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The Ground Probing Radar (GPR) has become a valuable means of exploring thin and shallow structures
for geological, geotechnical, engineering, environmental, archaeological and other work. GPR images usually
contain geometric (orientation/dip-dependent) information from point scatterers (e.g. diffraction hyperbolae),
dipping reflectors (geological bedding, structural interfaces, cracks, fractures and joints) and other conceivable
structural configurations. In geological, geotechnical and engineering applications, one of the most significant
objectives is the detection of fractures, inclined interfaces and empty or filled cavities frequently associated with
jointing/faulting. These types of target, especially fractures, are usually not good reflectors and are spatially
localized. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR
method is notoriously susceptible to noise. Quite frequently, extraneous (natural or anthropogenic) interference
and systemic noise swamp the data with unusable information that obscures, or even conceals the reflections from
such targets. In many cases, the noise has definite directional characteristics (e.g. clutter). Raw GPR data require
post-acquisition processing, as they usually provide only approximate target shapes and distances (depths).

The purpose of this paper is to investigate the Curvelet Transform (CT) as a means of S/N enhancement
and information retrieval from 2-D GPR sections (B-scans), with particular emphasis placed on the problem of
recovering features associated with specific temporal or spatial scales and geometry (orientation/dip).

The CT is a multiscale and multidirectional expansion that formulates a sparse representation of the input
data set (Candès and Donoho, 2003a, 2003b, 2004; Candés et al., 2006). A signal representation is sparse when
it describes the signal as a superposition of a small number of components. What makes the CT appropriate
for processing GPR data is its capability to describe wavefronts. The roots of the CT are traced to the field of
Harmonic Analysis, where curvelets were introduced as expansions for asymptotic solutions of wave equations
(Smith, 1998; Candès, 1999). In consequence, curvelets can be viewed as primitive and prototype waveforms –
they are local in both space and spatial frequency and correspond to a partitioning of the 2D Fourier plane by
highly anisotropic elements (for the high frequencies) that obey the parabolic scaling principle, that their width is
proportional to the square of their length (Smith, 1998).

The GPR data essentially comprise recordings of the amplitudes of transient waves generated and recorded
by source and receiver antennae, with each source/receiver pair generating a data trace that is a function of
time. An ensemble of traces collected sequentially along a scan line, i.e. a GPR section or B-scan, provides
a spatio-temporal sampling of the wavefield which contains different arrivals that correspond to different
interactions with wave scatterers (inhomogeneities) in the subsurface. All these arrivals represent wavefronts that
are relatively smooth in their longitudinal direction and oscillatory in their transverse direction. The connection
between Harmonic Analysis and curvelets has resulted in important nonlinear approximations of functions
with intermittent regularity (Candès and Donoho, 2004). Such functions are assumed to be piecewise smooth
with singularities, i.e. regions where the derivative diverges. In the subsurface, these singularities correspond to
geological inhomogeneities, at the boundaries of which waves reflect. In GPR data, these singularities correspond
to wavefronts. Owing to their anisotropic shape, curvelets are well adapted to detect wavefronts at different angles
and scales because aligned curvelets of a given scale, locally correlate with wavefronts of the same scale.
The CT can also be viewed as a higher dimensional extension of the wavelet transform: whereas discrete wavelets
are designed to provide sparse representations of functions with point singularities, curvelets are designed to
provide sparse representations of functions with singularities on curves.

This work investigates the utility of the CT in processing noisy GPR data from geotechnical and archaeo-



metric surveys. The analysis has been performed with the Fast Discrete CT (FDCT – Candès et al., 2006) available
from http://www.curvelet.org/ and adapted for use by the matGPR software (Tzanis, 2010). The adaptation
comprises a set of driver functions that compute and display the curvelet decomposition of the input GPR section
and then allow for the interactive exclusion/inclusion of data (wavefront) components at different scales and
angles by cancelation/restoration of the corresponding curvelet coefficients. In this way it is possible to selectively
reconstruct the data so as to abstract/retain information of given scales and orientations.

It is demonstrated that the CT can be used to: (a) Enhance the S/N ratio by cancelling directional noise
wavefronts of any angle of emergence, with particular reference to clutter. (b) Extract geometric information for
further scrutiny, e.g. distinguish signals from small and large aperture fractures, faults, bedding etc. (c) Investigate
the characteristics of signal propagation (hence material properties), albeit indirectly. This is possible because
signal attenuation and temporal localization are closely associated, so that scale and spatio-temporal localization
are also closely related. Thus, interfaces embedded in low attenuation domains will tend to produce sharp
reflections rich in high frequencies and fine-scale localization. Conversely, interfaces in high attenuation domains
will tend to produce dull reflections rich in low frequencies and broad localization.

At a single scale and with respect to points (a) and (b) above, the results of the CT processor are compara-
ble to those of the tuneable directional wavelet filtering scheme proposed by Tzanis (2013). With respect to point
(c), the tuneable directional filtering appears to be more suitable in isolating and extracting information at the
lower frequency – broader scale range.
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piecewise Ĉ2 singularities. Comm. Pure Appl. Math., 57, 219-266.
Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2006. Fast discrete curvelet transforms (FDCT). Multiscale
Modeling and Simulation, 5, 861–899.
Smith, H. F., 1998. A Hardy space for Fourier integral operators. Journal of Geometric Analysis, 7, 629 – 653.
Tzanis, A., 2010. matGPR Release 2: A freeware MATLAB® package for the analysis & interpretation of
common and single offset GPR data. FastTimes, 15 (1), 17 – 43.
Tzanis, A, 2013. Detection and extraction of orientation-and-scale-dependent information from two-
dimensional GPR data with tuneable directional wavelet filters. Journal of Applied Geophysics, 89, 48-67.
DOI: 10.1016/j.jappgeo.2012.11.007



THE CURVELET TRANSFORM IN THE ANALYSIS OF 2THE CURVELET TRANSFORM IN THE ANALYSIS OF 2--D GPR DATA: D GPR DATA: 
SIGNAL ENHANCEMENT AND EXTRACTION OF ORIENTATIONSIGNAL ENHANCEMENT AND EXTRACTION OF ORIENTATION--ANDAND--SCALESCALE--DEPENDENT INFORMATIONDEPENDENT INFORMATION

Andreas Tzanis,Andreas Tzanis,
Department of Geophysics, University of Athens, Department of Geophysics, University of Athens, PanepistimiopoliPanepistimiopoli, , ZografouZografou  15784, Greece. 15784, Greece. E-mail: atzanis@geol.uoa.gr ..

MOTIVATIONMOTIVATION
GPR is an invaluable tool for civil and geotechnical engineering  applications. One of the most 
significant objectives of such applications is the detection of fractures, inclined interfaces, empty or 
filled cavities frequently associated with jointing/faulting and  a host of other oriented features. 
These types of target, especially fractures, are usually not good reflectors and are spatially   
localized. Their scale is therefore a factor significantly affecting their detectability. Quite frequently, 
systemic or extraneous noise, or other significant structural characteristics swamp the data with 
information which blurs, or even masks reflections from such targets, rendering their recognition 
difficult. 

This presentation investigates the utility of the CURVELET TRANSFORMCURVELET TRANSFORM  (CT)  in processing noisy 
GPR data from geotechnical and archaeometric  surveys and extracting information geometrical 
information (oriented and scale-dependent structural characteristics). 

THE 2G CURVELET TRANSFORMTHE 2G CURVELET TRANSFORM

EXAMPLE 1EXAMPLE 1IMPLEMENTATIONIMPLEMENTATION

EXAMPLE 2EXAMPLE 2

Section distributed with package of Lucius  and Powers (2002). 
Data measured with a GSSI SIR-2000 system and  500MHz   
antenna; size 1024×1024; sampling rates 0.099s/  0.0194m. The 
data suffers from crossing cluttercrossing clutter  characteristic of multiple small 
targets or rough reflective surfaces. 
The noise can be locally strong, but it does not completely 
overshadow the data: the performance of the analysis can thus 
be easily evaluated. 
The curvelet decomposition comprised 7 scales; the 2nd coarser The curvelet decomposition comprised 7 scales; the 2nd coarser 
scale comprised 24 angular wedgesscale comprised 24 angular wedges
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The CT is a multiscale  and multidirectional  expansion that formulates a sparse representation  
of the input signal (Candès  and Donoho, 2003, Appl. Comput. Harmon. Anal., 19, 162-222. 

Curvelets are obtained by parabolic dilations rotations and translations of a specifically shaped 
function φ  and are indexed by a scale parameter a such that 0<a<1), a location b  and an 
orientation θ  and have the approximate form:

Da  is the parabolic scaling matrix, Rθ  is the rotation by θ  radians and φ(x1  , x2  ),   x1  , x2  ∈ 2 is an 
admissible profile. Thus, if φ is supported near the unit square, the envelope of φa,b,θ is supported 
near an a×√a rectangle with the minor axis pointing in the direction of θ. 
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Curvelets obey the principle of harmonic analysis: It is possible to decompose and reconstruct It is possible to decompose and reconstruct 
an arbitrary function an arbitrary function ff((xx11  , , xx22  ))  as a superposition of curveletsas a superposition of curvelets.

If the scale, rotation and location are discretized  as:
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the function f can be expressed in terms of the curvelet family (φj,k,l  ) as: 
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The curvelet transform is organized in such a way, that most of the energy is localized in only a 
few coefficients 〈  f, φj,k,l  〉. 
Curvelets are ideally adapted to represent functions with curvecurve--punctuated smoothnesspunctuated smoothness  (or 
intermittent regularityintermittent regularity) which are piecewise smooth with discontinuities (singularities) along a 
curve of bounded curvature. 

1.  A curvelet intersecting a discontinuity parallel to its longitudinal support will have   
coefficients of significant amplitude.

2.  A curvelet intersecting a discontinuity at an arbitrary angle will have small coefficients. 
3.  A curvelet not intersecting a discontinuity will have zero coefficients. 

There is no basis in which coefficients of an object with an arbitrary singularity curve can decay 
faster than in a curvelet frame (optimally sparse representationoptimally sparse representation)). In comparison: 

Discontinuities destroy the sparsity  of a Fourier series (Gibbs effect) –  a large number of 
terms in required to reconstruct a discontinuity.
Wavelets, are localized/multi-scale and perform much better but because their frames are 
isotropic they do not represent higher-dimensional singularities (curves) effectively.

(tight frametight frame).

The geological setting of the Ktenias  ridge
(altitude 1600m, NE Peloponnesus, Greece.
(a)  Damaged thin-plated limestone with 

fractures and joints. 
(b)  Heavily fragmented and damaged limestone 

block overlying healthier bedrock of the 
same composition. 

(c)  Fragmented thin plated limestone with 
fractures filled with lateritic material; the 
bedding is also apparent.

(d)  Gaping fracture in fragmented limestone 
block; such structures are abundant in the 
subsurface. 
In (a) and (d) the location of some significant 
faults, joints and interfaces is indicated with 
white lines. 
All photographs are courtesy of Mr P. Sotiropoulos, Terra-Marine Ltd.

The analysis has been performed with the Wrapping  Fast Discrete Curvelet Transform (WFDCT) 
algorithm (Candès  et al., 2006, Multiscale  Modelling and Simulation, 5, 861-899) available from 
http://www.curvelet.org/  and adapted for use by the matGPR  software (Tzanis, 2010, FastTimes, 15, 
17-43).

The DCT partitions the Frequency-Wavenumber plane into a parabolically  scaled series of 
second dyadic rectangular coronae and further sub-partitions each corona into angular wedges. 
The variable j  represents the scale –  each scale comprises a number of angular wedges that 
doubles at every second scale.
Each angular wedge provides the support of a specific curvelet at scale 2j  and angle θ. 

22--D GPR dataD GPR data  (B-scans) contain wavefronts that correspond to reflections from structuracontain wavefronts that correspond to reflections from structural l 
inhomogeneitiesinhomogeneities; these are generally curved, relatively smooth in their longitudinal direction 
and oscillatory in their transverse direction. 
Wavefronts are functions with intermittent regularityWavefronts are functions with intermittent regularity  and their singularities correspond to 
geological inhomogeneities  at which waves reflect. 
Owing to their anisotropic shape, curvelets are well adapted to detect wavefronts at different curvelets are well adapted to detect wavefronts at different 
angles and scalesangles and scales because aligned curvelets of a given scale, locally correlate with 
wavefronts of the same scale.

FrequencyFrequency  (leftleft) and spatialspatial  (right)(right)  
representation of six curvelets at   
different scales, rotations and 
translations. Numbering is in order 
of decreasingdecreasing  scale. In the dyadic 
partitioning of the frequency   
domain, each wedge represents the 
compact frequency support of the   
corresponding curvelet, i.e. each   
pair of opposing wedges represents 
a real curvelet. Image adapted from  
Herrmann and Hennenfent, 2008, GJI,  
doi:10.1111/j.1365-46X.2007.03698.x).

In the implementation presented hereinIn the implementation presented herein::
The number of scales and number of angles at the second coarser scale is chosen.
The WFDCT is computed and the upper right half of the f-k  plane (dark shaded region in AA  above)  
is mapped as in BB  above.
The user may select curvelet coefficients to include/exclude from the reconstruction of the data,

Either individually by un-checking/ checking the check-box associated with a particular set of 
coefficients, or,
Collectively (entire scales or angular subsets of a scale) using  the drop-down menus

Representation of noisenoise--freefree  data 
reconstructed from curvelets of  
scales 23  and 24  only; wavefront  
components with  dip angles 
110°–120°  and 200°-300°  also 
represent high angle noise and 
have been excluded.  
Empty boxes represent excluded 
curvelet coefficients

Representation of the clutterclutter  
reconstructed from curvelets 
of scale 25  while discarding 
low-angle wavefront  elements 
that comprise high-frequency 
(small scale) components of 
the data.
Empty boxes represent   
excluded curvelet coefficients

A.A.  Above:Above:  Pre-processed and migrated data  collected with a Måla  system and 
250MHz antenna on Mt Ktenias.
The curvelet decomposition comprised 7 scales; the 2The curvelet decomposition comprised 7 scales; the 2ndnd  coarser scale coarser scale 
comprised 24 angular wedgescomprised 24 angular wedges

B.B.  Top Right:Top Right:  Signatures of steeply downsteeply down--dipping reflectionsdipping reflections  (Type A)(Type A),  
reconstructed from scale 26  with wavefront  components oriented at 110°-180°.

Type A reflections exhibit consistent angular relationship and dip at ±50°  to 
±60°: they correspond to joints and to synthetic and antithetic fractures.

C.C.  MiddleMiddle--Right:Right:  Signatures of gently downdown--dipping reflectionsdipping reflections  (Type B)(Type B),  
reconstructed from scale 25  with wavefront  components oriented at 10°  -  170°.

The dip of Type B reflections is 10°  – 20°  and is consistent with the dip of 
the thin-plated limestone bedding and the limestone strata in general, 
(Figure 11a, b and c), which is observable at places because the aperture of 
the interfaces has been widened by damage and weathering and has  been 
filled with lateritic material

D.D.  BottomBottom--Right:Right:  Partial data reconstruction based on scales 22  and 23  and 
discarding wavefront  components with dip angles 160 °  –  210°  (noise). 

The reconstruction comprises dull reflections from high attenuation 
interfaces forming anastomosing horizons or clustering in relatively narrow/ anastomosing horizons or clustering in relatively narrow/ 
vertically extended complexes. vertically extended complexes. 
These former are interfaces between limestone fragments filled wThese former are interfaces between limestone fragments filled with high ith high 
attenuation lateritic material with the larger and internally leattenuation lateritic material with the larger and internally less damaged ss damaged 
blocks appearing in the form of lenses (hence the anastomoses). blocks appearing in the form of lenses (hence the anastomoses). 
The latter (clusters) are signatures of cavities filled with latThe latter (clusters) are signatures of cavities filled with lateritic material.eritic material.
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