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Abstract 

The accumulation of stress and strain is known to induce changes in the electri-
cal properties of rocks, which can be monitored for signs of earthquake prepara-
tion processes. To this effect, the Magnetotelluric sounding method presents 
some unique advantages. However, single-site MT data are notoriously susceptible 
to natural or anthropogenic time-varying coherent noise, which may severely bias 
the response function estimators and degrade their repeatability, unless treated 
with dedicated processing techniques. Such a technique is presented herein, in-
volving the W-estimator with random error weighting, followed by an iterative 
robustification scheme based on an influence function approach. The algorithm is 
demonstrated on a set of severely distorted data exhibiting a marginal distribu-
tion of outliers, and is shown to effectively reduce the bias errors and the 
variance. It is also applied to the long-term monitoring of crustal resistivity 
with MT response functions at a noisy site located near Aerino village, SE Thes-
saly, Greece, achieving a sustainable repeatability threshold of 10-20% and far-
ing very well with respect to the data quoted from the international literature. 
 
Keywords: Earthquake Prediction, Magnetotellurics, Impedance Tensor, Ro-
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1  INTRODUCTION 

Earthquake preparation processes are thought to produce long and 
short term changes in the electrical properties of rocks, for instance 
through the mechanisms described by volume dilatancy models (Scholz, 
1990; Myachkin et al., 1975). Electromagnetic (EM) fields may sense such 
changes, thereby offering a means of searching for earthquake premonitory 
phenomena. Active measurements with dc fields were frequently reported to 
have detected precursory resistivity changes and a large body of litera-
ture may be found in the reviews of Park et al., (1993) and Johnston, 
(1997). Passive measurements of ELF-ULF Magnetotelluric (MT) fields are 
not as successful. A respectable volume of earlier work has been reviewed 
by Beamish (1982) and Kharin (1982), but not much progress has been made 
since, (for instance, see Johnston, 1997), with Ernst et al., (1993), 
Rozluski and Yukutake (1993) and Svetov et al., (1997) deserving atten-
tion. With the exception of Svetov et al. (1997), not one of the refer-
ences cited in the international literature uses MT response functions, 
(namely the MT impedance tensor), which have yet to find their place in 
the arsenal of earthquake prediction research. 

The hold up is due to the susceptibility of ELF-ULF MT data to coher-
ent natural and anthropogenic noise, which may severely degrade the qual-
ity and long term stability of the response functions. Natural noise de-
rives from phenomena such as time-dependent streaming and ζ potentials, 
nearby lightning etc. Anthropogenic noise derives from the operation of 
electric and electronic devices. A balanced power distribution grid will 
generate a fundamental at 50/60Hz and discrete higher order harmonics, 
easy to rid of. An unstable grid, however, produces modulation and wide 
band interference, much harder to deal with. Transient noise is generated 
by the switching of machines and may propagate over long distances. It 
appears in the form of step functions, boxcar functions, spiky or dis-
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persed δ-functions, damped quasi-sinusoids etc., debilitating a broad-
band spectrum. These types of noise may cause serious, even insurmount-
able problems to single-site data and cannot be treated with standard 
methods, as will be seen below. Until very recently, even by using remote 
referencing systems to obtain consistent and repeatable response func-
tions, it has proved difficult to reduce errors below several percent for 
good data and very much higher for poor data. Inasmuch as precursory re-
sistivity changes are expected (and are observed) to be only a few per-
cent, it is easy to see why progress has been slow.  

Nevertheless, the MT fields are unique in their capacity to probe a 
broad depth range with passive point measurements on the surface. More-
over, MT response functions may be used to discriminate possible tran-
sient telluric precursors, by deconvolving the induced from the total ob-
served electric field, as in Arvidsson and Kulhanek, (1993), or Tzanis, 
(1994). Last but not least, MT is a unique crustal sounding method, with 
a wide range of academic and commercial applications. Therefore, it is 
compelling to research for methods of improving the reliability and sta-
bility of the response functions.  

Noise reduction schemes for single-site data have been devised by 
several researchers. The earlier efforts included variants of the W-
estimator (e.g. Jones et al., 1983; Beamish, 1986). Later work concen-
trated on robust-resistant methods, (e.g. Egbert and Booker, 1986; Chave 
et al., 1987; Larsen, 1989; Sutarno and Vozoff, 1991; Egbert and Lively-
brooks, 1996), using some form of the regression-M estimator. Of all 
these approaches, the W-estimator is the simplest and most versatile and, 
as will be shown, very powerful when combined with the right weighting 
schemes. Moreover, it can be robustified to cope with data containing 
tailed marginal error distributions and outliers. Such an algorithm has 
been developed by Tzanis (1988) and herein is adapted to the frequency 
domain estimation of MT responses.  

The algorithm is applied to the analysis of MT data from an earth-
quake prediction experiment in SE Thessaly, Greece, involving long term 
observations of ULF natural electromagnetic fields. This region exhibits 
moderate seismicity and considerable earthquake hazard (e.g. Kouskouna, 
1991). During the 20th century only, the area experienced eight main se-
quences, with twelve shallow earthquakes having magnitudes Ms >6 (1905, 
1911, 1930, 1941, 1954, 1955, 1957, 1980). Of these, all the post-1954 
earthquakes occurred within the rectangle 22.5°E-23.3°E and 39°N-39.5°N 
in the periphery of Volos, Velestino and Almyros cities. This area is 
characterised by rather infrequent, albeit large earthquakes separated by 
decade-long periods of quiescence, during which it might be possible to 
observe stress-and-strain induced changes in the electric properties of 
rocks.  
 
2  FREQUENCY DOMAIN MT RESPONSE FUNCTION ESTIMATION 

The conventional approach to single-site frequency domain Magnetotel-
luric impedance tensor estimation is based on the assumption of stochas-
tic (Gaussian) time processes. The horizontal electric and magnetic field 
components are measured simultaneously in the time domain and in two, mu-
tually orthogonal Cartesian frames. Following transformation into the 
frequency domain, the most common method for estimating the impedance 
tensor elements Zij, i = x,y, is the least squares solution of the two-
input one-output linear system  
Ei=Zi xH x+Zi yH y+ ε i,   i=x,y,     (1) 
by minimising the noise εi (Sims et al., 1971). This yields a system of 
two equations in two unknowns,  

Ei =Zi x(Hx )+Zi y(Hy ),  i=x,y, j=x,y   (2) *
jF

*
jF

*
jF
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When F ≡ H, the solution is biased downwards by noise in the auto-spectra 
of the magnetic channels only. When F ≡ E the solution is biased upwards 
by noise in the auto-spectra of the electric channels only. The quality 
of the solution can be monitored by means of the predicted coherence 
function  

 2
23.iγ =Ě i/Ei, Ě i=Ži xH x+Ži yH y ,   i=x,y,    (3) 

where Ěi represents the output electric field component predicted from 
the estimated impedance elements Žij. Clearly, 0 ≤ γ2 ≤ 1, so that low 
values of the predicted coherence indicate a rejectable solution and high 
values an acceptable solution. Given N spectral realizations of Ex, Ey, Hx 
and Hy at a frequency ω, it is necessary to provide at least two limiting 
cases of noise content, namely a population {Ďij} of stable, downwards 
biased estimates and a population {Ŭij} of stable, upwards biased esti-
mates. If the data provides an adequate distribution of high predicted 
coherences, the bias errors reduce to the magnitude of random errors. 
Each of {Ďij} and {Ŭij} are used to calculate the expectation values <Ďij> 
and <Ŭij> and variances ΔĎij and ΔŬij. The 'true' values of the impedance 
tensor <Žij> elements can, then, be estimated from the lower and upper 
bounds. In the case of Gaussian (stationary) noise, straightforward aver-
ages of {Ďij} and {Ŭij} would suffice to provide the final unbiased ele-
ments. Unfortunately, the noise is usually non-stationary and quite often 
coherent across channels (multiple coherent noise), evading the predicted 
coherence test, and introducing tailed marginal error distributions and 
outliers, into {Ďij} and {Ŭij}, thereby providing biased and oscillatory 
estimates <Žij>. In the following, I will first attempt clarify the con-
cepts and then explain the robust W-estimation procedures developed to 
deal with such noise. 

At frequency ω, the N realizations of equation (1) can be cast into 
an over-determined system of N equations in 2 unknowns, denoted by 
E N=H NZ. Alternatively, one can arrange in a 2N×2 matrix, N sub-systems 
of the form (2), generating an over-determined system of 2N equations in 
2 unknowns denoted by E 2 N=H 2 NZ. Then, one seeks to obtain a maximum 
likelihood estimate of Z by minimising an expression of the form  

∑
n
ρ(rn)=∑n

(En-HnZ)/σ,  n=1,2,…,mN 

with m=1 or 2, where ρ(r) is a suitable loss function, rn is the residual 
of the nth observation and σ is a normalising error scale factor. For in-
stance, a loss function ρ(r)=r2/2 leads to the minimization of the L2 
norm 

∑ =∑ (En-HnZ)2 
n n

and corresponds to the standard least squares (LS) solution. In the pres-
ence of biasing non-Gaussian noise, we seek to define a maximum likeli-
hood estimator (M-estimator) of the location of Z, which must show mini-
mal bias (B-robust) and minimal change of variance (V-robust). This ap-
proach to M-estimation usually requires the solution of a non-linear sys-
tem of equations, but this can be avoided with iterative procedures in-
volving the so-called influence function ψ(r) and weight factors of the 
form w(ψ(r)). The influence function is generically related to the loss 
function, usually as ψ(r)=ρ′(r)=dρ(r)/dr. In general, one obtains an 
initial estimate Ž(0). Then, looping over K iterations to convergence, 
one calculates the predicted output Ěn(k)=Hn(k)Ž(k), calculates 
rn(k)=En(k)-Ěn(k), ψ(rn(k)) and w(ψ(rn)), modifies the output as 
En(k+1)=Ěn(k)+w(ψ)rn(k) and obtains new solutions Ž(k+1) and a new error 
scale σ(k+1). The successive approximations Ž(k) are usually obtained 
with LS algorithms. This is the regression-M estimation, for which one 
may seek details in Huber (1981) and Hampel et al., (1986). 

2
nr
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Now, let Z≡Zij define any element, and Z=[Zix Ziy] any row of the ten-
sor. The W-estimator is defined as a weighted average <Z> of the observa-
tions  

Z{N:Z1,Z2,…,ZN) = ∑ Wn ⋅Zn ⋅[∑ Wn]-1
, 

n n

with the weights depending on the observations according to Wn=W(Zn-Z) 
and being functions of the location of Zn within the sample space. There-
fore, the W-estimator satisfies the equation 

<Z> = ∑ W(Zn−<Z>) ⋅Zn ⋅[∑ W(Zn−<Z>)]-1
 

n n

which can be modified to yield 

0 = ∑ W(Zn−<Z>) ⋅(Zn−<Z>) ⋅[∑n
W(Zn−<Z>)]-1

 
n

implying that 

0 = ∑
n
ρ(Zn−<Z>) with   ρ′(Zn−<Z>)=(Zn−<Z>) ⋅W(Zn−<Z>), 

where ρ is just another expression for the general form of a loss func-
tion with the error scale omitted, since <Z>=E{Z(N)}. This means that the 
iterated W-estimator is a variant of the M-type estimators of location. 
In fact it can be understood as a one-step regression-M estimator and as 
such, it possesses the same influence function and asymptotic variance 
(Hampel et al., 1986).  

In order to construct a B-robust W-estimator for MT response func-
tions, consider the loss and influence functions  

⎩
⎨
⎧

>−
<

=ρ
0

2
2
1

0

0
2

2
1

r|r|,rrr
r|r|,r

)r( ,  , 
⎩
⎨
⎧

>
<

=ρ′=ψ
00

0
r|r|,r
r|r|,r

)r()r(

with weights w(r)=ψ(r)/|r| and r0=αs, where s is the standard deviation 
of the uncontaminated error distribution and α is a real constant. This 
is a hybrid corresponding to L2 minimisation for the small residuals and 
L1 minimisation for the larger ones. The influence function is non-
decreasing, which is a requirement for convergence to unique estimates. 
The weight function w(r) is continuous and downweights outliers without 
break points other than r0. General convergence is guaranteed, provided 
that ρ(0)=0, ρ′(r)>0 and 0≤ ρ(r) ≤1, (Huber, 1981). 

Next, consider that one can always solve N systems of the form (2), 
to obtain populations Ž(N: Ž1,Ž2,…,ŽN), each estimate in the population 
exactly satisfying one of the N finite data realisations. This can be 
used to compute the successive approximations <Ž(k)> to E{Z(N)}, using 
the one-step W-estimator. Thus, it is not necessary to set up and solve 
any large over-determined system and the robust W-estimation reduces to 
an iterative re-weighted LS scheme as follows: 1) Obtain initial esti-
mates of <Ž(0)> and of the error scale σ(0). 2) Using equation (2), com-
pute the predicted output Ěn(k)=Hn<Ž(k)> and the corresponding residual 
rn(k)=En(k)−Ěn(k). 3) Modify the output as Ěn(k+1)=Ěn(k)+w(r)⋅rn(k). 4) Use 
the modified observations and equation (2)to compute N estimates Žn(k+1). 
5) Form the W-estimators 

<Ž(k+1)> = ∑
n
Žn(k+1) ⋅Wn(k+1) ⋅[∑n

Wn(k+1)]-1
 

for each element of Ž and compute the new RMS error scale σ(k+1), then 
iterate from 2 until convergence. The error scale can be computed as 

σ(k) = [(β(2N-4))-1 ⋅∑
n
rn(k)]1/2

 

i.e. is a scaled RMS error with β<1 so that the error scale will not be 
underestimated during the successive iterations. Egbert and Booker (1986) 
give a method to obtain the appropriate β for any choice of r0. The form 
of the weight factors Wn is also (and apparently) important. One obvious 
choice is to use the influence weight w(r), which has the functional form 
W(rn(k))=f(Ěn(k)−Hn ⋅Ž(k)) = f(Hn ⋅[Žn(k)−Ž(k)]) 
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Figure 1. An ensemble of |Dyx| impedance tensor elements (top) and their random 

errors (bottom). 

 
Figure 2. Left: Τhe distribution of the original |Dyx| population illustrated 

in Figure 1. Right: The final distribution of the processed ensem-
ble, after application of the robust W-estimator (see Figure 3).  

and, therefore, is a genuine function of the location of Žn(k). This 
weight function is very stable and will always ensure convergence.  
 
3 EXAMPLES 

It is quite apparent that the effectiveness of the W-estimator de-
pends on the choice of the weight function. The predicted coherence has 
often been used, (e.g. Jones et al., 1983; Egbert and Livelybrooks, 
1996), but I have found, that Pedersen’s (1982) random error  
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is very effective and quite robust (e.g. Tzanis 1988). In equation (4), ν 
is the number of degrees of freedom of the measured spectra, F is the 
100a percentage point of an F distribution with ν-4 and 1 degrees of 
freedom and γ23 is the coherency of Hx and Hy. There are very sparse ref-
erences to the properties of the random errors and their usefulness. The 
original study of Pedersen (1982), did not provide practical examples and 
to the best of my knowledge, only Beamish (1986) and Tzanis and Beamish 
(1989), report their implementation as weights, without giving details. 
Their efficiency however, is straightforward to demonstrate.  

Figure l illustrates a population {|Ďyx|} above a predicted coherence 
threshold of 0.8, contaminated by multiple-coherent non-Gaussian noise 
producing a heavily tailed marginal error distribution (Figure 2, left). 
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Figure 3. Application of the robust iterated W-estimator to the Zyx ensemble of 

Figure 1.  

It is clear that some estimators may display large deviations from the 
expectation values, but it is also quite apparent that all the outliers 
are invariably associated with large random errors, usually due to the 
high power of the noisy electric field. The population mean is 
<Ďyx>=79.58+i13.98 mV/km·nT and a W-estimator with predicted coherence 
weighting does not fare better for obvious reasons (only coherent esti-
mates enter the population). The W-estimator with random error weighting 
yields <Ďyx>=68.28+i16.05 mV/km·nT and significantly reduces the bias er-
ror. Thus, the random error emerges as a potentially useful diagnostic 
aid and data processor.  

Figure 3 shows the robust iterated W-estimator operating on a subset 
of the same data series, (97 estimators of with predicted coherence above 
0.85), setting <Ďyx(0)>=68.28+i12.05 and using for weights 
Wn(k)=w(rn)=ψ(rn)|rn|-1, r0=1.5 and β=0.45. The algorithm stops automati-
cally after the second decimal point is fixed, yielding 
<Ďyx>=68.28+i19.80. As can be seen, it eliminates the outliers and pushes 
the data towards the expectation value, allowing the corrected population 
to yield stable (B-robust) means with minimal variance (V-robust). More-
over, it converts the original broad, skewed and tailed distribution, to 
almost Gaussian (Figure 2, right). It is apparent that the estimate ob-
tained by the iterated robust W-estimator did not improve the starting 
value by a significant factor, a fact that confirms the power of random 
error weighting.  

This algorithm will effectively downweight the influence of non-
Gaussian noise, provided that the population of noise-free data dominates 
the population of noisy data. Its performance is a function of noise and 
data statistics, progressively deteriorating as the probability of re-
ceiving noise waveforms increases, until breakdown when the noise is as 
likely as the data and can cloak the distribution of the noise-free popu-
lation beyond recognition and recovery. In this event, the treatment must 
be case-specific. The robust methods cannot cope with continuous harmonic 
multiple coherent noise, for obvious reasons. In conclusion, the robust 

 - 1640 - 



Bulletin of the Geological Society of Greece, Vol. XXXIV/4, 1635-1644, 2001. 
Proceedings of the 9th International Congress, Athens, September 2001. 
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AERINO EMO

 
Figure 4. Location of the Aerino EMO and the tectonic lineaments in SE Thessaly, 

after Cratchley (1983). 

W-estimator can provide effective means of overcoming non-Gaussian noise 
and can be useful for the long-term monitoring of time-dependence in the 
MT response functions.  

 
4  APPLICATION TO EARTHQUAKE PREDICTION RESEARCH 

The magnetotelluric data used in this study was recorded at a semi-
permanent Electromagnetic Observatory (EMO) located at an altitude of 
210m and at co-ordinates 39°21.5΄N and 22°45.2΄E, near the village Aerino 
of Velestino county, SE Thessaly (Figure 4). The station was located on 
the hanging wall of the Chalkodonio mountain fault, above the seismogenic 
volume of the three Ms 6-6.8 events of 1957. Observations were carried 
out with non-polarising solid solution Pb-PbCl2 electrodes and a 3-
component fluxgate magnetometer. The data was recorded with a dedicated 
automatic 7-channel logging unit, equipped with 20-bit δ-σ digitisers and 
capacious disks, capable for extended autonomous operation. The observa-
tions were interrupted between August and November 1994, due to a brush 
fire that crippled the electric field sensor system, but fortunately 
leaving unscathed the other equipment, which was better protected. The 
EMO operated normally until July 1995 when the logger malfunctioned and 
was decommissioned.  

Response functions cannot be estimated at periods shorter than ap-
prox. 50s, due to the low sensitivity of the magnetometer (resolution > 
0.01nT), and the continuously increasing noise levels from the expansion 
of Aerino village and nearby small agricultural industries. The results 
for the longer periods are estimated over fortnight to month long inter-
vals and are presented in Figures 5a and 5b for two distinct periods and 
in Figure 6 for the entire spectrum of the off-diagonal tensor elements 
Zxy and Zyx. In general, long term magnetotelluric crustal monitoring with 
response functions repeatable to within 10-20% has been possible. As can 
be observed in Figure 5, the shorter periods (higher frequencies) are es-
timated with better repeatability, within approximately 10%, than the 
longer periods, (lower frequencies), which are estimated with a repeat-
ability of 15% or higher. These differences are attributed to the differ-
ent data and noise statistics at different parts of the spectrum but 
overall, the technique performs very well compared to the results quoted 
from the international literature for single-site long period data, (e.g. 
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Figure 5a. Time dependence of the MT impedance tensor at T=90s. 

Park et al., 1993; Johnston, 1997). At any rate, the available data indi-
cate that no systematic observable changes in the deep (lower crustal) 
geoelectric structure have taken place during October 1993 - July 1995. 
Nevertheless, long period (>50s) data may well miss the better part of 
the schizosphere, where major earthquakes nucleate (10-15 km). Shorter 
period observations with sensitive induction coils are likely to provide 
more meaningful information on processes occurring at depths comparable 
to the strongly deforming volumes of intermediate - large earthquakes. 
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