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SUMMARY 
 
In a prequel presentation it was shown that the MT impedance tensor admits an anti-symmetric generalized 
eigenstate – eigenvalue representation. Herein, the analytic structure of the generalized eigenvalues (eig-
en-impedances) for general conductivity distributions. It is shown that in the absence of sources, the eig-
en-impedances are analytic in the entire lower-half complex frequency plane with their singularities confined 
on the positive imaginary frequency axis. These properties can be violated only if there are powerful extrinsic 
or intrinsic electromagnetic processes with time dependence different than the time dependence of passive 
induction. The expected passivity of the eigen-impedances can be an effective means of appraising meas-
ured tensors for compliance with the tenets of the MT method. As an example, it is shown that anomalous 
phases and electric field reversals are not necessarily associated with violation of causality and that it is pos-
sible to assess whether tensors exhibiting anomalous phases can be used for interpretation.  
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INTRODUCTION  
 
In a prequel presentation (Tzanis, 2014) it was 
shown that the Magnetotelluric (MT) impedance 
tensor Z admits an anti-symmetric generalized ei-
genstate – eigenvalue decomposition of the form  

Z = †( , ) ( , )E E H H    Z  ,   1
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with 1, 2 being the maximum and minimum gen-
eralized eigenvalues (eigen-impedances) of the 
tensor and  �( , )E E ,  �( , )H H  rotation opera-

tors of the SU(2) group. By substituting the de-
composition in relationship E = ZH one obtains the 
generalized eigenstates of the MT field  
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or  E Z H   , where E1, E2 respectively are the 
maximum and minimum eigenvalues of the electric 
field and H1, H2 the maximum and minimum ei-
genvalues of the total magnetic field. The angles 
(E, E) define the orientation of the characteristic 
coordinate frame {xE,yE,,zE} of the electric eig-

en-field E , relative to the experimental coordinate 
frame. Likewise, the angles (H, H) define the ori-
entation of the characteristic eigen-frame {xH,yH,,zH} 

of the magnetic eigen-field H . Each eigen-frame 
contains orthogonal, linearly polarized components. 
 
The present work investigates the analytic proper-
ties of the eigen-impedances and their utility in the 

analysis of MT data. Impedance is constrained by 
the requirement of positive energy dissipation and 
is bound to be passive (positive real). Accordingly, 
the tenet of causality is intuitive and has ab initio 
been thought to hold for any impedance tensor at 
the surface of any source-free Earth structure. This, 
however, has been disputed and for good reasons. 
Egbert (1990) argued that causality can be violated 
and postulated that an indication of violation would 
be the observation of anomalous phases; he ar-
gued that a principal cause of such effects is the 
distortion of the electric field with particular refer-
ence current channelling and orientation reversals. 
Anomalous phase observations have been report-
ed by several authors and have mostly been ex-
plained with 3-D induction in near-surface elongate 
conductors that may or may not be coupled with 
other forms of channelling structures (e.g. faults, 
ocean etc.). An unfortunate corollary of passivity 
violation is that non-passive impedances are not 
interpretable in terms of Earth structure. However, 
some recent research indicates that anomalous 
phases may be part of the Earth response, (e.g. 
Selway et al. 2012; Ichihara and Mogi, 2009; Heise 
and Pous, 2003), the empirical consequence being 
that anomalous phases may not necessarily signify 
the breakdown of causality!  
 
At any rate, impedance must be passive: if a func-
tion is not passive it is not impedance and the only 
reason for this to occur is for sources to exist in the 
Earth. “Source” is any EM effect with sufficient 
power and time dependence significantly different 
than that of passive induction. This is not simple: 
because the time-dependence is important, sec-
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ondary inductive (reactive) effects generated within 
the Earth cannot be ruled out as sources but 
time-independent effect (e.g. galvanic) might! 
Therefore, the generality of passivity, the conditions 
of passivity violation and their association with 
anomalous phases are still in need of clarification. 
Because the characteristic state formulation offers 
a succinct means to characterize the tensor, the 
expected analytic properties of the characteristic 
states are examined from first principles. It is es-
tablished that the characteristic states are expected 
to be passive and offer rigorous means to appraise 
the compliance of measured data with the tenets of 
the MT method. 
 

CAUSALITY AND PASSIVITY  
 
Let the part of the Earth’s crust probed by E and H 
be represented by a cuboid V = [x1 ,x2]    [y1 ,y2 ]  
  [0,z2 ]  and characterized by a conductivity func-
tion   (x,y,z) > 0, which is arbitrary but defines a 
linear medium. Let H=Hi+HS, where Hi is the inter-
nal (induced) magnetic field and HS is a uniform 
source (external) magnetic field. Finally, let there 
be no internal to V sources of EM field, so that H=0 
and E=0 when HS=0. 
 
The vector Helmholz equation governing the diffu-
sion of the electric field is  
E = -i0E  i0JS (1) 
with JS being the source (extrinsic) current density, 
located at some distance z=zS<0 above the surface 
of V (z=0). In the region z  0+ the eigenvalues of 
the electric field (electric eigen-fields) are by defini-
tion solutions of Equation 1. On substituting E  

and taking the inner product with E ,  

0 0 Si i       E E E E J E        (2) 

Considering that  E  = i0 H , the LHS of 

Equation 2 is     0( )i H E = 0( )i  E H   

and given that ( ) ( ) ( )       E H H E E H        , 

it reduces to 

( ) ( )        H E E H E E J E         s . (3) 

Substituting Faraday’s law in Equation 3, rear-
ranging terms and integrating over V yields  

0

V V
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The second term in the RHS of Equation 4 is zero 
because the integration takes place in the region z 
 0+, where Js = 0. Thus, Equation 4 reduces to 

0 ( )
V V V

dv i dv d    
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This is a global energy conservation statement 
saying that the work done by the induced electric 
field in V plus the rate of the energy stored in the 

total magnetic field in V is equal to the negative of 
the energy flowing out through the boundary sur-

faces. Because all the integrands are finite, E  and 

H  cannot have poles in the complex -plane: they 
may only have simultaneous zeros. It is also ap-
parent that the LHS can vanish only for  on the 
positive imaginary -axis, where all the zeros are 
necessarily confined. As a direct consequence of 
the absence of sources, the electric and magnetic 
eigen-fields are causal, freely decaying waves.  
 
Because the eigen-impedances are simple ratios of 
electric and magnetic eigen-fields with zeros con-
fined on the positive imaginary -axis, their singu-
larities are also confined on the positive imaginary 
-axis and they are analytic in the entire lower-half 
-plane and the real -axis. Therefore, the energy 
transferred from the magnetic to the electric eig-
en-field can only exhibit positive dissipation and the 
eigen-impedances are automatically classified as 
positive real (passive) functions. As a corollary, the 
impedance tensor Z is expected to be causal and 
passive as it is generated by isometric transfor-
mation of its passive eigen-impedances. 
 
The above results imply that for any conductivity 
distribution, if there are no internal to the Earth 
sources, the eigen-impedances are passive. They 
do not imply that the eigen-impedances must be 
passive at all times and for any conductivity distri-
bution because the absence of sources, (including 
secondary inductive effects), is not guaranteed. 
There can be circumstances in which passivity 
breaks down for measured tensors; the most sig-
nificant mechanisms by which this can occur are 
enumerated as follows: 
(a) Extrinsic noise (natural or anthropogenic).  
(b) Distortion of the electric field due to local inter-
nal effects (Chave and Smith, 1994). The locally 
distorted electric field El is given by El=C·E, where 
C is a rank 2 tensor with elements:  
 Complex valued/frequency-dependent if the in-

ductive component of distortion is significant, 
meaning that it has time dependence of its own. 
In this case passivity may be violated because 
distortion will not only deform the shape, but will 
also modify the phase of the electric field, in-
troducing delays to levels possibly unsustaina-
ble by the passive induction process.  

 Real valued/frequency-independent if the in-
ductive component is negligible (galvanic limit). 
In this case passivity cannot be violated be-
cause C will linearly superimpose undistorted 
field components thus deforming the electric 
field. However, the linear superposition of pas-
sive processes is necessarily passive and if the 
undistorted electric field is passive, the galvan-
ically distorted electric field will also be passive 
and the eigen-impedances will continue to be 
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positive real.  
(c) Non-linear Earth response. One should not ex-
clude the possibility of linear Earth conductivity 
configurations that generate strong, large-scale 
secondary inductive effects, such as reactive eddy 
currents. These may the response to be 
non-passive or even or non-causal and have gen-
erally not been studied adequately 
 

ANOMALOUS PHASES ARE NOT ALWAYS 
ANOMALOUS  

 
This Section presents an example of the diagnostic 
value of the eigen-impedances in cases of complex 
response functions and entails the analysis of a 
synthetic impedance tensor with severe anomalous 
phase behaviour. The discussion is inevitably as-
sociated with the problem of appraising Earth re-
sponses for compliance with the tenets of the MT 
method and consistency with realizable geoelectric 
structures. In this respect, the appraisal of imped-
ance tensor elements has customarily been based 
on their phases. Phases in the 1st or 3rd quadrants 
(in-quadrant) are taken to indicate causal response, 
consistent with realizable conductivity structures. 
Phases in the 2nd or 4th quadrants (out of quadrant), 
are deemed anomalous and the response non- 
causal. Along this vein, passivity is appraised by 
testing if both eigen-impedances are in-quadrant, in 
which case the tensor is strictly passive, or either is 
out of quadrant, in which case it is not. This crite-
rion ultimately expresses the positive real property.  
 
Synthetic impedance tensors with large anomalous 
phase variations have been presented by Heise 
and Pous (2003) on the basis of a 2-D model 
comprising a stack of two azimuthally anisotropic 
structures with orthogonal anisotropy strikes. The 
model is described in detail sufficient to warrant 
faithful as possible reproduction (not shown for 
conciseness) and was solved with the algorithm of 
Pek and Verner (1997). The synthetic response 
used herein was obtained at a location corre-
sponding to Site 4 of Heise and Pous. 
 
The impedance tensor is shown in Figure 1, in the 
form apparent resistivities and phases. The phases 
of Zxx and Zyx are clearly seen to rotate from the 1st 
via the 2nd to the 3rd quadrant, exhibiting negative 
real parts during their transition through the second 
quadrant. The phases of Zxy and Zyy are stable and 
confined in the 1st quadrant. Heise and Pous (2003) 
demonstrated that the interaction between the an-
isotropic block and layer produces complete re-
versal in the orientation of the Ey component and 
attributed the anomalous phases, at least in part, to 
this reversal. Note also that all tensor elements 
have passive attributes at periods < 1s and the 
passive right column elements are dominant at all 
periods > 1s. The characteristic states are shown in 

Figure 2. The phases of the maximum and mini-
mum eigen-impedances (top-right) are both defined 
in the 1st quadrant, meaning that they, as well as 
the tensor, are passive. 
 

 
Figure 1. The noise-free almost exact impedance 
tensor “observed” at Site 4 of the 2-D anisotropic 
model of Heise and Pous (2003). 
 

 
Figure 2. The eigen-impedances of the tensor ob-
tained at Site 4 of the 2-D anisotropic model of 
Heise and Pous (2003).  
 

 
Figure 3. The eigen-impedances of the distorted 
tensor (see text for details).  
 
The result is not difficult to explain: although there 
are reactive processes that cause apparent viola-
tion of passivity in individual elements, it is the 
dominance of the passive processes that deter-
mines the overall characteristics of the tensor and 
the properties of the eigen-impedances thereof. In 
other words, the isometric transformation from the 
full impedance tensor to the eigen-impedance 
tensor superimposes the passive and non-passive 
processes and assigns the result with the property 
of the dominant (passive) process. This is a direct 
consequence of the parallel filter rule known from 
systems theory (e.g. Claerbout, 1976). 
 
The effect of galvanic distortion can be studied by 
artificially deforming the electric field with a real 
operator C = T·S·A, such that T is a twist (SO(2) 
rotation) operator, S is the shear tensor and A is a 
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splitting tensor (Groom and Bailey, 1989). Figure 3 
illustrates the characteristic states obtained from a 
distorted tensor, obtained by twisting the electric 
field through an angle of 110, shearing it by an 
angle of 44 and letting A = I (no splitting). The ef-
fect of distortion is: (i) severe shifting of the maxi-
mum and minimum apparent resistivities; (ii) 
transfer of the phases from the 1st to the 3rd quad-
rant. There is no effect on the analytic properties of 
the eigen-impedances (and the distorted tensor 
thereof), which remain strictly passive.  
 
This result is also not difficult to explain. Twisting by 
as much as 110 causes one of the axes of the 
experimental coordinate frame to reverse orienta-
tion. The electric field is a polar vector with odd 
parity: reversals change the reference frame of the 
output electric field in the sense E(x)  −E(−x), 
even if it is sheared. This introduces a symmetry of 
 in the phase of the electric field and a corre-
sponding shift in the phase of the tensor elements 
and eigen-impedances. In the distorted tensor, 
negative real parts of individual tensor elements 
may appear! These, however, are defined in a 
frame different than that of the measurements and 
the violation of passivity is only apparent! Moreover, 
a galvanic distortion tensor like the one used above 
merely forces a weighted linear superposition of the 
electric field components but does not shift their 
phases. This certainly deforms the distorted tensor 
elements but if the dominant electric field compo-
nents are passive, their superposition will still be 
passive by virtue of the parallel filter rule and will be 
manifested in the analytic properties of the eig-
en-impedances.  
 
To conclude, it is apparent that internal reactive 
processes corollary to passive induction may gen-
erate anomalous phases, but if the dominance of 
passive induction is not overall challenged the 
passivity of the tensor is also not challenged and 
the anomalous phases are inconsequential. Such 
tensors convey valuable information about the ge-
oelectric structure and can be used for interpreta-
tion. For the example in question, this was empiri-
cally demonstrated by Heise and Pous (2003).  
 

CONCLUSION 
 

The impedance tensor and its generalized eigen-
values are expected to be passive; this property 
can be violated only in the presence of sources in 
the Earth, with dissipation characteristics and time 
dependence sufficiently different than the respec-
tive characteristics of passive induction in a linear 
medium. This includes all extrinsic effects (noise) 
and, possibly, secondary inductive effects gener-
ated by realistic conductivity configurations. How-
ever, it does not include time-independent phe-
nomena taking place in a passive induction context, 

such as galvanic distortion and electric field twists 
and reversals.  
 
The constraints imposed by passivity comprise 
fundamental tests of the compliance of measured 
tensors with the fundamental properties expected 
of impedance functions (physical validity). In this 
respect they can be important factors in the pro-
cess interpretation. For instance, due to the com-
bined action of linear superposition and reference 
frame reversals, anomalous phases of individual 
elements are not trustworthy indicators of the ten-
sor’s validity. On the other hand, one may refer the 
tensor to its intrinsic coordinate frames evaluate the 
resulting eigen-impedances. If they are passive, 
then the anomalous phases are only apparent and 
inconsequential. If they turn up with negative real 
parts, passivity has been violated and the meas-
ured function does not constitute impedance! 
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