

Establishing and Using the real-time Neutron Monitor Database (NMDB)

H. Mavromichalaki, M. Gerontidou, G. Mariatos, M. Papailiou, A. Papaioannou, C. Plainaki, C. Sarlanis, G. Souvatzoglou for the NMDB team

Nuclear and Particle Physics Section, Physics Department, Athens University Pan/polis15771 Athens, GR (emavromi@phys.uoa.gr)

Outline

Introduction

✓ Sun, Earth & Cosmic Ray Connection

- ✓Cosmic Ray Travel
- ✓ Cosmic Ray Spectrum
- ✓Cosmic Ray Shower
- ✓Neutron Monitor
- ✓Cosmic Ray Modulation
- ✓ Neutron Monitors Distribution

> NMDB

- ✓Background of the project
- ✓ Structure of NMDB
- ✓Goals of the project
- ✓Creating the database
- ✓ Using NMDB / User tools
- ✓Applications with 1-min real-time data

Conclusions

Sun-Earth & Cosmic Ray Connection

The Sun produces energetic particles and cosmic rays and modulates the galactic cosmic ray flux

Cosmic Ray Travel

Integral Spectrum of Cosmic Rays

Cosmic Ray Cascade /Neutron Monitors

Cosmic Ray Modulation

Bonrie et al. 2001

Neutron Monitor Distribution

National & Kapodistrian University of Athens

Section of Nuclear & Particle Physics Athens Cosmic Ray Group

Real-time Neutron Monitor Database (NMDB)

http://www.nmdb.eu

- 12 partners
- 28 NM stations in real-time

Background of the project

NM Advantages

 Cosmic ray intensity has been continuously measured with Neutron monitors since the International Geophysical Year 1957/58

 Approximately 50 Neutron monitors are operating worldwide

 Neutron monitors measurements can not be scrambled by any intense event

- Cost-effective reliable detectors
- Wide detection range
- Ready to use

What did we need to take care of

 High resolution data (1-min or better) are needed to study solar cosmic ray events

 Only few NM stations could provide data in real-time

 No common data format, no data center for high resolution data in real time

No common real-time applications

NMDB structure

Goals of the project

- Upgrades stations and connections to make high-resolution NM data available in real-time
- Collect high resolution NM data in real-time, make it public available in common format
- Build a state of the art, centralized database with distributed mirrors
- Create an innovate registration system for cosmic rays

- Develop application tools using NM data
- Create a public outreach website to inform about cosmic rays and possible effects on humans, technological systems and environment
- Realize the first ever Training Course on Cosmic Ray Physics and Applications

Easiest Access to NM data

Creating the database

Using NMDB

Stati	on Tab	le							
	Checking NMDB Stations at a Glance								
	Station	Table	Original data (1min)	<u>1 hour data</u>	Enviromental data		Ŭ		
1.	Almaaty	AATB	Online	Online	Offline				
2.	Apatity	APTY	Online	Online	Offline				
3.	Aragats	ARNM	Online	Offline		k			
4.	Athens	ATHN	Online	Online	Offline				
5.	BKSN	BKSN	Online	Online	Offline	\mathbb{N}^{-}	<u> </u>	A	
6.	ERV3	ERV3	Offline	Offline	Offline			1 – min data	
7.	ERV	ERV	Offline	Offline	Offline				
8.	Mt Hermon	ESOI	Offline	Offline	Offline				
9.	IRK2	IRK2	Offline	Offline	Offline		$\backslash \setminus$		
10.	<u>IRKT</u>	IRKT	S Offline	Offline	Coffline 🛛			1 – hour data	
11.	Jungfraujoch, IGY	JUNG1	Online	🛃 Online	🛃 Online		\backslash	1 11001 0010	
12.	Jungfraujoch, NM64	JUNG	Online	🛃 Online	🛃 Online		\backslash		
13.	<u>Kerguelen</u>	KERG	Offline	Offline 🛛	Contract Offline		\backslash		
14.	<u>Kiel</u>	KEL	Offline 🛛	Offline 🛛	Contract Offline		\		
15.	LEIK	LEIK	Offline	Soffline 🛛	Offline			environmental data	
16.	Lomnicky stit	LMKS	Online	🛃 Online	🛃 Online				
17.	Mobile Cr lab.	MCRL	Online	🗹 Online	Offline				
18.	Magadan	MGDN	Offline	🗹 Online	Offline				
19.	Moscow	MOSC	Offline	Offline	Offline				
20.	MRNY	MRNY	Online	Offline	Offline				
21.	Nor-Amberd	NANM	Online	Offline	Offline				
22.	<u>Norilsk</u>	NRLK	Offline	Offline	Offline				
23.	Novosibirsk	NVBK	Offline	Offline	Offline				
24.	Oulu	OULU	🛃 Online	O nline	■ Offline	[
25.	Rome	ROME	Online	🗹 Online	■ Offline				
26.	Terre Adelie	TERA	Offline	Offline	Offline				
27.	TXBY	TXBY	Offline	Offline	Offline				
28.	Yakutsk	YKTK	Offline	Offline	Offline			IED CAS I Stubouch	
		1	Online: 13 Offline: 15	Online: 11 Offline: 17	Online: 3 Offline: 25			IEP SAS, I. Strnarsky	

Using NMDB

NEST tool, OBSPARIS, N. Fuller

National & Kapodistrian University of Athens

Section of Nuclear & Particle Physics Athens Cosmic Ray Group

Using NMDB

Applications with 1-min real-time data

Mavromichalaki et al., 2009

Applications with 1-min real-time data

• GLE Alert Algorithm

• Several groups (NKUA, IZMIRAN, TAU, ALMATY), participating at NMDB project, hold various GLE Alert functions – some of which operate in real-time. Under the cooperation of NMDB, these groups will work together and will provide the best possible Alert

Steps of the Station Alert

1. We define a moving threshold

2. When the last measurement exceeds this threshold, the algorithm marks a pre-alert point

3. If we get 5 pre-alert points in succession we define a Station Alert

GLE Alert Algorithm

Steps of the General Alert

1. A Supervision program named program named <u>Check For alert</u> checks every minute the status of every station.

2. If this program detects at least three stations in "station alert mode" then produces a Generall GLE Alert Signal

Searching for GLE Onset		
	AATB	Keep Searching
	APTY	Keep Searching
	ATHN	Keep Searching
neutron monitor database	ERV	Keep Searching
	ERV3	Keep Searching
GLE ALERT	ESOI	Keep Searching
PRODUCTION	IRKT	Keep Searching
	JUNG	Keep Searching
	JUNG1	Keep Searching
	KERG	Keep Searching
	KIEL	Keep Searching
	LMKS	Keep Searching
	MCRL	Keep Searching
	MGDN	Keep Searching
	MOSC	Keep Searching
	MBNY	Keep Searching
	NRLK	Keep Searching
	NVBK	Keep Searching
	OULU	Keep Searching
	ROME	Keep Searching
	TERA	Keep Searching
Run Manual	үктк	Keep Searching
	TXBY	Keep Searching
LAST GLE ALERT 2009-02-22 22:14 MCM	D FTSM OULL	J
99999999999999999999999999999999999999	5-10-01-71-01-71-71-75-75-75-75-75-75-75-75-75-75-75-75-75-	751

GLE Alert Algorithm

The first real-time GLE Alert signal (NKUA, 2009)

✓ The Ground Level Enhancement (GLE) event of the December 13, 2006 – GLE70

✓ Using the steps and the algorithms described at the previous slides, a real-time Alert signal was registered

✓ This is the reconstructed display of the Alert at the webpage. You can notice that three stations (FTSM, MOSC, NRLK) provide the General Alert stage

Validation of GLE Algorithm

GLE No	Event date	Flare time (UT)	Flare	GOES Alert(100 MeV, >1 pfu)	NM Stations Alert
60	15 April 2001	13:19	X14.4	14:21	13:59
61	18 April 2001	02:11	C2	03:11	02:43
62	04 Novemeber 2001	16:03	C2	17:07	16:50
63	26 December 2001	04:32	C2	06:14	06:07
64	24 August 2002	00:49	X3.1	01:48	01:35
65	28 October 2003	09:51	X17.2	11:51	11:17
66	29 October 2003	20:37	X10.0		21:08
67	2 November 2003	17:03	X8.3	17:56	17:39
68	17 January 2005				NO GLE
69	20 January 2005	06:36	X7.1	07:04	06:52
70	13 December 2006	02:48	X3.4	03:12	02:53

✓ The above table shows that GLE Alert which depends solely on ground based observations precedes the one triggered by GOES at a time window of 7 - 34 minutes. There is also a single case (GLE66) where the NM GLE algorithm issues an Alert while satellite data did not.

GLE Alert Algorithm

Real-time Illustration of GLE Alert

NUCLEAR AND PARTICLE PHYSICS SECTION - Mozilla Firefox		- @ X
ile Edit. Yiew Higtory Bookmarks Iools Help		0
🍃 🕈 📄 - 🥑 🛞 🏠 🗋 http://cosray.phys.uoa.gr/GLE_ALARM.htm	V DG Google	Q
🕨 Getting Started 🔂 Latest Headines 📓 Webmail E.K.N.A.		
pdflorge powersd by TATEOOL SEARCH V Search 🖗 📩 PDFCreator 🕸 Options*		
ICRL		^
AGEN .		
enter database inection montor database inection montor database inection a		
T DO NºDO NºDO N		
IRNY		
IRLK		
WBK.		
IOME		
<u>ana</u> a deelanaa deelanaa deelana		
TEDA		
		v

Online real-time GLE Alert

RESULT of the GLE Alert for the last 12 minutes

DateTime	Total Stations	Used Stations	Stations with increase >2 sigma	Watch	Warning!	Alert !
2009-09-16 08:33:00+00	15	8	1			
2009-09-16 08:34:00+00	15	8	1			
2009-09-16 08:35:00+00	15	7	0			
2009-09-16 08:36:00+00	15	7	1			
2009-09-16 08:37:00+00	15	7	2			
2009-09-16 08:38:00+00	15	7	3	\checkmark	\checkmark	
2009-09-16 08:39:00+00	15	7	1			
2009-09-16 08:40:00+00	15	5	1			
2009-09-16 08:41:00+00	15	5	3	\checkmark	\checkmark	
2009-09-16 08:42:00+00	15	5	1			
2009-09-16 08:43:00+00	15	3	0			
2009-09-16 08:44:00+00	15	0	0			

Applications with 1-min real-time data GLE Modelling – NM BANGLE

• Several groups participating at NMDB project, created GLE models. One of the most sophisticated ones is the NM-BANGLE

Plainaki et al., 2007

GLE Modelling – NM BANGLE Kernel of NM BANGLE

• GLE Modelling – NM BANGLE

NM BANGLE - Results

Applications with 1-min real-time data

Atmospheric Ionization – Planetocosmics code (UBERN)

The Planetocosmics code can illustrate particle trajectories affected by a magnetic field and calculate the ionization of the atmosphere during solar energetic particles

Desogher et al., 2005

Possible users of NMDB

NMDB Training Course, September 14-19, 2009, Athens, Greece

Training course Facts & figures

✓ 55 students (PhD, Postdoc) from 16 countries

✓14 lectures & 4 lab courses

✓16 student presentations

✓1 Public talk

✓Visit at the Athens NM

Conclusions

 All NM stations have been upgraded providing high-resolution NM data in real-time

 High resolution NM data in real-time, are being collected and made public in common format

 A state of the art, centralized database with distributed mirrors, have been build

 An innovate registration system for cosmic rays have been implement Application tools using NM data have been developed

• A public outreach website with the scope to inform about cosmic rays and possible effects on humans, technological systems and environment have been created.

 The first ever Training Course on Cosmic Ray Physics and Applications have been realized

NMDB database is an open tool All applications can be used as a service for scientists and for all

Fantastic 4 Effect !

Thank you for your attention ©

Project's website:

http://www.nmdb.eu

