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SUMMARY 
This study is an investigation of the behaviour of audiomagnetotelluric (AMT) response 
estimates, in the presence of intense anthropogenic noise. The details of the data and noise 
interactions are studied by constructing highly resolved AMT response functions using the 
Maximum Entropy spectral analysis method, in its multichannel form. For low-noise, 
consistent data spectral estimates and their frequency resolution should be independent of the 
spectral technique used. Such behaviour is confirmed. When the data are contaminated by 
significant amounts of noise the highly-resolved estimates display detailed inconsistencies as a 
function of frequency. Such piecewise distortions can be understood if the response function 
is viewed as a polynomial. The results obtained enable the identification of response structure 
generated by both harmonic and subharmonic noise processes. High-resolution estimates 
provide a detailed view of data quality and narrow-band perturbations. The comparison of 
high-resolution response functions with conventional (discrete) estimates, shows that, in some 
cases, the latter may produce erroneous estimates. A discussion of the generation and received 
characteristics of noise waveforms is also included. A smoothing operation, involving 
frequency domain convolution, is described and applied to the results obtained. The 
technique exploits the minimum-delay properties exhibited by a valid impulse response 
function in the time domain. 

Key words: electromagnetic induction, audiomagnetotellurics, noise, maximum entropy, 
spectral analysis. 

1 INTRODUCTION 

Conventional magnetotelluric data analysis requires the 
solution of the frequency domain equations: 

U f )  = Z,(f)Hx(f) + Zxy(f)Hy(f) 
E,(f) = Zyx(f)Hx(f) + Z,,<f)H,(f) 

(1) 

or, in matrix form, E=ZH,  where Z is termed the 
impedance tensor, or response function, and conveys 
information about the geoelectric structure in the vicinity of 
the recording station. The field components E = (Ex E,] and 
H = [Hx H,] are recorded in the time domain and form a 
mutually orthogonal set. The two pairs of impedance 
elements are usually estimated by least-squares solutions 
which minimize noise on a particular data channel (Sims, 
Bostick & Smith 1971). The quality of the least-squares 
solutions for each of the two pairs of impedance elements is 
then obtained from the multiple (predicted) coherence 
between the measured electric field component and that 
predicted by the least-squares solutions. 

The auto- and cross-spectral estimates between the field 
components are conventionally computed using the Fast 
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Fourier Transform (FFI') technique. Given the inherent 
variance of the resulting raw spectral density function, 
smoothing by averaging over a frequency interval, often 
arbitrarily chosen, is usually prescribed, in order to stabilize 
the spectral density estimates (band-averaging). The 
frequency resolution of the resulting impedance tensor 
estimates is thus drastically reduced. High frequency 
resolution will not, theoretically, offer additional informa- 
tion, because the impedance tensor (i.e. the Earth response) 
is a smooth function of frequency. However, few studies or 
examples of high-resolution impedance estimation have 
appeared in the literature. In addition, a highly resolved 
response will clearly display the effects of narrow-band 
spectral components that are extraneous to the induction 
process described by equations (1). This may ultimately 
assist in their identification and removal. 

Noise problems are accentuated for data obtained in the 
audio and subaudio frequencies. The power distribution grid 
may contaminate the data with intense extraneous noise 
sources. The noise structure of a well balanced grid supply 
will be time-stable and comprise a fundamental (50 or 
6OHz) and associated line harmonics. Variable loads may 
also provide time-variable line sources and wide-band 
contamination. Powerful irregular transients also exist to 
provide additional narrow and wide band contamination. A 
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recent review of anthropogenic noise sources is provided by 
Menvielle & Szarka (1986). 

In this study, we investigate some high-resolution 
properties of noise-contaminated EM data. We focus our 
attention on data from the lower audio frequencies, the 
so-called AudioMagnetoTelluric (AMT) data, as they are 
both more affected, and of more interest for upper crustal 
geoelectric studies. To obtain highly resolved and stable 
impedance estimates we have adopted the Maximum 
Entropy (MAXENT) spectral analysis method (Burg 1975; 
Jaynes 1982). High-resolution spectral estimation using the 
discrete Fourier transform appears in the robust spectral 
estimation techniques described by Chave, Thomson & 
Ander (1987). Such techniques may form a complementary 
non-parametric estimation procedure to the MAXENT 
method although they have yet to be applied to 
high-frequency/high-noise datasets. 

In order to understand the behaviour of a high-resolution 
response function contaminated by noise, we first provide a 
description of the response function as a finite-degree 
polynomial. AMT data in the frequency range 0.1-1OOHz 
obtained at a number of sites in western Turkey are used to 
provide both conventional and high-resolution estimates of 
the impedance tensor. Although the two sets of results can 
be considered equivalent for certain (low-noise) data types, 
the high-resolution estimates display narrow-band structure 
for high-noise data. The results obtained are used to identify 
a number of 'inconsistent' features that arise due to the 
contaminating influence of noise. Noise sources, structured 
in frequency, appear to influence several portions of the 
spectrum. High-resolution spectral density functions of the 
data are also used to assist in our understanding of noise 
structure which appears to be generated by both harmonic 
and subharmonic processes. 

The piecewise distortions of a response function are due 
to the convolution of the consistent data with inconsistent 
noise structure in several portions of the spectrum. All such 
discontinuities imply an unphysical response and identify 
inconsistent sections of the spectrum. The recovery of a 
consistent high-resolution response from such data requires 
careful consideration. For our data the noise structure is 
complex and it can only be understood a posteriori, using 
high-resolution procedures. Any attempt to remove 
piecewise distortion in the frequency domain involves a 
smoothing of the response function. The smoothing function 
must be consistent with known properties of the response 
function and it must not impose any other structure on it 
with no a priori information. A smoothing operation, 
involving convolution in the frequency domain, is suggested 
and applied to the results. The technique exploits the 
minimum-delay properties that must be exhibited by a valid 
impulse response function in the time domain. 

2 THE RESPONSE AS A FINITE-DEGREE 
POLYNOMIAL 

In the following discussion the concept of the polynomial 
response function in the time domain is used. This is an 
established result, although not always appreciated or 
explicitly stated. It follows from the fact that equation (1) 
must define a causal system. The linear dependence of an 
EM field component (e), on another orthogonal component 

(h), can only exist at preceding instances of time (lower case 
letters denote time domain processes). In general, this is 
described by the convolution 

e, = h, * zt 

z,=o, t < O  

where I, is the impulse response to EM excitation. The 
subscript t denotes discrete time. From equation (2) the 
alternative definition of z, as mathematical filter can be 
deduced. The one-sided (causal/realizable) filter comprises 
a set of polynomial coefficients 2, = (a,,, a l .  . . . , aj, . . . ) 
that contain information about the geoelectric structure. The 
one-dimensional (ID) conductivity distribution notation is 
implied for the sake of simplicity. The frequency transform 
of zt is defined by the polynomial 

N N 

,=o ,=o 

= aN(Z - zl)(z - z2). . . (2  - ZN), (3) 

where the zj are the roots of Z ( w )  and N is its order. In the 
frequency domain the fields are related as E ( w )  = 
Z(w)H(w) .  The impedance filter is the inverse of the causal 
filter y ,  which relates the field components as 

h, = e, *Yt 

y , = o ,  t < o  (4) 

2, * Y ,  = 4 
with y ,  defined as the admittance filter. The two-way 
invertibility, implied by the last equation, necessitates that z, 
be a minimum-delay wavelet, and equivalently that Z ( w )  be 
a minimum-phase function (e.g. Robinson 1967; Claerbout 
1976). Thus the singularities of Z(o) can only exist in the 
lower half o-plane, and, all the zeros that exist on the 
imaginary w-axis are necessarily simple. Finally, a definite 
property of all impedance and admittance functions is that, 
when they describe a passive system (no energy sources exist 
within the medium under consideration), they must have 
finite energy and positive dissipation over any time window 
from minus infinity up to any time t .  Such properties require 
that the impedance/admittance impulse response be positive 
real (Claerbout 1976). 

Given the inherent smoothness of a valid response Z(o) 
and, assuming that there exists a finite (layered) con- 
ductivity profile, the obseruable geoelectric structure is a 
low order one and accordingly so is the associated 
polynomial impulse response. The very nature of the 
induction process smooths away small-scale perturbations. 
For discontinously recorded data, such as the band-limited 
decade system described later, the variation of Z(w) per 
decade will seldom exceed an order of 3 or 4. 

Having acknowledged the low degree of the finite 
response polynomial we are in a position to understand the 
effects of frequency variations introduced by noise, because 
the observed Z ( w )  departs from its natural (low) degree as 
it is forced to adapt to the variable properties of the 
frequency domain. Thus additional poles and zeros are 
introduced. To investigate how this happens, let NE(w)  and 
N,(w) be noise processes affecting the electric and 
magnetic field components respectively. Noise processes can 
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be classified as strictly or weakly stationary. The first kind 
refers to additive white noise. The second kind may 
incorporate all the natural and anthropogenic processes that 
are not due to passive EM induction, such as ground roll 
affecting the stability of the magnetic sensors. In all such 
cases the noise spectrum may be expressed in terms of a 
polynomial (e.g. Robinson 1980, p. 187), not necessarily 
minimum-phase or narrow-band. 

Then the operation 

defines a convolution in the time domain of z, with nhf so 
that 
el + nC1 = z, * h, + z, * nhr. ( 5 )  
The result emerges as a polynomial of degree at least equal 
to that of Z ( w ) ,  i.e. the polynomial to which it has been 
added. If the noise sources define a polynomial of degree 
greater than that of Z ( w ) ,  (5) shows how additional zeros 
are introduced into the observed response. In the general 
case, the application of the parallel filter rule (e.g. 
Claerbout 1976; Robinson 1980) tells us what the relative 
effects of N ( w )  are on Z ( w ) .  The rule states that the 
frequency transform of the two processes has the same 
number of interior (to the unit circle) zeros (or equivalently 
the same number of zeros in the upper half w-plane) as the 
transform of the dominant process. In particular, if the 
dominant process is minimum-delay, then the parallel 

combination of the processes will be minimum-delay; if it is 
mixed-delay, the combination will have a number of zeros in 
the upper half w-plane and instability will occur. In other 
words, ‘You can add garbage to a minimum-delay wavelet if 
you do not add too much’ (Claerbout 1976). In normal 
circumstances, not too much is added, and a minimum- 
phase Z ( w )  is recoverable. In the extreme case, however, 
Z (  w )  will be contaminated by dominant mixed-phase 
processes introducing instability and structured variations, 
as well as white noise (i.e. a lot of garbage). 

A conventional way of reducing the variance in standard 
frequency domain processing is to smooth the observed 
auto- and cross-spectral estimates of E and H by averaging 
over a usually arbitrary frequency interval. The spectral 
components of persistent noise souces will be included in the 
‘smoothed’ spectrum and, if they are sufficiently powerful, 
will influence neighbouring frequencies. When dealing with 
such problems, our ability to identij. the extent to which 
our data have been affected becomes important and brings 
forward the question of the frequency resolution of data 
processing. The problem of eliminating the noise structure is 
then left to a second-stage procedure. This study will be 
concerned with our understanding of a valid response and its 
recovery from data contaminated by a lot of garbage. 

3 THE AMT DATA 

In this study we are interested in the properties of data in 
the frequency range 0.1 Hz<f < 100 Hz. The data were 

Figure 1. Four channels of decade 1 (100-1OHz) data. Sampling rate is 200Hz.  Five successive data windows are shown each of 0.75s 
duration. Ex and E, are the N-S and E-W orthogonal components of the induced electric field respectively; H, and H, are the corresponding 
magnetic N-S and E-W components. 
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acquired with a computer-based AMT field system covering 
the bandwidth 0.01-100 Hz. Band-pass and notch filters 
were applied to condition the analogue signals prior to 
12-bit digitization. The conditioning scheme provided four 
decades of data with sampling rates of 400, 40, 4 and 0.4 Hz 
across a window of 300 data points per decade. The data are 
resampled at 200, 20, 2 and 0.2Hz across a window of 150 
data points, so that the four decades cover the bandwidths 
100-10, 10-1, 1-0.1 and 0.1-0.01 Hz, respectively. The 
time interval for the collection of each data window is thus 
0.75, 7.5, 75, and 750s, respectively. Collection took place 
in western Anatolia (Turkey), geographic coordinates 
40.5 N, 30 E. Fig. 1 displays an example of decade 1 data 
(100-10Hz) for five successive data windows (RUN 
numbers), in two orthogonal telluric and two orthogonal 
magnetic channels. The 100-10 Hz bandwidth is dominated 
by the Schumann resonance waveforms; in general they 
consist of transient events (sferics) representing the response 
of the Earth-ionosphere waveguide to extra-large lightning 
discharges, superimposed on a background due to the 
continuous global sum of lightning activity (e.g. Bliokh, 
Nikolaenko & Filippov 1980). It is evident that this data can 
be approximated by a sequence of locally stationary 
processes at best. Further details can be found in Beamish & 
Tzanis (1986) and Tzanis & Beamish (1987). 

4 HIGH-RESOLUTION RESPONSE 
FUNCTIONS AND THEIR PROPERTIES 

In the following we shall give examples of the properties of 
high-resolution response functions and compare the results 
with those based on the conventional FFT approach, for 
data recorded at different dates and at different locations. 
The high-resolution estimates were determined by the 
MAXENT method (Burg 1975; Jaynes 1982). The 
implementation of the multivariate MAXENT procedure 
and the assignment of error estimates through the 
least-squares solutions is described by Tzanis & Beamish 
(1987). The algorithm used is based on the work of Strand 
(1977). The most important feature of the multivariate 
procedure is that an Auto-Regressive (AR) model is 
determined simultaneously across all the data channels. The 
spectral parameters used in the analysis are (a) for 
MAXENT: data lengths of N = 150 fitted by AR models of 
order M =  10, unless otherwise stated, (b) for FFT: 
N =  150, cosine-tapered and extended to N=256 by 
symmetrically appending zeros; variance reduction by 
averaging over 12 adjacent frequencies provides 9 response 
estimates per decade associated with 14 degrees of freedom. 
For the comparisons, data processing (other than spectral 
analysis) was identical. The impedance tensor elements were 
calculated by forming the weighted means of the individual 
element populations that passed a predicted coherence 
threshold of 0.80. Weights were the reciprocal variances 
associated with each element. Upward- and downward- 
biased elements were treated separately and subsequently 
combined to produce the ‘unbiased’ result displayed. We 
show the modulus of the unrotated off-diagonal impedances 
(logarithmic scale) and their associated phase response as a 
function of frequency (logarithmic scale). Errors refer to 
one standard deviation throughout. 

Example site 1 

Two decades of the off-diagonal impedance function from 
site 1 are presented in Fig. 2. The MAXENT estimates with 
their upper and lower bounds ( f l  s.d.) are represented by 
the continuous curves. The corresponding FFT results are 
represented by discrete symbols. The main inconsistent 
features observed are indicated by numbers 1, 2 and 3. 
Feature 1 covers the 8-10Hz range. It is less evident in the 
modulus of the impedance function and more impressive in 
the sloping phase response; the unconformity between the 
two decades is apparent in the divergence of the phase. This 
is a combined effect caused by instrumental filters and, 
mainly, by (the principal) aliases of the power grid 
fundamental. The phenomenon requires special attention 
and will be discussed later in more detail. Feature 2 is the 
effect of a strong residual noise component due to the power 
distribution grid that leaked through the sidelobe structure 
of the 49 Hz instrumental notch filter because of its unstable 
harmonic content. Thus, it can be seen to affect the 
bandwidth between 43 and 62Hz, and is more extreme in 
the Zx,, component. Feature 2 is a case of noise differentially 
affecting the field components. Feature 3 is a scaled down 
version of Feature 2, which we believe is due to the first 
harmonic of the unstable mains fundamental. It is centred at 
97.9 Hz, affecting the 92-100 Hz bandwidth; it possesses 
similar time-dependent characteristics. The qualitative and 
quantitative difference on the two elements is obvious. 

There is another interesting effect that can be resolved 
with such a data adaptive technique. Consider Fig. 2, in 
which the solutions obtained with MAXENT and FFT 
techniques are compared. In Fig. 2(a), the decade 1 
impedance has been evaluated from data affected by the 
mains harmonics. In Fig. 2(b) the decade 1 impedance has 
been evaluated from ‘cleaned’ data with the mains 
harmonics and their sidelobe structure removed through 
time-domain inverse filtering; details of this procedure are 
described in Tzanis (1987). In Fig. 2(c), solutions obtained 
with MAXENT for noisy data are compared with those 
obtained with FFT for clean data. The decade 2 (10-1 Hz) 
solutions are the same for both techniques. It is apparent 
that the decade 2 solutions obtained with both techniques 
are in good agreement and display a structured spectrum in 
both amplitude and phase, indicating localized interference. 
Note the behaviour of the 1-3Hz bandwidth in particular. 
As can be seen in Fig. 2(a) the decade 1 amplitude response 
functions evaluated by either spectral method agree apart 
from the 10-2OHz bandwidth. This is not the case for the 
phase response. The FFT phase appears to be downward 
shifted with respect to the MAXENT phase. From Fig. 2(b) 
we observe that this effect no longer occurs for ‘clean’ data, 
and the phase responses are in very good agreement. 
Furthermore, from Fig. 2(c), the clean FFT response and 
the noisy MAXENT response match fairly well. It would 
appear that the phase response obtained with FIT for the 
noisy data is an incorrect function, while the MAXENT 
phase is more consistent. The downward pointing arrows in 
the phase diagram of Fig. 2(a) indicate the average positions 
of the strong residual (53.4 Hz) mains component and what 
appears to be the effect of its associated sideband and/or 
subharmonic structure. They are seen as smooth undulations 
superimposed on the ‘true’ phase movement at the vicinity 



High-resolution processing of AMT data 561 

N" 0 . 0  

z -  
0 
L W 

-I L 
- 1  

z 
N 

1' 

- 

' ' " " '  i 

h 
& 

I 2 
0 

LOO FREQUENCY IHZ) 
LOO FREGUENCY (HZ1 

w.9 3 

J. 

N 

- 
0 

0 - m 2  
A 

z :: 0 0 -  

W 
< -  
I 0 1  

A 

0 
3 

x 
3. N 

m 2  
x 2 N" 0 . 0  - 
W 

0 1  
2 

0 
1 2 0 2 

LOO FREOUENCY (HZ1 LOQ FREQUENCY (mi 



562 A .  Tzanis and D.  Beamish 

of 12, 30, 50 and 98Hz. It must be appreciated that 
resolution down to the level of the noise spectral lines is not 
possible because of their low power level and the dispersive 
filtering effect of the Earth. What we are actually observing 
is their combined interference effect. It could be that 
spectral averaging over a bandwidth containing a rapidly 
moving phase, and structured noise components, introduces 
harmonic distortion and phase shifts. When we compare the 
response obtained by the two spectral methods for the 
cleaned dataset however (Fig. 2b), we see that they are 
almost consistent. For noise-free, consistent data, the 
determination of the response functions should be 
independent of the spectral analysis technique and this is 
what we observe. 
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Example site 2 

The data obtained at site 2 are affected by a moderate mains 
harmonic (50 Hz) and its associated higher and lower order 
structure, with a stronger component in the E-W direction. 
The quality of the data was good with more than 70 per cent 
of the recorded data windows possessing predicted 
coherences >0.80. TWO decades of the off-diagonal 
impedance function from site 2 are presented in Fig. 3. The 
amplitude response for this site is a smooth, well-behaved 
function of frequency, but again, the most interesting 
features appear in the highly structured (ripple-like) phase 
response, particularly in the first decade (Fig. 3a). Here as 
well, the crests of the ripples are believed to correspond to 
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Figure 3. As Fig. 2 but for example site 2. The results shown are: (a) High-resolution impedance functions from data contaminated by weak 
mains noise sources. (b) Comparison between MAXENT and FFT response functions for same data. 
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means that they contain erroneous as well as valid 
contributions and, as a result, they are not correct estimates 
of the true phase. The frequency components near the 
troughs of the ripple structure apparently provide more 
reliable estimates of the true phase response. In fact two 
asymptotic bounds can be drawn for the MAXENT-phase 
data, as shown in Fig. 3(b). These correspond to the 
'correct' and 'erroneous' response, and can be compared 
with the FFT results. The differences are not trivial; if we 
are in a position to obtain error bounds accurate to within 5 
per cent, any modelling of the response obtained may 
produce misleading results if incorrect estimates are used. 

the effects of the mains associated harmonic structure (near 
10, 30, 50 and 100Hz), subject to the same resolution 
constraints as site 1. An additional feature is present at 
about 70Hz and is of unknown origin. The troughs again 
correspond to the relatively unaffected frequency com- 
ponents. However, the fundamental (50 Hz) harmonic 
appears very weak, in contrast to that at site 1. The noise 
effects are more intense in the Zyx tensor element and are 
more pronounced because of the relatively flat 'true' phase 
response upon which they are superimposed. Decade 2 
displays the same 8-10Hz distortion as site 1. Structure is 
also observed in the decade 2 Zyx tensor element with 
properties similar to those at site 1. 

Figure (3b) displays the correspondence between FIT- 
and MAXENT-derived impedance functions. A good 
agreement between them is immediately apparent in both 
amplitude and phase. The flat and smooth nature of the 
latter does not give rise to shifting problems as at site 1. The 
FFT-phase estimates appear to be consistent averages of a 
continuous (MAXENT) response curve. This however 
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Example sites 3 and 4 

The third example is used to emphasize some difficulties 
that can arise when the conventional method of smoothing 
the auto- and cross-spectral estimates, by band-averaging, is 
applied in cases of severe frequency local noise contamina- 
tion. The example is for decade 3 (0.1-1 Hz) data and was 
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Figure 4. Comparison between MAXENT and FFT response functions at example sites 3 and 4. Impedance values in mV km-' nT-'. (a) The 
modulus of the high-resolution (continuous line) and the discrete (FFT) impedance function (solid circles), at example site 3. No error 
estimates are shown. (b) The modulus and phase of the high-resolution (continuous line) and the discrete (FlT) impedance'function (stars) at 
example site 4. 
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recorded in a very high noise environment with directional 
(E-W) characteristics. The noise possessed two features; it 
comprised random, low amplitude spikes, and structured 
harmonic processes at the vicinity of 0.1, 0.32, 0.45 and 
0.7-0.85Hz. Such noise structure is very similar to that 
observed for the decade 3 data of site 1, the received spectra 
of which are displayed and discussed in Fig. 6. The modulus 
of the ZXy and Z,, elements of the impedance tensor are 
shown in Fig. 4(a). We present overlaid plots of the high 
resolution (MAXENT) and the FFT results. For the sake of 
clarity, error estimates and phase responses are not shown. 
The mutually consistent natue of the MAXENT and FFT 
results, for the adequately estimated Z,, element, can be 
observed. However, this is not the case for the ZYx element. 
The locations of the structured noise components are 
evident from the large amplitude spikes, indicated by 
arrows. In addition the averaged FFT spectra display 
considerable downward-bias due to the consistent nature of 
the spectral contamination; band averaging over closely 
spaced noise components allows the noise to dominate the 
data. The MAXENT spectrum does not, of course, avoid 
these complications. It can be seen that the low frequency 
response appears corrupted for both Z,, and ZYx 
components. We make this inference because we consider 
the steep gradient of the impedance to be unphysical, over 
such a narrow bandwidth. Except for this common feature, 
the rest of the ZX., component is a smooth and stable 
function of frequency. In the Z,, element, we observe that 
several portions of the bandwidth are left relatively 
unaffected by the structured noise components, and are 
therefore, marginally recoverable. High-resolution estima- 
tion allows a ‘frequency-localized recovery’ of the adequate 
data properties. 

Note that the above discussion is not meant to suggest 
that the Fm spectral technique is an unwarranted 
procedure to apply when ‘structured’ noise spectra are 
present. In all normal circumstances, and for most ‘noisy’ 
cases, the two techniques return consistent results, and we 
are prepared to accept that there may be cases where the 
FFT spectral procedure may be more stable. In order to 
reassert this point, at least for the harmonic noise problem, 
in Fig. 4(b) we present overlaid plots of the impedance 
functions returned by both spectral techniques for a 
different site, example site 4. The site apparently suffers 
from more extreme noise conditions than the first two 
examples, but both techniques return mutually consistent 
results. This indicates that it is the local combination of 
noise and data statistics that determines whether problems 
such as those described above will actually occur. This is 
somewhat unfortunate because no prior information about 
such interactions is possible and defines the degree of 
caution that must be exercised while analysing and 
interpreting data recqrded in intense noise regimes. 

Noise correlations (example sites 5 and 1) 

In the above presentation we have demonstrated the 
existence of structure in the impedance spectra and 
interpreted it as the result of structured noise interference. 
We have also acknowledged that part of this interference is 
due to the mains harmonic and subharmonic structure. In 

this section we investigate the causes of these effects by 
comparing the ‘received’ characteristics of our data. 

One basic question is how can subharmonic interference 
be produced, or, equivalently, what is the frequency 
divider(s) producing it? The explanations we can offer are 
limited to the level of our undersanding of the processes 
involved in the complex pattern of noise generation and 
propagation. However, we are in a position to present 
evidence corroborating subharmonic generation due to an 
unstable power distribution grid. Figs 5(a) and (b) show 
decade 1 (100-10 Hz) and decade 2 (10-1 Hz) data obtained 
at a fifth location (example site 5). The two components of 
the telluric field are presented. The data were recorded 
quite near to a power distribution substation. For these 
data, the instrumental (50Hz) notch was applied to the Ex 
component but not for the E ,  component. The enormous 
2.3 V km-’ sinusoid observed along the E-W direction (15,) 
is therefore the actual signal emitted by the grid. The N-S 
( E x )  component displays the effects of the application of the 
instrumental (50 Hz) notch filter, intended to counter this 
particular noise problem. In addition, the noise along both 
directions appears to be amplitude modulated. Fig. 5(c) 
displays the MAXENT spectra of an accumulation of 165 
data windows for both decades, in the E., and E, 
components. The spectrum of the fundamental mains 
harmonic can be seen to exist in two distinct modes, at 48.8 
and 51 Hz (E, component). These modes could possibly be 
interpreted as eigenfrequencies of an unstable mains grid, 
resulting from short-term variations of the fundamental. In 
turn, they can be used to explain most of the features 
observed in the decade 1 data, as they will provide a 
superposition of waves travelling with different relative 
frequencies. The asynchronous operation of motors can 
produce more sidebands and subharmonics of the mains 
emissions and may contribute towards this effect. The net 
result will be the emergence of a wavepacket displaying 
amplitude modulation as observed in the data, and the 
generation of the 98Hz harmonic, as well as a series of 
subharmonics. The n = 2 (25 Hz) subharmonic is clearly 
observable in the Ex spectrum, while both the n = 2  and 
n = 3  (12.5Hz) subharmonics are evident in the E, 
component (note the scale size). It must also be appreciated 
that the power associated with this subharmonic structure 
will be variable with time, and associated with the 
propagation properties of the wavepacket. Therefore, their 
effect can be underestimated in such a time-averaged 
spectrum. 

The emerging wavepacket appears to travel with a given 
group velocity on a carrier frequency with unstable 
characteristics. As a result, noisy power could leak into 
lower frequency bands, in the form of a wavepacket 
envelope. Such an effect can be observed in the 4-8Hz 
frequency range of Fig. 5(c). Recall that the Ex telluric 
component was recorded with the instrumental notch 
operational for both decades. The reduction of the power 
level at about 50Hz, causes considerable reduction of 
leakage into decade 2; hence the qualitative difference from 
the E, component, recorded with the notch ‘out’. An 
approximately 2 orders of magnitude difference in the power 
level is evident, while the shape of the spectrum approaches 
the theoretically expected one, displaying a minimum in this 
frequency range. The instability of the power distribution 
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Figure 5. Examples of mains-noise contaminated data near a probable source at example site 5: (a) Decade 1 data (100-10Hz). (b) Decade 2 
data (10-1 Hz). (c) The time averages of the E-field power spectral density functions (units (mV km-' nT) -'Hz-*) at example site 5.  
Bandwidth is from 1 to 100 Hz. Single channel MAXENT spectral analysis of 165 successive data windows for each decade. Data lengths of 
N = 150 and AR operator lengths of M = 30 were used throughout. 

grid appears to provide the frequency dividers required for 
subharmonic generation. 

Consider now the spectral line observed in the decade 2 E, 
telluric component, at 8.8 Hz (indicated by the arrow). This 
feature cannot belong to the fundamental Schumann 
resonance mode, because (a) it is too powerful, and (b) its 
Q factor is too high (>20). The Q factors of the Schumann 
resonances reflect the very low transmission coefficient of 
the ionosphere; they should in general be (8 (e.g. Bliokh el 
nf. 1980). We believe that this spectral line may be 
interpreted as an alias of the 48.8Hz mains mode. The 
folding of aliasing frequencies into lower frequency bands is 

given by the expression 

fa=  f -2mfN, 

with fN representing the Nyquist frequency. For decade 2 
data fN = 10 Hz and therefore the generation of the aliased 
component at 8.8Hz can be explained. Again it is 
interesting to observe the effect of the notch filter on the 
aliased power level of the E, telluric channel. The power of 
the 48.8Hz peak is reduced by almost 4 orders of 
magnitude. Accordingly, the aliased power level is 
drastically reduced. However, enough of it remains to fold 
back into decade 2 and form a low amplitude aliased 

m = 1 , 2 , .  . . 
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spectral component. This is important in that it offers the 
most probable explanation for 'Feature 1' observed in our 
earlier presentation of impedance functions. 

It is interesting to note that the results presented above in 
the form of observed spectra can very easily be simulated 
with a simple superposition of sinusoids at nominal 
frequencies of 49 and 51 Hz in additive noise. We have been 
able to reproduce several of the effects cited above. Having 
established the possibility of wide-band data contamination 
by narrow-band unstable noise processes, we proceed to 
examine their 'received' characteristics for site 1. Fig. 6 
shows the MAXENT spectra for the two telluric ( E x ,  E,) 
and magnetic (HI, H,) components for this site. We present 
3 decades of spectra for reasons that will become apparent 
later. Spectral levels at decade boundaries are necessarily 
discontinuous. In decade 1, we observe that the most 
prominent features are the spectral lines at 53 and 98Hz, 
and the consderable reduction in power level c 50 Hz caused 
by the instrumental notch. The former lines are again an 
effect of an unstable power distribution grid, for which the 
instrumental filter was no match. Apart from these two 
large-scale features no other directly identifiable noise effect 
is observed in the spectrum. The most interesting features 
can be seen in the spectral structure of the 7-40Hz 
frequency range. Here we observe a complement of the first 
6 Schumann resonance modes (typically 7.8, 14.0, 21.0, 
27.0, 33.5 and 39.5 Hz for modes n = 1-6). They are most 
clearly seen in the H, magnetic component. The Q factors 
associated with all these peaks are of the right order of 
magnitude (4); problems however are still abundant, 
especially in the telluric channels. For the n = 1 mode these 
materialize in the form of an aliased spectral component 
(indicated by up arrows), contaminating the 8-10 Hz 
bandwidth. For the higher order modes the situation is more 
complicated. It must be appreciated that at the level of 
attainable frequency resolution, subharmonic interference 
could easily be hidden in the resonant spectral peaks. For 
example, the 25 Hz subharmonic would easily be incorpor- 
ated to the n = 4 spectral structure. Likewise, the n = 2 
(14 Hz) resonance and the 12.5 Hz subharmonic occupy 
adjacent frequency locations and could readily merge. Thus, 
the power spectrum appears at first to be consistent. Closer 
inspection would reveal the existence of small differences in 
the location of spectral peaks, notably for the n = 2  
(indicated by broken vertical line) and higher ( n  = 5, 6) 
modes. Therefore, although individual spectral lines due to 
noise are not observed, we believe that it is their influence 
that causes the spectral inconsistency and the ripple in the 
phase of the response functions for this frequency range. 

The lower frequencies in Fig. 6 display a stable spectral 
structure throughout the whole 0.1-8 Hz frequency range. 
Here we observe some similarities in the location of some 
spectral features for the decade 2 and 3 spectra; the 
numbered arrows indicate peaks that appear to be located in 
frequency multiples of 10 with respect to each other. We 
cannot account for the existence of these frequency 
multipliers (or dividers). Spectral peaks that appear 
consistent over the four data channels are indicated by down 
arrows. An appreciable amount of power appears to exist in 
the 3-7Hz range, particularly in the Ex and Hy channels. 
Most of the features observed are unaccounted for by 
theory. We are inclined to label them as man-made 
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Figure 6. Three decades of the time-averaged power spectral 
density functions of the four horizontal components of the EM field, 
at example site 1. Bandwidth is from 0.1 to 100Hz. Units for E 
fields are (mV km-' nT)-2 & - I .  Units for H fields are (nT)' Hz-'. 
Single channel MAXENT spectral analysis of 165 data windows 
(decades 1 and 2) and 100 data windows (decade 3). Data lengths of 
N = 150 and AR operator lengths of M = 30 were used throughout. 

interference, and we believe that enough coherent 
contributions may pass the established acceptance tests and 
produce the kind of distortions we observe. 

Discussion of results 

From the results presented, it appears that data adaptive 
spectral estimation techniques such as MAXENT when 
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interaction with the mains harmonics and its associated 
spectral structure. We note here that a minimum-phase 
wavelet can be extracted by MAXENT for these com- 
ponents. The parallel filter rule again demands that the 
poles and zeros of the dominant filter dictate the behaviour 
of the system. Therefore, upon frequency transformation, 
the local integration contour is deformed so as to include the 
poles of the power distribution grid system. The resulting 
impedance movement may be minimum for the combined 
system, albeit spurious and unphysical. 

Similar arguments can be used to explain noise 
contamination in all parts of the spectrum. In such cases, the 
derivatives and spectral moments of the system, mainly the 
variance and second derivative of Z(o), become important 
as they describe its behaviour. The information conveyed in 
these functions is valuable when frequency variations are 
very rapid. In our presentation of sites 1 and 2 no 
low-frequency decade 3 (1-0.1 Hz) and decade 4 (0.1- 
0.01Hz) response functions have been shown. Decade 4 
data were not collected for these sites, and decade 3 results 
simply do not ex&; the noise sources have been formidable 
for both FIT- and MAXENT-based analyses. The 
MAXENT procedure however has a further advantage in 
that it can handle short data lengths without significant loss 
of stability in the spectral estimates (e.g. Beamish & Tzanis 
1986; Tzanis & Beamish 1987). For the data in question, the 
duration of the noise sources (0.1-1 Hz) was less than the 
time interval of individual data windows. An attractive way 
to circumvent such noise problems, therefore, would appear 
to be the processing of short time windows. Our data were 
divided so that each N = 150 window provided three N = 50 

applied to EM data produce response functions with 
properties which are highly localized in frequency. The high 
resolution affordable by these techniques may be used to 
improve our insight into some of the processes involving the 
signal and noise interactions, enabling a better understand- 
ing of their behaviour. When the data are contaminated by 
narrow-band interference, the high resolution afforded by 
MAXENT appears to enable the extraction of undistorted 
portions of the bandwidth. Instrumentation cannot always 
cope with the challenges presented by noise and the 
requirements of smoothing may integrate very uncomforting 
spectral contributions. 

In terms of the contaminated impedance polynomial the 
main problems encountered were due to structured 
processes, superimposed on that due to passive natural 
induction, for which a polynomial representation can always 
be constructed. The piecewise distortion of the response 
curve results from its multiple convolutions with such noise 
components. Feature 1 (8-10 Hz) provides an excellent 
example of such an interaction. It is well known that 
analogue bandpass filters (in this case 8-pole Buttenvorth), 
have a maximum-delay phase response. The aliased 
components, with power at least equivalent to that of the 
data, provide an additional destabilizing agent in the 
near-Nyquist band. The parallel filter rule then demands 
that the resulting 'noise' wavelet be of maximum-phase. The 
same rule requires that its convolution with the Earth 
response be at least of mixed-phase. The abrupt departure 
of the observed phase from its prescribed smooth minimum 
movement is a clear manifestation of this effect. A rapid 
amplitude and phase movement is observed in the data 
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Figure 7. The high-resolution impedance function for three decades of data at example site 1. Impedance in units of mV km-' nT-'. Decade 1 
(100-10 Hz) response is the same as in Fig. 2(b). Decade 2 (10-1 Hz) and decade 3 (1-0.1 Hz) responses are recalculated from reduced length 
(N = 50) data windows, with an AR operator of order M = 6. 
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reduced length windows. The sample space, increased by 
threefold, was then subjected to MAXENT spectral analysis 
with an AR filter of order 6. The procedure was repeated 
for decade 2 as well, and the results for site 1 are shown in 
Fig. 7. One can immediately see a significant improvement 
in the estimation of decade 2, particularly the 1-3 Hz band 
when compared with Fig. 2(a). The decade 3 response is at 
last estimated but displays extremely unstable characteris- 
tics, with the noise obviously more intense in the ZYx 
component. 

5 SMOOTHING A HIGH-RESOLUTION 
RESPONSE FUNCTION 

The three-decade response of Fig. 7 provides a good 
example of an impedance function displaying rapid 
frequency variation and therefore its alternative description 
as a high-order polynomial can be acknowledged. 

All the piecewise-discontinous portions imply an unphysi- 
cal response. They do, however, contain some very 
important information; they tell us exactly how the 
contaminated response function behaves locally. Conven- 
tional analysis, by discretizing the observed impedance 
function, discards all such information. As a natural 
consequence, if smoothing of the response function is 
attempted, it will have to rely on curve fitting of the data 
with some numerical polynomial interpolation technique, as 
in Hobbs (1982) and others. This is, at least theoretically, 
unwarranted because these methods will fit to a polynomial 
approximation to the data, thus imposing on it structure 
with no a priori information. Parker (1983) objects to the 
use of conventional polynomial interpolations, arguing that 
they are inconsistent with the conditions for the existence of 
1D conductivity distriutions (i.e. Weidelt's (1972) inequality 
constraints). This is quite a strong point, because the 
interpolating polynomial may not possess the necessary 
analytical properties, thereby violating causality. This point 
is also raised by Claerbout (1976, p. 62) who, however, 
admits that in many practical situations such approximations 
can be inconsequential. The only theoretically valid 
interpolations, are those that involve the formal expressions 
for the polynomial Earth response (e.g. Khachay 1978; 
Parker & Whaler 1981). The methods of the above authors 
are guaranteed to succeed, but require some computational 
effort, especially in the case of a highly resolved response 
function. We agree that a smoothing procedure should not 
violate causality. Therefore, we feel that it is important to 
use the information contained in the observed response in 
order to improve our estimation without imposing some 
kind of structure. This information can, in general, be 
extracted from a complete sounding curve and its 
derivatives. 

Consider the function 

W > O  G: w < o  
F(w)  = u(w)aW, u ( 0 )  = 

for real w .  The observed function Z ( w )  can be convolved 
with F(w)  to obtain 

N 
S ( w )  = ( 2 4 - I  2 Z(w + w,)F(w,). 

"=l 

This frequency domain convolution is permissible because 
F(w)  is analytic over the entire real w-axis; Z ( w )  is analytic 
over the real w-axis, and by the Cauchy-Goursat theorem 
its derivatives are likewise analytic and defined over the 
entire real w-axis. Equation (6) defines a weighted moving 
summation over the real axis of the w-plane; in contrast to 
conventional averaging techniques, it defines a quasi- 
continuous operation, adaptive to the constantly varying 
frequency characteristics of Z ( w ) .  The convolution (6) 
exhibits several useful properties. Take for instance the 
integral form 

W N  

s = (2n)-'lw, Z ( w ) a " d o .  (7) 

With the condition that Z ( " + ' ) ( w )  = 0, it can be shown that 
(7) reduces to the finite series expansion 

in terms of the derivatives Z$"(w) of the tensor elements 
Zi j (w) .  The value of S is evaluated on wo, i.e. (7) is simply 
an integral form of a single step of the complete convolution 
operation (6), and comprises the output at a single 
frequency wo. Therefore, the value of S, S(w,) can be 
thought of as the prediction of Z(w,) ,  given a value of a.  It 
follows that we are interested in the particular value that 
minimizes the error variable X(w,) = Z (  wo) - S( wo).  This is 
a 'filtering' problem, with an easy solution, since there exists 
only one variable ( a )  in the 'filter' sequence ao. 

Another useful property of (6) becomes apparent when 
we consider the properties of F ( w )  in the time domain. For 
the case 0 < u < 1, (6) corresponds to a multiplication of the 
impulse response with a time function of the form 

2$(t) = [Ilna/ - (-it)] . [IIn a12 + t2]- '  (9) 

the inverse Fourier transform of F(w) .  The factor (-it) is 
the Fourier frequency differentiation operator. The 
numerator of (9) will damp Z ( w )  by a factor [In a [  while the 
negative sign ensures that the phase remains unchanged 
during differentation. Note that the derivative of a 
polynomial is a polynomial of a lesser degree, i.e. a 
smoother function. More importantly however, the factor 
(llns1* + t2)  in the denominator of (9) damps the trailing 
coefficients of the impulse response, thus forcing on it a 
minimum-delay property. Large trailing coefficients are 
responsible for non-minimum phase variations since their 
magnitude is related to the effects of maximally dispersed 
(non-causal) processes. Thus (9) produces a combination of 
differentiation and weighting that both lead to a smoother 
function. From the above it can be seen that we are 
essentially dealing with a time domain process; the crucial- 
weighting function in (9) is left to the time variable t. 

The frequency domain convolution (6), as it stands, is a 
very ineffective operation; w may vary within ranges of 
several decades, so that a needs to be different for various 
frequency bands (i.e. a > l  if w <  1, and a < l  if w > l ) .  
Therefore it cannot be applied easily, and certainly not for 
values of w near unity. The problem is overcome if we 
transform (6) to the discrete form 

N 

si = (2n)-' c. Zi+F, 
j= l  
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variance of the resulting response function, particularly in 
decades 2 and 3. The net effect can easily be perceived as a 
random process superimposed on the true impedance and 
additional systematic perturbations, e.g. Feature 1. The 
gaps in the components of the sounding curves near 50Hz 
correspond to frequency estimates that did not pass the 
acceptance criteria. Fig. 8(b) shows the impedance function 
recovered after only 1 iteration with a = 0.87. Apart from the 
overall improvement, other detailed effects include the 
recovery of the response mismatch near the decade 3 and 2 
Nyquists (0.1 and 1 Hz, respectively) and a partial, although 
not completely satisfactory, reduction of the magnitude of 
Feature 1 in the phase response. It appears that the 
technique is also an effective interpolator. Note however 

with 5 = d, j = 1 , 2 , 3 .  . . Then, the condition a < 1 ensures 
that the weight series will decay fairly rapidly, so that only 
local frequency estimates will be included in the summation. 
The smoothing operation as applied through (10) becomes 
universal and can be used to process wide-band as well as 
narrow-band response functions. The optimum value of a 
will lie in a quite narrow range and will be data (noise) 
dependent; in our experience it is approximately bounded as 
0.82 < a < 0.94. 

An example of the technique applied to noisy field data is 
now given. Fig. 8(a) shows 3 decades of the unrotated 
off-diagonal tensor elements recorded in an intense noise 
environment (example site 6). Here, the effects of closely 
spaced noise sources are clearly observed in the extreme 
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Figure 8. The high-resolution impedance function for three decades of data at example site 6. Impedance in units of mV km-' nT-'. (a) The 
unstable impedance function due to intense noise. (b) The same impedance function after frequency domain smoothing (one iteration). 
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that if long gaps exist within the data, the technique cannot 
readily cope (e.g. the 50Hz feature in the ZYx element). 
Likewise, if large-scale inconsistencies exist in the data, the 
technique should be applied with caution. 

The results for site 1 are presented in Fig. 9(a). In this 
case, the extremely unstable nature of the observed decade 
3 function demands a separate initial treatment. This was 
done with an optimum weight of a = 0.93. Subsequently, the 
3 decades were treated as a whole, and the result shown is 
after 1 iteration, with a = 0.86. In this case as well, the 
smoothing process is unable t o  totally remove Feature 1, 
although the reduction of its magnitude is quite dramatic. 
The 1-3 Hz determination of the decade 2 response appears 
to have improved. Note however that the reliable recovery 
of the decade 3 amplitude response over the 0.1-0.4Hz 
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bandwidth is questionable. With no a priori information 
about the Earth structure and in the absence of lower 
frequency impedance determinations, it is impossible to say 
whether the 'smoothed' function is physical o r  not, the local 
steep gradients contradict the intuitively smooth nature of a 
low degree polynomial response. The same is probably true 
for the 1-3 Hz decade 2 estimates as well. What is important 
here, however, is that the recovered phase appears to  be 
more reliable for parts of the bandwidth at least. In Fig. 
9(b) we present the phase 'cleaned' from the residual 
perturbations and 'conspicuous' bands. If one decides to 
make use of decade 3 information, the remaining phase 
estimates will provide enough constraints for inversion and 
modelling. 

In view of the foregoing discussion, we note that in cases 
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Figure 9. The high-resolution impedance function for 3 decades of data at example site 1 ,  with frequency domain smoothing. Impedance in 
units of m V  km-' nT. (a) The smoothed impedance function of Fig. 7 .  (b) The phase of the smoothed impedance function of h g .  9(a), with 
the remaining unstable and/or conspicuous spectral segments removed. 
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acquisition systems. When time is not a critical factor, 
however, and the data appear conspicuous, the implementa- 
tion of such techniques may assist in the solution of several 
problems associated with response function estimation. 

A final comment concerns the effects of the variation of 
the order (M) of the autoregressive (AR) process fitted to 
the data. We have consistently used standard lengths of 
M = 10 and M = 6 for data lengths of N = 150 and N = 50, 
respectively, and one may argue that these may not be 
optimum for all the data subsets. Although the problem of 
the optimum predictor length is an important and 
long-standing one in the statistical literature, varying M has 
no large-scale effects on response function estimation which 
is concerned with spectral ratios. We have found that any 
length of the order of 10 per cent of the data but not less 
than 5 per cent will produce comparable results. 
Empirically a lower limit of M follows from our discussion 
of the polynomial representation of Z ( w ) .  We therefore 
suggest that for a given data bandwidth the lowest AR order 
sufficient to resolve Z ( w )  is at least equal to the degree of 
Z ( 0 ) .  

of severe noise contamination, we may be content with the 
recovery of either a smooth amplitude or phase response 
function, that the combination of the high-resolution 
estimation and the adaptive smoothing technique facilitates. 
Either quantity will invert satisfactorily if it is reliable, and 
also it is always possible to reconstruct the amplitude of 
Z ( w )  (or the apparent resistivity) from its phase and vice 
versa, for they constitute Hilbert transforms of each other. 
This is a consequence of the causality requirement, 
mathematically expressed with the Krammers-Kronig 
dispersion relations (e.g. Weidelt 1972; Fischer & Schnegg 
1980). Weidelt (1972) gives a method for the recovery of the 
phase from the resistivity. A very interesting algorithm for 
the calculation of an unbiased (and also non-statically 
shifted) amplitude response from a smooth phase response 
is given in Clay & Hinich (1981), following the analysis of 
Boehl & Bostick (1977). In their treatment, resolution plays 
an important role since the numerical stability of the 
procedure depends on it. 

6 CONCLUSION 

In our introduction of the concept of frequency resolution in 
relation to MT data analysis, we have been primarily 
concerned with the study and understanding of contamin- 
ated AMT observations. Highly resolved impedance 
functions display detailed properties as a function of 
frequency. Thus, comparisons of spectral features facilitate 
the correlation of noise effects, not only for single site 
impedance determinations but for regionally collected data 
as well. These comparisons are at least as difficult with the 
conventional FIT-based spectral approach. As we have 
shown, there may exist situations for which the subtle 
low-intensity noise sources may prove to be more insidious 
than intense, directly identifiable (and removable in most 
cases) interference. We believe that such comparisons 
provide a valuable interpretational aid because, despite 
being subjective and difficult to quantify, they enable a 
detailed view of the data quality and what is to be expected 
of it. 

We have also made use of the mathematical properties of 
a contaminated polynomial Earth response function in order 
to study a technique that will smooth its perturbations. The 
reasoning we follow stems from the fact that passive EM 
induction is a continuous process, and arbitrary frequency 
discretization may sometimes impose conflicting influences 
on a response function and therefore much of the 
information it contains may be lost. We have tried to 
manipulate this information to our advantage with, we 
believe, some success. Moreover, in our example for decade 
3 of site 1, we have used the short data handling capacity of 
MAXENT in association with its resolution capacity to 
extract stable determinations of portions of the impedance 
function. We believe that such a facility is very important 
and must be taken into consideration when processing 
heavily distorted data. 

Note, however, in view of the above discussion, that we 
do not advocate that high-resolution estimation should 
become standard in EM data analysis. The spectral 
techniques associated with high-resolution require con- 
siderable computatonal effort that limits their in-field 
processing capacity for most existing (high frequency) data 
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