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SUMMARY 
 
This presentation shows that the (equivalent) Singular Value Decomposition and Canonical Decomposition of 
the MT impedance tensor are, in fact, proper rotations in 3-D space based on the topology and operators of 
the SU(2) rotation group: they comprise a symmetric generalized eigenstate – eigenvalue formulation of the 
Magnetotelluric (MT) induction problem suitable for the analysis of general Earth conductivity structures. It is 
also demonstrated that they can be reformulated into an anti-symmetric (characteristic) generalized eigen-
state – eigenvalue decomposition consistent with the anti-symmetric interaction between electric and mag-
netic fields referred to the same coordinate frame. In both cases, the decomposition involves a left operator 
whose columns comprise the eigenvectors of the electric field and a right operator whose columns comprise 
the eigenvectors of the total magnetic field; it yields two characteristic states (generalized eigenstates) that 
comprise simple proportional relationships between linearly polarized generalized eigenvalues of the mag-
netic and electric field along the locally fastest (resistive) and slowest (conductive) propagation path into the 
Earth. The proportionality is respectively expressed by the maximum and minimum characteristic values of 
the impedance tensor (eigen-impedances). The electric and magnetic eigen-fields are 3-D and 
non-orthogonal in the real 3-space; their tilt is respectively a measure of the local landscape of the total 
electric and magnetic field. When the eigen-fields are projected on the axes of the horizontal observational 
coordinate frame their components are superimposed and the resulting mixing of phases is manifest in the 
form of elliptical polarization. The eigen-impedances provide a succinct analytical representation of the 
impedance tensor and may be valuable for interpretation. Their utility is explored in a sequel (part II) presen-
tation.  
 
Keywords: Impedance Tensor, Rotation, Decomposition, Characteristic State, Generalized Eigensate 
 
 

INTRODUCTION  
 
The equivalent Singular Value Decomposition (La 
Torraca et al., 1986) and Canonical Decomposition 
(Yee and Paulson, 1987) of the impedance tensor 
offer a unique and powerful analytical and inter-
pretational tool but did not have many applications 
and are generally not acknowledged for what they 
actually are. They have been presented as ad hoc 
complete formulations of polarization states and not 
as topologically complete descriptions of the 
intrinsic geometry of the MT field. Arguably, due to 
their “complicated” form and without due explana-
tion, they may have easily been understood as 
nothing more than ad hoc, not particularly useful 
descriptions of the tensor.  
 
One difficulty in elucidating the nature of the 
SVD/CD may be that their theoretical basis is 
borrowed from quantum mechanics and is ‘exotic’. 
However, one may note that the relationship 
E()=Z()H(), defines the impedance to be a 
form of “boson” mediating the exchange of energy 
between the electric and magnetic fields; this 
“boson” looks down and has a spin of 1. The MT 
field can also be viewed as an ensemble of low 

frequency – large size photons negotiating their 
way through the inhomogeneous Earth and think-
ing of it as an anisotropic birefringent material: in 
this view, the rank 2 impedance tensor should 
encode geometrical information about the fast 
(resistive) and slow (conductive) directions through 
this material. With such simple arguments it should 
be straightforward to see why one may borrow tools 
from both polarization optics and quantum me-
chanics to analyse the impedance tensor. The 
SVD/CD formulation implicitly adopted the former 
(indirect) approach. Because the analytical tools of 
polarization optics are based on the mathematics of 
spin analysis developed for quantum mechanics, 
the present work attempts to close the circle by 
taking the second (direct) approach.  
 

SU(2) GROUP AND ROTATION OPERATORS 
 
A basic tool to be used in the ensuing analysis is 
the SU(2) rotation group and its irreducible 
representations. A good introduction to the group 
exists in Arfken and Weber (2005) and advanced 
presentations in Murnaghan (1938), Wigner (1959) 
and others. Only absolutely essential information is 
given here.  
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SU(2) is a continuous, compact Lie group 
comprising 22 unitary(unimodular) matrices U, 
such that |U|=1 (rotations only) and U†=U-1  U  
SU(2) with (†)denoting Hermitian transposition. In 

the space 3  we live in, rotations are specified by 
representations of the Special Orthogonal Lie 
group SO(3) of 33 real valued unimodular 

matrices. From any Cartesian tensor in 3 , one 
can define a mapping onto the set of 2x2 complex 
matrices, in the Hilbert space of complex-valued 

squared functions 2 , in the sense  


   
 

1 2 3( , , )
i

x y z x y z
i

z x y
P σ σ σ

x y z
, 

with |P|=x2+y2+z2=1. j are the Pauli spin matrices 
with properties (j)

2=I and i[i,  j]=2ijkk, so that 
together with I they form an orthonormal vector 
basis of the 3-D space over the real field. SU(2) 

enters as a symmetry group in 2 . For any 
unimodular matrix USU(2), an arbitrary unitary 
transformation P  Q = UPU† is also traceless 
Hermitian, so that        1 2 3( , , )x y z x y zQ σ σ σ . 

Since |Q| = |P|, the real linear transformation {x, y, 
z} {x, y,z} induced by P  Q = P(x, y,z) is 
such that x2 + y2 + z2 = x2 + y2 + z2. In other 
words, [x y z]T = O·[x y z]T, where O is a real 
orthogonal 3x3 matrix comprising a representation 
of group SO(3). It is easy to show that any 
subsequent unitary transformation Q  R = VQ V† 
induces the orthogonal transformation O(VU) = 
O(V) O(U). This demonstrates in a naïve albeit 
instructive manner, that the collection of 3x3 real 
orthogonal matrices O(U) obtained by letting U 
wander over the 2x2 unitary group SU(2) 
constitutes a representation of the 3x3 rotation 
group SO(3) by 2x2 unitary matrices. The 
representation is locally isomorphic and globally 
homeomorphic, meaning that rotations will be 
unique to within a symmetry of 2π: SU(2) 
comprises the universal covering space of SO(3). 
 

The 3  electric and magnetic coordinate frames 
commonly used in MT data acquisition are 
right-handed with the y-axis positive to the right of 
the x-axis and the z-axis pointing down. Given the 

correspondence between rotations in 2  and 
3 , the reasonable choice for would be to rotate 

the impedance tensor about the real axes of the 
basis (x+iy, z). It is, then, simple to show that a 
clockwise rotation about the z-axis followed by a 
clockwise rotation about the x-axis is performed by 
the operator 

   U U U( , ) ( ) ( )zx z x  (1) 

cos sin cos sin

sin cos sin cos

i

i

   

   

   
    
      

. 

Further justification for the choice of operator will 
be given below  
 

ROTATION AND DECOMPOSITION 
 
The impedance tensor may be defined in one of 
two right-handed coordinate systems: In the coor-
dinate system used in the SVD/CD, the horizontal 
axes of the magnetic reference frame (xh, yh) are 
rotated by 90 clockwise with respect to the hori-
zontal axes of the electric reference frame (xe, ye); 
the relationship between the magnetic and electric 
fields in this system is denoted by is written 
 E H  is apparently symmetric. In the coordi-

nate system commonly used in MT practice, the 
magnetic and electric frames are identical and the 
familiar relationship E = ZH is anti-symmetric. The 
tensors  and Z are related as  
 = ZR(/2) (2) 
 
A rotation by a single operator of the form Uzx(, ) 
cannot reduce the regular complex   to a diag-

onal form because [ †,  ]0: the tensor depends 
on eight degrees of freedom (topological dimen-
sions), where each of { ij} and { ij} is as-
signed with one degree of freedom, but the rotation 
would depend on only six and would be incomplete. 
Exactly two operators U(1, 1) and V(2, 2) are 
required, thereby providing an eight parameter set 
that completely describes the tensor: four in the two 
complex principal impedances and four rotation 
angles.  
 

The products †
1      and †

2      are 

normal (Hermitian) matrices with and constitute 

mappings of   onto 2 . Each of j depends on 

only four degrees of freedom and can be diago-
nalized with a single unitary rotation operator of the 
form (1). Their eigenvalue-eigenvector decomposi-
tions are:  

1 = U(1, 1) †U (1, 1) 

and 

2 = V(2, 2) †V (2, 2) 

where † †            and  

1 2
1 2

2

0
, , , 1,2

0


   




 
    
  

 j j jr j  

is the characteristic impedance (eigen-impedance) 
tensor. Then it is easily shown that  

† ( , ) ( , )     U V 1 1 2 2  (3) 

which is precisely the SVD/CD of the impedance 
tensor.  
 
Now, right multiply Equation 3 by R(/2) to rotate 
the eigen-impedance tensor 90 counter-clockwise 
and on substituting Equation 2 obtain 
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†
1 1 2 2

( / 2)

( , ) ( / 2) ( , ) ( / 2)



     

   

    

Z R

U Z R V R

 
, (4) 

with ( / 2)   Z R  being the eigen-impedance 

tensor in the practical MT reference frame. More-
over, V(θ2,φ2) = Vz(φ2)Vx(θ2) and because R(/2) 
 SO(2)  SU(2) and Vz  SO(2)  SU(2), the 
operators commute. It is thus straightforward to 
show that, R(/2)·V(θ2,φ2)·R(-/2) = V*(θ2,φ2). 
Substituting in Equation 4 one obtains, 

1 †
1 1 2 2

2

0
( , ) ( , )

0


   


 

     
Z U Z V  (5) 

which is the anti-symmetric decomposition of Z in 
the practical MT reference frame; it comprises an 
adaption of the generalized (complex) SVD to 
physical systems with anti-symmetric intrinsic 
geometry and will henceforth be referred to as the 
Anti-symmetric SVD or ASVD.  

 
THE CHARACTERISTIC STATES 

 
Henceforth we concentrate on the ASVD. For 
reasons to be immediately apparent use the nota-
tion  �( , )E E U(θ1,φ1) and  �( , )H H  V*(θ2,φ2). 

Re-arrange terms to write Equation 5 as  

Z =     Z  †( , ) ( , )E E H H  (6) 

and substitute in E = Z·H to obtain 
† †( , ) ( , )E E H H      E Z H   (7) 

The column vectors of the rotation operators   
and � describe rotations of opposite handed-
ness and constitute, in themselves, orthogonal 
rotation operators for 2-component orthogonal 
vectors. Denote 

1 2 2
( , ) ( , ) ( , )E E E E E E

        e e , 

1 2 2
( , ) ( , ) ( , )H H H H H H

        h h ,  

such that †
j iji e e  and †

j iji h h , whereupon 

Equation 7 yields:  
† †

11 1

† †
22 2

0

0





    
     
        

e E h H

e E h H
, (8) 

or,  

1 11

2 222 2

( , ) ( , )0

( , ( , )0

E E H H

E E H H

E H

E H 

   

   

    
     
         

, 

which can be succinctly written  E Z H   . It is 
apparent that  

1 2

2 1

0

0

E H

E H

 
 
  

Z . (9) 

Equation 8 says that H rotated to (H, H+π/2), is 
mapped onto E rotated to (E, E) along the least 
conductive (fast) path through the Earth. This 
corresponds to the maximum state of Z. Likewise, 

H rotated to the direction (H, H) is mapped onto E 
rotated to the direction (E, E+π/2) along the most 
conductive (slow) path. This is the minimum state 
of Z. The angles (E, E) define the orientation of 
the characteristic coordinate frame or eigen-frame 

{xE, yE,, zE} of the electric eigen-field E , so that xE 
is rotated by E clockwise with respect to the x-axis 
of the experimental coordinate frame and the plane 
{xE, yE} is tilted by E clockwise with respect to the 
horizontal plane {x, y}. Likewise, the angles (H, H) 
define the orientation of the characteristic eig-

en-frame {xH, yH,, zH} of the magnetic eigen-field H , 
so that xH is rotated by H clockwise with respect to 
the x-axis of the experimental coordinate frame and 
the plane {xH, yH} is tilted by H clockwise with 
respect to the horizontal plane {x, y}. Each eig-
en-frame contains orthogonal, linearly polarized 
components. However, E  H in general and the 
electric and magnetic eigen-frames are not mutu-
ally orthogonal. The electric and magnetic eig-
en-frames are also not horizontal: the tilt angles E 
and H are a measure of the local landscape of the 
electric and magnetic field respectively.  
 
It is now imperative to show how the eigen-fields 
relate to the source (external) and induced (internal) 
magnetic and electric fields and to justify the prefix 
“eigen” used above. Following Berdichevsky and 
Zhdanov (1984) and Egbert (1990), the tangential 
total magnetic and electric output fields at a given 
location on the surface of the Earth may be ex-
pressed as  
H = Hi + HS = [kH + I] HS  
E = kE HS  
where Hi is the internal (induced) magnetic field, HS 
is the source (external) magnetic field and kE, kH 
are excitation operators that represent the electric 
properties of the Earth. Thus, the impedance tensor 
is obtained as Z = kE[kH + I]-1. Substituting Equa-
tion 9 in Equation 6 and after elementary rear-
rangements: 





                     
E H   

1
1 1† †

1
2 2

0 0

0 0

E H

E H
. 

Therefore, letting  

1 †

2

0

0

E

E

 
   

Ek   , 

shows that the electric eigen-fields are the gener-
alized eigenvalues of kE and, simultaneously, the 
eigen-values of the electric field. Also letting  

1
11 †

1
2

0
[ ]

0

H

H






 
   

  
Hk I    

shows that the magnetic eigen-fields are the 
eigenvalues of the total magnetic field.  
 
Finally, it is important to note that the projection of 
the eigen-fields on the horizontal plane comprise 
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elliptically polarized components. The rotation 

 † ( , )EE E  can be explicitly written as:  

.
 
 

1 cos sin cos

sin cos sin

x E y E E

x E y E E

E E E

i E E

  

  

 

 
 

and 

 
 

2 sin cos cos

cos sin sin

x E y E E

x E y E E

E E E

i E E

  

  

  

 
 

For a given E, the variation of the azimuthal angle 
E forces the rotating field vector to trace an ellipse 
on the horizontal frame x  iy, so that the normal-
ized vector will have a major axis equal to cosE 
and a minor axis equal to sinE. The ratio of the 
minor to the major axis is the ellipticity, given by bE 
= tanE. The same holds for the rotation of the 
magnetic field vector so that bH = tanH. In either 
case  > 0 implies a counter-clockwise sense of 
rotation and  < 0 a clockwise sense. Thus, ellipti-
city on the horizontal plane is defined in terms of a 
rotation in higher dimensional space! This also 
provides a heuristic means of determining bounds 
for the variation for E and H: they are /4  θE  
/4 and /4  θH  /4, because in a given ellipse, 
the range of the minor axis is bounded by the 
maximum value of the major axis. 

 
CONCLUSION 

 
The mathematical physics of spin analysis was 
used to show that the impedance tensor computed 
from electric and magnetic fields measured in 
identical coordinate frames can be rotated to an 
exact anti-diagonal form and that this is tantamount 
to a generalized eigenstate – eigenvalue decom-
position. The operation results in two characteristic 
states (generalized eigenstates) of the EM field, 
which accommodate the interactions between the 
linearly polarized eigenvalues of the electric and 
total magnetic fields (eigenfields). The interactions 
are mediated by the characteristic values (gener-
alized eigenvalues) of the impedance tensor.  
 
The eigenvalues of the electric field are carried by 
the intrinsic electric coordinate frame (eigen-frame) 
which is configured in three-dimensions so that the 
maximum eigenvalue is transverse to the resistive 
(fast) local direction of the conductivity structure 
and the minimum eigenvalue is transverse to the 
conductive (slow) direction through the Earth; the 
tilt of the electric eigen-frame is a measure of the 
local landscape of the electric field. The eigenval-
ues of the magnetic field are respectively carried by 
the magnetic eigen-frame which is also configured 
in three dimensions. The electric and magnetic 
eigen-fields are generally not orthogonal in the real 
3-space. When the eigen-fields are projected on 

the axes of the experimental coordinate frame their 
components are superimposed and the resulting 
mixing of phases is manifest in the form of elliptical 
polarization. 
 
The eigen-impedances provide a succinct frame 
and unique means by which to investigate the 
configuration, characterize theoretical and experi-
mental impedance tensors and appraise their 
suitability for interpretation. Given all the effects 
that may distort Magnetotelluric measurements, 
this would be a particularly helpful utility, but would 
also require adequate understanding of the condi-
tions under which the eigen-impedances are 
interpretable and which are generally governed by 
their analytic structure and properties. The analytic 
properties of the eigen-impedances and their utility 
will be investigated in a sequel presentation.  
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