happens. The sand pile never reaches the 
hypothetical critical state. As the critical state is 
approached additional sand grains trigger landslides 
(avalanches) of various sizes. The frequency-size 
distribution of avalanches is fractal. The sand pile is said 
to be in a state of self-organized criticality. On average, 
the number of sand grains added balances the number that 
slide down the slope and off the table. But the actual 
number of grains on the table fluctuates continuously. 
Researchers have observed such characteristic “sand pile 
– like” behavior in many other natural systems as diverse 
as earthquakes, forest fires, magnetospheric storms, and 
even biological evolution. It has been shown that a large 
number of cooperative effects in the Earth’s interior and 
its environment can be interpreted in terms of the SOC 
framework. 
Numerical investigation of SOC dynamics is usually 
carried out using cellular-automata techniques. In a one-
dimensional sandpile (SP) cellular automaton, the state of 
the discrete variable Zt+1(x) at time t+1 depends on the 
state of the variable Zt(x) and its nearest neighbors Zt(x±1) 
at time t, where x is the spatial position. Variable Z(x) 
represents the local height difference Z(x)=h(x)–h(x+1) 
between successive positions along the sand pile. If z is 



greater than some fixed critical threshold Zc, one unit of 
sand topples to the lower level. It has been shown in [2] 
that for a one-dimensional (1D) transport system, the 
critical state has no spatial structure, and correlation 
functions are trivial. In this case the sand pile reaches a 
stationary state with all the height differences Z(x) 
assuming the critical value Z(x)=zc. In higher-dimensional 
systems, the dynamics are dramatically different. In the 
2D case, after the condition Z(x,y)>Zc is met at a point 
with coordinates x and y, one unit of sand slides in the x 
direction and one in the y direction, rendering the 
surrounding sites unstable (Z>Zc), and the perturbation 
spreads to the neighbors as a chain reaction, leading to the 
formation of minimally stable clusters. As a whole, the 
system evolves to the SOC state. If a small perturbation is 
applied in this state by locally increasing the slope, it may 
lead to an avalanche whose energy is considerably larger 
that the energy of initial perturbation. However, despite 
this high sensitivity, the model keeps its global stability so 
that its total energy and large-scale spatial configuration 
remain nearly constant. 
 
2.2 BTW sandpile: the simplest SOC model 
Basic principles of self-organized criticality are usually 
illustrated by simple cellular-automata models. In the 
“canonical” sandpile BTW model, a square grid of n 
boxes is considered, as it is shown in Fig.1.  
 

 
 
Fig. 1. Sketch of the BTW sandpile 
 (a) Redistribution rule of the model [1]; 
 (b) Active element (shown in red) interacting with its 
four nearest neighbors. The green elements are sub-
critical and will become unstable after the interaction; 
(c) Examples of scale-free avalanches (connected regions 
of unstable elements). 
 
Particles are added to and lost from the simulation grid 
using the following procedure.  
(1) A particle is randomly added to one of the boxes. Each 
box on the grid is assigned a number and a random-
number generator is used to determine the box to which a 
particle is added. Thus, this is a statistical model. 
(2) When a box has zc=4 particles it goes unstable and the 
four particles are redistributed to the four adjacent boxes 

(see Fig.1b). Redistribution from edge boxes results in 
loosing of one particle from the grid. Redistribution from 
the corner boxes leads to the dissipation of two particles. 
(3) If after a redistribution of particles from an unstable 
box any of the adjacent boxes accumulates four or more 
particles, it is also considered unstable, and one or more 
further redistributions is be carried out. Multiple events 
are common occurrences for large grids (see Fig.1c). 
(4) The system is in the state of marginal stability. On 
average, the input flux of particles being added to the grid 
is balanced by their output flux at the boundaries. 
As an educational tool, this model represents basic 
physical scenarios of self-organization in an easy-to-
understand and illustrative way. In particular, it shows the 
emergence of statistical scale-invariance in the form of 
power-low avalanche distributions as well as their relation 
to large-scale system-wide instabilities associated with 
catastrophic events in geophysical systems. It also 
explains the robustness and universality of scale-free 
statistical relations resulting from their weak dependence 
on microscopic parameters of avalanche dynamics. 
 
2.3 The block spring model of earthquakes  
The SP model can be readily transformed into the “block 
spring” earthquake model. The construction of the block-
spring model of earthquake generation (see [3-5] and 
references therein) can be understood from the picture 
presented in Fig.2.  
 

 
 
Fig. 2. Block-spring model of the earthquake fault [5]. 
The blocks are connected with a slowly moving plate by 
leaf springs. They are also connected with each other by 
springs. Parameters K1, K2, and KL specify the strengths of 
the springs. The blocks are moving on a rough surface. A 
block slides when the force on it exceeds a critical value. 
 
Following Bak and Tang [3], consider a two-dimensional 
array of particles representing segments of a sliding 
surface with discrete coordinates i and j. The particles are 
subjected to a force from their neighbors plus a constantly 
increasing “tectonic” driving force. When the total force 
applied to a particle exceeds a maximum local "pinning" 
force at the fault, the particle slips to a nearby position. 
Let the maximum pinning force be an integer Zc. If at time 
t the system is in the state Z(i, j), then the system at time 
t+∆t (where ∆t is of the order of the distance between the 



locked elements divided by a characteristic perturbation 
speed) is given by the rule: 
 
Z(i, j) → Z(i, j) - 4 
Z(i ± 1,j) → Z(i ± 1,j) + 1 
Z(i, j ± 1)→ Z(i, j ± 1) + 1         Z(i, j) > Zc ,             (1) 
 
where the first equation simulates the release of strain (in 
proper reduced units) on the slipping particle, and the 
subsequent equations represent the increase of force on 
the neighbor particles. 
Starting with the situation with no force, Z = 0, one can 
simulate the increase in the driving force by letting 
 
Z(i, j) → Z(i, j) + 1                                                    (2) 
 
at a random position (i, j). This process is repeated until 
somewhere the force exceeds the pinning force Zc and the 
rule (1) is applied so that four units of energy are released. 
This may lead to instability at neighboring positions, in 
which case the rule (1) is applied to those positions, and 
so on. Eventually, the system will come to rest with all Z 
values being less than Zc (the total “domino” process 
initiated by (1) is considered as a model of an 
earthquake). Then, supposedly at a random much later 
time, the rule (1) is applied again, and so on. In the 
beginning there will be only small events, since Z values 
are generally small and a local slip is unlikely to 
propagate very far. But eventually, following rule (1), the 
average force ‹Z› will reach a statistically stationary 
value. At that point there is no length scale and rule (1) 
may trigger earthquakes of all sizes limited only by the 
size of the system. This is the SOC state. 
 

     
 
Fig. 3. Energy release versus time during a typical 
earthquake (from [3]). 
 
Fig.3 shows the temporal evolution of the activity (energy 
release) during a typical earthquake. The distribution of 
tectonic energy released during such events is known to 
obey the famous Gutenberg-Richter law [13]. The law is 
based on the empirical observation that the number N of 
the earthquakes with size greater than m is given by the 
relation  
  
log10N = a – bm                                                             (3) 

The precise values of  a and b depend on the location. 
Generally, the parameter b lies in the interval 0.8 < b < 
1.5. The energy released during the earthquake is believed 
to increase exponentially with the size of the earthquake, 
 
log10E = c - dm                                                             (4) 
 
so the Gutenberg-Richter law is essentially a power law 
connecting the frequency distribution function with the 
energy release E 
 
dN/dE ∝ m-1-b/d = m -τ                                                   (5) 
 
with 1.25 < τ < 1.5.  
 
In the considered block-spring model, a measure of the 
total energy, E, released during the earthquake, is the total 
number of segments which have slipped during the event. 
Fig.4 shows the simulated distribution of energy released 
at the stationary critical state. 
 

 
Fig. 4. Distribution of the total energy release E obtained 
in the block-spring model of earthquakes [3]. 
  
It is seen that the distribution function indeed fits a power 
law D(E) ≈ E-τ with τ ≈ 1. (The falloff at large E is a finite 
size effect.). So the energy distribution law for simulated 
earthquakes is in agreement with Gutenberg-Richter law 
(5) for real earthquakes, but the value of τ ≈ 1 for 
simulated earthquakes in two-dimensional (2D) case 
appears to be slightly outside the range of τ values 
obtained experimentally (1.25 < τ < 1.5). Actually, it 
might be useful to think of the crust in the earthquake 
region as a three-dimensional (3D) medium developing 
ever-changing fault structures rather than considering a 
single fault. It is the crust as a whole rather than a single 
fault which is critical. The model can easily be 
generalized to three dimensions to where one finds τ ≈ 
1.35 in even better agreement with observation.  
Therefore, we can conclude that the model of self-



organized criticality is suitable for description of the 
multiscale energy release in the earthquake focal zone. 
 
2.4 Advanced SOC modeling: including 
anisotropy and spatial correlations  
It is now recognized that seismic systems can exhibit 
scale-invariant (fractal) patterns in a number of ways (see 
[12] and references therein). The scale-free dynamics of 
tectonic systems includes: power-law distribution of 
earthquake magnitudes (Gutenberg-Richter statistics), 
fractal clustering of seismic hypocenters in space, 
temporal clustering of the earthquake onset times, power-
law decay of aftershock activity (the Omori law), fractal 
matrix of faults (see a scheme in Fig.5). Therefore, it is 
desirable to develop SOC models which would 
incorporate a variety of the observed power-law statistical 
relations rather than only the earthquake energy statistics. 
 

 
 
Fig. 5. Different forms of manifestation of scale-invariant 
(fractal) dynamics in complex tectonic systems. 
 
Most of the developed SOC models of distributed 
seismicity are concentrated on the dynamics of scale-free 
avalanches (discrete energy release events) considered as 
a model for earthquakes. However, although the 
avalanches are cooperative effects involving many spatial 
degrees of freedom, they do not lead to the emergence of 
large-scale spatial correlations over periods of time longer 
than a life time of a single avalanche. As a result, 
traditional earthquake SOC models turned out to be 
unable to explain fractal clustering of earthquake 
hypocenters and their relation to the evolution of fault 
systems, which seem to play an important part in real 
seismic systems. Several attempts have been made to 
introduce pre-define ("quenched") fault matrixes in SOC 
simulations, but until recently, none of the developed 
models could mimic the dynamical coupling that exists 
between slowly evolving fault structures and seismic 
instabilities. The first SOC model that successfully 
incorporated scale-free avalanche activity with a fault 
matrix dynamics has been presented by Hughes and 
Paczuski (HP model) [13]. The key component of the HP 
model is the absence of the Abelian symmetry. If the 
Abelian symmetry is violated, the avalanches begin to 

rearrange model landscape in such a way that spatial 
distribution of close to instability threshold grid sites 
becomes strongly non-uniform, which creates a complex 
fractal network of preferred paths for propagation of 
future avalanches. In contrast to previous SOC models, 
the emerging spatial pattern is not static; it evolves slowly 
in accordance with the avalanche dynamics keeping the 
entire system in the vicinity of global critical point in 
which power-law avalanche distributions over energy, 
size and lifetime are observed.  
Here we consider the SOC model based on a 2-
dimensional HP sandpile algorithm. A sketch in Fig.6 
gives its illustration. The HP model is defined on a two-
dimensional grid. Each grid site is prescribed the integer-
valued coordinates x=0…Nx-1  and y=0…Ny-1, as well as 
the state variable z(x,y) arbitrarily called energy. The 
amount of energy stored in a given element determines its 
ability to interact with other elements. When at any site 
the variable zc exceeds constant instability threshold (z > 
zc) it "topples" transferring certain amount of its energy to 
downstream nearest neighbors in accordance with the 
interaction rules: 
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Here p is a random variable distributed uniformly within 
the interval 0…1, and dz is the parameter controlling the 
Abelian property of the model: dz = d  =2 - Abelian; 
 dz = zt  - non-Abelian (see section 2.5).  
 

           
Fig. 6. A sketch illustrating the interaction rules in 2-D 
HP sandpile model [13]. Active grid sites (z > zc) marked 
with large open circles interact with downstream nearest 
neighbors which can produce further activity provided 
their energy before the interaction exceeds the level zc - dz 
(dashed circles). 
 
After receiving a portion of energy from the excited 
element, one or two of its downstream nearest neighbors 
can also go unstable producing a growing avalanche of 
activity that propagates along the y direction. The 
avalanche stops when its front reaches "cold" grid sites 
whose z values is low enough to absorb the energy from 
the unstable elements without producing new activity, or 



when it reaches the open bottom boundary at y=Ny-1. The 
left and right edges of the grid are subject to the periodic 
boundary condition z(0,y)≡ z(Nx-1,y). 
The model is driven randomly at y=0 until the condition z 
> zc is fulfilled and an instability is initiated in some site. 
During the subsequent avalanche propagation, the driving 
is suspended which provides infinite separation between 
the driving and the avalanche time scales necessary for 
SOC in sandpile-type models. After a transient period, the 
model reaches the SOC state at which the probability 
distributions of avalanches over size s  and lifetime t are 
given by  
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where f and g are appropriate scaling functions controlling 
the cutoff behavior of the distributions; sc and tc  are 
finite-size scaling parameters; and τs  and τt are the 
avalanche scaling exponents.  
In general, the scale-free avalanche statistics (8) does not 
necessarily imply any significant correlations between 
spatially separated grid sites over time scales exceeding 
avalanche lifetimes. Most of the known sandpile models 
do not exhibit any spatial correlations which means that 
spatial distribution of grid site energy z(x,y) between the 
avalanches is effectively random. In this context, the HP 
model presents a new opportunity to study the emergence 
of nontrivial large-scale structures appearing self-
consistently in the SOC state. 
We consider this HP algorithm as a generalized toy model 
of nonlinear interactions in the Earth crust in seismic 
active regions. In particular, one can think of a qualitative 
analogy with cracking processes: 
z ↔ stress field;  "occupied" grid sites with z > 0 ↔ 
locally stable state (no cracks);  "empty" sites with z = 0 
↔ developed cracks. An example of generated avalanches 
in the 2D HP model is shown in Fig.7. 

 
Fig. 7. Generation of sample avalanches in 2-D HP 
model:  
Left panel: sample avalanches in the model (non-Abelian 
interaction rules); right panel: an enlarged portion of the 
same image.  
Color coding: red – unstable grid sites; green – stable grid 
sites; blue – nearest neighbors of unstable sites. 

2.5 Abelian versus non-Abelian sandpiles 
The key parameter in the HP model that controls large-
scale correlations in z(x,y) is dz, the fraction of energy 
involved in local interactions. Keeping the value of dz  
constant and independent of z makes the sandpile 
algorithm Abelian and eliminates any spatial structures. 
On the contrary, setting dz to the current value of energy 
zt(x,y) at each point makes the algorithm non-Abelian and, 
as shown by Hughes and Paczuski [13], leads to the 
emergence of complex spatial patterns. 
Fig.8 illustrates topological differences between the 
behavior of the HP model in the Abelian and non-Abelian 
regimes. 
        

Abelian   non-Abelian 
 

     
 
Fig. 8. Enlarged portions of HP model simulation grid 
showing avalanche traces in Abelian and non-Abelian 
cases. 
 
As one can see, spatial distribution of energy stored by 
subcritical grid sites with z ≤ zc differs dramatically in 
these regimes. In the Abelian case, the model has 
effectively no correlations in space; in the non-Abelian 
case, it shows distinct multiscale structures constituting 
complex branching network of interconnected subcritical 
elements. However, avalanche size probability 
distributions are nearly identical and follow power-law 
relations, signaling that the model reaches the SOC state 
in both regimes, and that the dynamics of excited grid 
elements on the time scale of individual instability 
propagation are strongly correlated in both regimes. So 
the Abelian symmetry does not affect avalanche statistics 
but does affect their interaction with the background field. 
In the non-Abelian case, avalanches leave traces of 
"empty" grid regions with z = 0, which leads to the 
appearance of a large-scale spatial structure of occupied 
sites. 
To visualize the emergence of non-trivial large-scale 
correlations in the non-Abelian PH model, we have 
evaluated the entropy characterizing spatial disorder of 
subcritical grid sites as a function of spatial scale. The 
simulation grid was divided into square boxes of linear 
size l, for which mean values z of energy were calculated 
at every time step (i.e. after every avalanche). The degree 
of disorder (the information capacity) associated with 
non-uniform energy distribution can then be characterized 
by the information entropy 
 



 2
0

( ) ( ) log ( ) ( )l lS l p z p z d z bits
∞
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where ( )lp z  is the probability distribution of z  at the 
spatial scale l.  
The comparison between the scaling of entropy in the 
discussed regimes is shown in Fig.9. As one can see, S 
decreases with the box size l much faster in the Abelian 
case. In the non-Abelian case, the entropy decays 
considerably slower, so that for large l it exceeds the 
entropy of the Abelian model by several orders of 
magnitude revealing the spatial complexity of the non-
Abelian SOC regime. 
 

 
 
Fig. 9. Dependence of the information entropy S on the 
spatial scale l in Abelian and non-Abelian cases. 
 
3 Geophysical applications of SOC models 
In this section, we are giving a brief review of our 
research results in SOC modeling of mulstiscale 
dynamical processes in complex geophysical systems. 
 
3.1 Modeling the critical dynamics of fractal 

fault systems 
Regional seismicity is known to demonstrate scale 
invariant properties in different ways. Some typical 
examples are fractal spatial distributions of hypocenters, 
Gutenberg-Richter magnitude statistics, fractal clustering 
of earthquake onset times, power-law decay of aftershock 
sequences, as well as scale-invariant geometry of fault 
systems. In some regions, the observed scale-free effects 
are likely to be connected to a cooperative behavior of 
interacting tectonic plates and can be described in terms 
of the SOC concept. In the works [8-10], we have 
investigated a new SOC model incorporating short-term 
fractal dynamics of seismic instabilities and slowly 
evolving matrix of cracks (faults) reflecting long-term 
history of preceding events. The model is based on a non-
Abelian HP sandpile algorithm described above, and it 
displays a self-organizing fractal network of occupied grid 
sites similar to the structure of stress fields in seismic 
active regions. Depending on the geometry of local stress 

distribution, some places on the model grid have higher 
probability of major events compared to the others. This 
dependence makes it possible to consider a time-
dependent structure of the background stress field as a 
sensitive seismic risk indicator. We have also proposed a 
simple framework for modeling ultra low frequency 
(ULF) electromagnetic emissions associated with abrupt 
changes in the large-scale geometry of the stress 
distribution before characteristic seismic events, and 
demonstrate numerically how such emissions can be used 
for predicting catastrophic earthquakes.  
Two complementary approaches to modeling pre-seismic 
stochastic electromagnetic signals based on SOC 
algorithms have been proposed. Our simulations suggest 
that both conductivity and electric field fluctuations 
associated with local propagation of instability fronts can 
carry information on coupling effects between the 
evolution of fractal fault systems and the statistics of 
major earthquakes, which makes SOC a possible 
underlying mechanism of the precursory dynamics of 
ULF electromagnetic emissions. 
In the anisotropic SP model presented in section 2.4, one 
can associate different energy levels of grid elements with 
different values of Earth's crust electric conductivity. Let 
stable (z = 0) and subcritical (0 < z ≤ zc) grid sites 
represent two different phases (e.g. rocks and liquids 
filling up cracks in the rocks) having different 
conductivity. For the sake of simplicity, the conductivity 
of occupied sites can be set to zero and the conductivity of 
empty sites can be set to 1. The conductivity of a finite 
portion of the grid was estimated using one of the 
following approaches:  
 
"Bulk" conductivity:  C = 〈θ (1-z(x,y))〉x,y                (9) 
Percolation conductivity:  Cp = ρ⋅〈θ (1-z(x,y))〉Px,y       (10) 
 
Here 〈〉x,y denotes averaging over all x- and y-positions 
within a chosen spatial domain and 〈〉Px,y is averaging over 
the elements involved in the percolation cluster. Factor ρ 
equals to 1 or 0 depending on whether or not the 
percolation through empty grid sites of the studied domain 
is possible.  
The conductivity C is proportional to the concentration of 
the conducting phase. In addition to that, Cp takes into 
account effects of connectivity, which play an important 
role in fractal-disordered materials [15, 16]. We have also 
considered time series of temporal derivatives of the 
introduced conductivity measures:  
 
I = dC /dt;  Ip= dCp /dt                                         (11) 
 
Time evolution of C(t) signals (Fig.10, top) reflects 
changes in model configuration due to SOC avalanches, 
and its dynamics is very similar to dynamics of the time 
series of earthquake energy presented in Fig.3. It has been 
suggested that fluctuations of the percolation conductivity 
defined above can be used for short-term prediction of the 



expected range of avalanche sizes, and represent a simple 
model of fractal precursor of major fault matrix 
reconfiguration due to strong earthquakes. Time 
derivatives of conductivity (Fig.10, bottom) is reminiscent 
of pre-seismic ULF electromagnetic emissions displaying 
characteristic clustering of activity spikes before major 
events (Fig.11, after [17]). 
  

 

     
 
Fig. 10. Examples of fluctuations of conductivity C (9) in 
the non-Abelian model (top); time evolution of dCp /dt 
(11) in the same model (bottom). 
 

 
 
Fig. 11. Ultra-low frequency Lithospheric Emissions 
registered prior to the moderate (M=4) Racha aftershock 
of 3 June 1991 (marked as EQ). The observation point 
(Nikortsminda station) was located about 40 km from the 
epicenter [17]. 
 
Another method of building cellular automaton models of 
pre-seismic electromagnetic emissions can be based on 

the effect of moving charged dislocations (MCD), which 
was shown to accompany crack evolution before strong 
earthquakes [18]. We considered each local instability (an 
excited element with (z > zc) as a crack event associated 
with a transient electric dipole generating an electric field 
pulse. The superposition of such pulses from multiple 
simultaneous sources gives rise to a complex stochastic 
electromagnetic signal in ULF frequency band. By 
assuming that active cracks can only emit short-lived 
pulses with durations of few seconds, the overall shape of 
the electric field signal detected on the ground can be 
represented by the convolution of such pulses with the 
long-period source time function n(t), where n is the time-
dependent number of active grid sites. The shape of the 
obtained emission signal seems to display some 
distinctive features (sudden onset, rapid culmination and 
slower decay) of MCD electromagnetic precursors 
predicted theoretically by Tzanis and Vallianatos [18]. 
 
3.2 Models of fractal magnetosphere dynamics 
 
In publications [19, 20], the effect of self-organized 
criticality has been considered as an internal mechanism 
of geomagnetic fluctuations accompanying the 
development of magnetospheric substorms. It has been 
suggested that spatially localized current sheet instabilities 
followed by magnetic reconnection in the magnetotail can 
be considered as SOC avalanches the superposition of 
which leads naturally to the 1/f power spectra of 
geomagnetic activity. A running 2D avalanche model with 
controlled dissipation rate has been proposed for 
numerical investigation of the multi-scale plasma sheet 
behavior in stationary and nonstationary states of the 
magnetosphere. Two basic types of perturbations have 
been studied, the first induced by an increase in the solar 
wind energy input rate and the second induced by a 
decrease in critical current density in the magnetotail. The 
intensity of large-scale perturbations in the model depends 
on accumulated energy level and internal dissipation in a 
manner similar to the dependence characteristic of real 
magnetospheric substorms. A spectral structure of model 
dynamics exposed to variations of solar wind parameters 
reveals distinctive features similar to natural geomagnetic 
fluctuations, including a spectral break at 5h separating 
frequency bands with different spectral slopes. 
 
Conclusion 
The ongoing search for solutions of most urgent and 
currently unresolved global geophysical problems such as 
prediction of earthquakes, volcano eruptions etc. can only 
be successful in frames of well-coordinated international 
research programs. For such cooperation to be efficient, a 
common educational basis is required, and a 
standardization of teaching methods in worldwide 
geophysical institutions is of great importance. The 
described approach to modeling and visualization of 



complex geophysical processes makes up an important 
precedent of creation of a unified cross-disciplinary 
education platform involving collaboration of several 
research and educational institutions in Russia and Greece 
(St.Petersburg State University, University of Athens, 
Technological Educational Institute of Crete). The 
methods described in this paper can be used for 
professional training of researchers and engineers 
interested in basic physical principles controlling the 
evolution of complex natural hazard systems.  
 
Acknowledgements 
This work has been supported by bilateral Greek-Russian 
research program (grant 04-05-64938 of Russian 
Foundation for Basic Research) and by the Leading 
Scientific School of Russia (grant 760.2003.5). 
 
References: 
[1] Bak P., C. Tang, and K. Wiesenfeld, Self-organized 

criticality: an explanation of 1/f noise, Physical 
Review Letters, Vol. 59, 1987, pp. 381-384. 

[2] Bak P., C. Tang, and K. Wiesenfeld, Self-organized 
criticality, Physical Reviews, Vol.38, No.1, 1988, 
pp.364-374. 

[3] Bak P. and C. Tang, Earthquakes as a Self-Organized 
Critical Phenomenon, Journal of Geophysical 
Research, Vol.94, No.B11, 1989, p.15,635-15,637. 

[4] Sornette A. and D. Sornette, Self-Organized 
Criticality and Earthquakes, Europhysical Letters, 
Vol.9, No.3, 1989, pp.197-202. 

[5] Bak P., How Nature Works: The Science of Self-
Organized Criticality, Copernicus, New York, Oxford 
University Press, 1997, 210 pp. 

[6] Jensen H.J., Self-Organized Criticality (Cambridge 
Lecture Notes in Physics, 10), Cambridge University 
Press, 1998, 153 pp.  

[7] Troyan V.N., N.A. Smirnova, Yu.A. Kopytenko, Th. 
Peterson, and M. Hayakawa, Development of a 
Complex Approach for Searching and Investigation of 
Electromagnetic Precursors of Earthquakes: 
Organization of Experiments and Analysis procedures. 
In: Atmospheric and Ionospheric electromagnetic 
phenomena associated with Earthquakes, edited by 
M.Hayakawa, Terra Sci. Publ. Co, Tokyo, Japan, 
1999, pp. 147-171. 

[8] Uritsky V., N. Smirnova, V. Troyan, and F. 
Vallianatos, Critical dynamics of fractal fault systems 
and its role in the generation of electromagnetic 
emissions before major earthquakes, Physics and 
Chemistry of the Earth, Vol.29, 2004, pp. 473-480. 

[9] Uritsky V., N. Smirnova, V. Troyan, A. Tzanis, and F. 
Vallianatos, Modeling pre-seismic electromagnetic 
emissions using a self-organized criticality approach, 
in: Proceeding of the 5th International Conference 
“Problems of Geocosmos” (St.-Petersburg, Russia, 
24-28 May, 2004), edited by A.A. Kovtun, M.V. 

Kubyshkina, V.S. Semenov, V.A. Sergeev, V.A. 
Shashkanov, T.B. Yanovskaya, 2004, pp. 263-266. 

[10] Uritsky V.M., A. Tzanis, and N.A. Smirnova, Using 
the Self-Organized Criticality Approach for Modeling 
Pre-Seismic Electromagnetic Emissions, in: Abstracts 
of International Workshop on Seismo-
Electromagnetics (IWSE2005), Chofu Tokyo, Japan, 
March 15-17, 2005, pp.231-234. 

[11] Feder J., Fractals, Plenum Press, New York, 1988, 
283 pp. 

[12] Turcotte D.L., Fractals and Chaos in Geology and 
Geophysics, Cambridge University Press, Second 
edition, 1997, 397 p. 

[13] Hughes D., and M. Paczuski, Large scale structures, 
symmetry, and universality in sandpiles, Physical 
Review Letters, Vol.88, No.5, 2002, 054302-1 - 
054302-4. 

[14] Gutenberg B., and C.F. Richter, Magnitude and 
energy of earthquakes, Ann. Geofis., Vol.9, 1956, p.1.  

[15] Bahr K., Electrical anisotropy and conductivity 
distribution functions of fractal random networks and 
of the crust: The scale effect of connectivity, Geophys. 
J. Int., Vol.130, 1994, pp.649-660. 

[16] Bahr K., Percolation in the crust derived from 
distortion of electric fields, Geophysical Research 
Letters, Vol.27, No.7, 2000, pp.1049-1052. 

[17] Kopytenko Yu.A., T.G. Matiashvili, P.M. Voronov, 
and E.A. Kopytenko, Observation of Electromagnetic 
Ultra-Low-Frequency  Lithspheric Emissions (ULE) 
in the Caucasian Seismicallly Active Area and Their 
Connection with the Earthquakes, in: Electromagnetic 
Phenomena Related to Earthquake Prediction, edited 
by M. Hayakawa and Y. Fujinawa, Terra Sci. Pub. 
Co., Tokyo, 1994, pp.175-180. 

[18] Tzanis A. and F. Vallianatos, A physical model of 
Electric Earthquake Precursors due to crack 
propagation and the motion of charged edge 
dislocations, in: Seismo Electromagnetics 
(Lithosphere-Atmosphere-Ionosphere Coupling), 
edited by M. Hayakawa and  O.A. Molchanov, Terra 
Scientific Publishing, Tokyo, 2002, pp. 148-166. 

[19] Uritsky V.M., A.J. Klimas, and D. Vassiliadis, On a 
new approach to detection of stable critical dynamics 
of the magnetosphere, in: Proceedings of 5th 
International Conference on Substorms, edited by A. 
Wilson, ESA, St.Petersburg, Russia, 2000, pp.213-
216. 

[20] Uritsky V.M., M.I. Pudovkin, and A. Steen, 
Geomagnetic Substorms as Perturbed Self-Organized 
Critical Dynamics of the Magnetosphere, Journal of 
Atmospheric and Solar-Terrestrial Physics, Vol.63, 
No.13, 2001, pp.1415-1424. 


	NATALIA A. SMIRNOVA, VADIM M. URITSKY
	RUSSIA
	ANDREAS TZANIS
	Athens, Panepistimiopoli, CR-15784
	GREECE
	FILIPPOS VALLIANATOS
	Romanou Str. 3, Chalepa, 73133, Chania, Crete I.
	GREECE

