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Abstract
On the assumption of causality, it is shown that for general (three-dimensional) conduc-

tivity distributions integrable over any cuboid region of the Earth, the magnetotelluric field
possesses very restrictive analytic properties: the singularities of the electric and magnetic
field components are all simple zeros confined on the positive imaginary axis of the complex
frequency plane. This means that transfer functions comprising simple ratios of orthogonal
electric and magnetic field components should also have simple poles and zeros located
on the positive imaginary axis. Three-dimensional impedance tensors can be reduced to
diagonal or anti-diagonal forms with elements comprising simple ratios of orthogonal field
components, using such methods, as the Canonical Decomposition or the SVD, which can
be shown to constitute 3-D rotations. Then, it can be shown that the Schmucker Response
function derived from the characteristic (singular) values of the impedance tensor can be
cast into a simple Cauer form (expansion), completely analogous to the one derived for
one-dimensional Earth structures by Parker [3]. This Cauer representation epitomizes the
properties of the magnetotelluric responses, which are a direct consequence of its sensu
stricto causality.

1 Introduction

Natural EM fields at ELF and ULF frequencies are very weak and notoriously susceptible to distortion
by noise of various denominations. Consequently, an important question arising in the interpretation
of magnetotelluric (MT) field data is that of the existence of solutions to the inverse problem. For a 1-
D conductivity structure the Schmucker [1] response function c(ω) = Ex(ω)/iωµ0H(ω) = Z(ω)/iωµ0

has simple zeros located on the positive imaginary frequency axis and admits the Cauer [2] represen-
tation [3].

c(ω) = b(0) +
∞∫
0

(
1 − iωλ

λ+ iω

)
db(λ), b(λ) > 0, b(0), > 0 . (1)

Parker [3] has shown that for an observed response function, compliance with the Cauer representa-
tion is a necessary and sufficient condition for the existence of 1-D data. Herein I will investigate the
extension of the specific form (1) to responses obtained over 3-D geoelectric structures. Furthermore,
in a follow up paper I will attempt to show how this formulation can be used to address the problem
of existence of a realizable geoelectric structure from measured (incomplete and inconsistent) MT
observations.

∗Department of Geophysics and Geothermy, University of Athens, Panepistimiopoli, Zografou 157 84,
Greece; e-mail: atzanis@geol.uoa.gr

251



252 On the Existence of Physically Valid Magnetotelluric Data, Pt. I

2 Analytic structure of the magnetotelluric field in the complex
ω-plane

The source-free diffusion of the EM field in the quasi-static approximation can be described by the
frequency domain Maxwell’s equations, from which the simultaneous vector differential equations are
readily derived

∇2E = iωµ0σE and ∇2H + σ−1 [(∇× H) ×∇σ)] = iωµ0σH (2)

In shorthand matrix operational form one can write σ−1 (∇× H)×∇σ = σ−1∆hH = ∆σE, and
upon letting F = [E H]T , equations (2) can be recast into the equivalent compact form,

∇2F +

[
0 0
0 σ−1∆h

]
F = iωµ0σF (3)

where 0 is a 3×3 null matrix. Denoting by x±∞ and y±∞ horizontal dimensions large with respect to
the wavelength, it is possible to represent the 3-D conducting crust as a cuboid R = (x−∞,x+∞) ×
(y−∞,y+∞) × (0,hmax). For hmax, either a radiation boundary condition may be assumed (i.e. F→0
as z → ∞), or a perfect conductor may be placed at some great depth, so as to absorb all the energy
incident from above and below. Note also that if homogeneous Neumann boundary conditions are
applied at the surface, then a provision must be made for a possible discontinuity of H at z=0, in
cases of simple (e.g. layered) conductivity distribution functions, hence, R is assumed to be open
at z=0. The scalar conductivity distribution function σ is real and positive and therefore integrable
over any cuboid V = [x1,x2] × [y1,y2] × [z1,z2] ⊆ R − hmax, in the sense

Σ =
∫ x2

x1

dx

∫ y2

y1

dy

∫ z2

z1

σdz =
∫ y2

y1

dy

∫ z2

z1

dz

∫ x2

x1

σdx =
∫ z2

z1

dz

∫ x2

x1

dx

∫ y2

y1

σdy > 0,

meaning that the conductance of any given volume should be independent of how one chooses to
integrate.

Location of singularities: In general, (2) cannot be solved for arbitrary σ. However, the mere
objective of the present analysis is to establish the analytic properties of the MT response functions;
this does not require the knowledge of the exact analytic form of the solution, so long as a solution
exists. Postulating that a solution always exists for a realisable σ, The location of the singularities can
be derived with simple, physical rather than mathematical arguments: Irrespective of the boundary
conditions and exact conductivity distribution, in the absence of sources or sinks within a finite crustal
volume V , if the electromagnetic energy flux entering and exciting the volume is finite, then E and
H must be finite and exhibit finite and positive energy dissipation. Writing∫

V
J∗ · Edv =

∫
V
σE∗ · Edv =

∫
V

E · (∇× H∗) dv

and using the vector identity ∇·(E×H∗) = H∗·(∇×E)-E·(∇×H∗) and Faraday’s law, one obtains∫
V
σE∗ · Edv + iω

∫
V
µ0H∗ · Hdv = −

∫
V
∇ · (E × H∗)dv.

This is an energy conservation statement saying that the work done by the electric field plus the rate
of the energy stored in the magnetic field within V is equal to the negative of the energy flowing out
through the boundary surfaces. It follows immediately that E and H (hence F) cannot have poles
anywhere in the four-dimensional domain {x,y,z,ω}, hence in the complex ω-plane. However, they
may have zeros. Consequently, the measure of the singularities of E and H will always add up to
zero, and they can be defined as functions continuous almost everywhere and Lebesgue integrable
over any V . Moreover, it is apparent that there are no zeros of E and H unless ω is on the positive
imaginary axis, since it is there and only there where the LHS may vanish.
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Multiplicity of zeros: In the following, use will be made of the shorthand notation ∂x = ∂/∂x,
∂xx = ∂2/∂x2, ∂xy = ∂2/∂x∂y etc. On the positive imaginary axis set ω=iλ, λ>0. The multiplicity
of the zeros depends on the behaviour of the derivative ∂F(iλ)/∂λ denoted by ∂λF(iλ). Specifically,
the zeros will be simple if ∂F(iλ)/∂λ �= 0. Consider equation (5b) which, on the positive imaginary
axis becomes:

∇2F(iλ) +

[
0 0
0 σ−1∆h

]
F(iλ) = −λµ0σF(iλ) ⇔ ∇2F(iλ) + ℵF(iλ) = −λµ0σF(iλ) (4)

Right multiply (4) by ∂λF′(iλ), where the prime denotes the transposed but not conjugated
vector. Differentiate the transpose of (4) with respect to λ and right multiply with F(iλ). Integrate
the difference over [z1, z2] and integrate the second vertical derivative term by parts to obtain

∂λF′(iλ) · ∂zF(iλ)|z2
z1

− ∂zλF′(iλ) · F(iλ)|z2
z1

=
∫ z2
z1
µ0σF′(iλ) · F(iλ)dz−(∫ z2

z1
[∂λF′(iλ)∂xxF(iλ) − ∂xxλF′(iλ)F(iλ)] + [∂λF′(iλ)∂yyF(iλ) − ∂yyλF′(iλ)F(iλ)]dz

) (5)

Equation (5) holds for all x and y, so that when ω=iλn is the nth zero of F(x0,y0,z2,iλ),

∂λF′(z2, iλn)∂zF(z2, iλn) =

∣∣∣∣∣ ∂λF′(z1, iλn) F(z1, iλn)
∂zλF′(z1, iλn) ∂zF(z1, iλn)

∣∣∣∣∣+ ∫ z2
z1
µ0σF′(iλn) · F(iλn)dz

−
(∫ z2

z1
[∂λF′(iλn)∂xxF(iλn) − ∂xxλF′(iλn)F(iλn)] + [∂λF′(iλn)∂yyF(iλn) − ∂yyλF′(iλn)F(iλn)]dz

)
(6)

It is straightforward to verify that the integral terms in the RHS of (6) are non-zero and more-
over, ∂zλF(x0,y0,z1,iλn) �= ∂λF(x0,y0,z1,iλn) �= ∂zF(x0,y0,z1,iλn) �= F(x0,y0,z1,iλn). Therefore,
∂λF(x0,y0,z2,iλn) �= 0. Likewise, for the mth zero F(x0,y0,z1, iλm), it can be shown that
∂λF(x0,y0,z1,iλm) �= 0. Although it should be noted that terms evaluated at z1 may need to be
appropriately adjusted when boundary conditions at the surface are taken into consideration (z1=0),
the result still shows that all the zeros are simple.

3 Cauer representation of the magnetotelluric response

The analytic structure of the MT field implies that (scalar) impedance functions comprising simple
ratios of electric and magnetic field components will have simple poles and zeros, and, therefore a
simple(r) analytic representation. On the other hand, a 3-D impedance tensor is generally obtained
from a linear superposition of fields induced by different source polarizations. For example, in MT
modelling it is customary to consider two linearly independent polarizations of the source field with
outcome E(k)

x , E
(k)
y , H

(k)
x , H

(k)
y , k =1,2, so that the tensor elements Zxx and Zxy can be computed

from the equations E(k)
x = ZxxH

(k)
x + ZxyH

(k)
y , k = 1, 2 and similarly for Zyx and Zyy. In this

case, while the singularities of the impedance tensor elements will remain on the upper half frequency
plane, (the function remains causal), it is unknown whether their location will still remain on the
positive imaginary axis. This problem can be circumnavigated by considering the principal com-
ponents (characteristic states) of the impedance tensor, obtained by diagonalizing it with isometric
transformations.

Tensor decomposition methods such as the Singular Value Decomposition [4] and the Canonical
Decomposition [6] reduce the impedance tensor to the form

Z = UE(ΘE ,ΦE) ·
[
µ1 0
0 µ2

]
· U+

H(ΘH ,ΦH) (7)
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where UE and UH are unitary, of the form

U(Θ,Φ) =

[
cos Θ cos Φ − i sin Θ sin Φ − cos Θ sin Φ + i sinΘ cos Φ
cos Θ sin Φ + i sin Θ cos Φ cos Θ cos Φ + i sinΘ sin Φ

]

Respectively, (ΦE , ΦH) are the (not necessarily perpendicular) azimuths of the electric and magnetic
field, (ΘE , ΘH) the ellipticities of the magnetic and electric field and (µ1, µ2) the true characteristic
values of the impedance tensor. It can easily be shown, but will not be attempted herein, that (7) is a
proper Euler rotation in three dimensions. At any location {x0, y0, 0} on the surface, the impedance
tensor can be re-written as

U+
EZ = MU+

H ⇒
[
E1(ΘE ,ΦE)
E2(−ΘE ,ΦE + π

2

]
=

[
µ1 0
0 µ2

]
·
[
H1(ΘH ,ΦH)
H2(−ΘH ,ΦH + π

2

]
⇒M=

[
E1/H1 0
0 E2/H2

]

with {E1(ΘE , ΦE), H1(ΘH , ΦH)} comprising the maximum characteristic state and {E2(ΘE ,
ΦE + π/2), H2(ΘH , ΦH + π/2)} the minimum state of the electromagnetic field. Therefore, the
maximum and minimum characteristic values are simple ratios of the maximum and minimum state
fields respectively; in consequence, their singularities should be simple and confined on the positive
imaginary axis!

Herein, for reasons of continuity with previous treatments of the same problem for layered struc-
tures [3, 6, 7], use will be made of a generalised Schmucker [1] response function, of the form
c(ω) = M/iωµ0 which represents the apparent skin depth to non-uniform diffusion waves propagating
vertically. Because the impedance tensor, hence its characteristic values and c(ω) are positive real,
(sensu stricto causal), and because the singularities of c(ω) are confined on the positive imaginary
frequency axis, the Cauer representation assumes the form

c(ω) =

[
b1(0) 0
0 b2(0)

]
− iω

[
b1(1) 0
0 b2(1)

]
+

+∞∫
−∞

1 − iωλ

λ+ iω

[
db1(λ) 0
0 db2(λ)

]

= b(0) − iωb(1) +
∞∫

−∞

1 − iωλ

λ+ iω
db(λ) (8)

where the integral should be read in the Lebesgue - Stieltjes sense and b(λ), b(0), b(1) are real and
positive. Due to the location and simplicity of the singularities, b(λ) varies with jumps corresponding
to the poles of c(ω) with positive residues. With arguments identical to those of Parker [3], we may
deduce that: (1) The lower limit of the integral can be made, zero, i.e. iω ∈[0, ∞), because unless
b(λ) is constant for λ<0, so that the integral over (-∞, 0] vanishes, then c(ω) would not have a
positive real part in the lower half-plane. (2) For large ω the integral diminishes - it is O(|ω−1|) -
and unless b(1) vanishes, c(ω) will increase without limit, which is absurd. Thus, (8) reduces to

c(ω) = b(0) +
∞∫
0

1 − iωλ

λ+ iω
db(λ) (9)

Equation (9) is mutatis mutandis equivalent to the form (1) and it completely describes the analytic
properties of the characteristic states of a 3-D magnetotelluric response function; together with (ΦE ,
ΦH) and (ΘE , ΘH) they completely describe the propagation of the MT field in the Earth and the
impedance tensor.
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4 Conclusion

It was shown that for general (3-D) conductivity distributions, the characteristic (singular) values
of the impedance tensor can be cast into a simple Cauer form (expansion), completely analogous
to the representation derived for 1-D Earth structures by Parker [3]. This striking similarity in the
properties of the 1-D and 3-D responses is a direct consequence of the sensu stricto causality of an
impedance function, which prescribes the nature (zeros), location and multiplicity of the singularities
of the magnetotelluric field. Moreover, the Cauer representation suggests a means of addressing the
problem of existence of realizable geoelectric structures from measured (incomplete and noisy) MT
observations. This involves a practical means of testing the compliance of measured MT data to the
Cauer for (9) and will be discussed in a sequel paper (Part II).
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