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Article

The concept of Matthew effects in reading development 
refers to a longitudinally widening gap between high 
achievers and low achievers (Stanovich, 1986; Walberg & 
Tsai, 1983). That is, children at a low initial level of perfor-
mance for a given skill are hypothesized to remain at a rela-
tively lower level in this skill and other related skills that 
depend on it. Moreover, their rate of development is slower 
than the rate of development of children with high initial 
levels of performance. If true, the ensuing performance 
divergence, as children with poorer skills fall increasingly 
behind, poses significant challenges for educators and edu-
cational systems.

The Matthew hypothesis invokes reciprocal causation 
among different variables that contribute to reading skills. For 
good readers, enhanced print exposure supports the consoli-
dation of decoding and word recognition skills and helps them 
improve lexical knowledge underlying expert reading perfor-
mance (Joshi, 2005; Stanovich, 1986). In contrast, students 
with reading difficulties are unlikely to accumulate compara-
ble reading experiences and thereby to obtain similar benefits 
from exposure to print. Thus, the gap between initially low-
performing and high-performing students gradually widens, 
leading to a “fan spread” effect (Aarnoutse & Van Leeuwe, 
2000) and divergent performance among subgroups differing 
in starting skill levels (Bast & Reitsma, 1997; Stanovich, 
1986, 2000). Poor readers are consequently more likely to 
show reduced rates of growth of word recognition and fluency 
skills and progressively higher risk to demonstrate deficient 
performance on increasingly more demanding reading com-
prehension tasks (compared to their peers).

In the present study we are not concerned with the recip-
rocal relations among different components of developing 
reading skills. Instead, we focus on the longitudinal exami-
nation of the (within-construct) widening gap among chil-
dren of initially differing performance, which has been 
difficult to establish for various reading skills. Several lon-
gitudinal investigations have attempted to confirm the pre-
dicted empirical patterns arising from the theoretical 
framework of Matthew effects by comparing groups of 
good and poor readers or by more sophisticated statistical 
modeling of individual variability across time. A variety of 
different techniques have been used to analyze longitudinal 
data from a range of sources, with inconsistent and often 
negative findings (e.g., Aarnoutse & Van Leeuwe, 2000; 
Bast & Reitsma, 1997, 1998; Cain & Oakhill, 2011; Huang, 
Moon, & Boren, 2014; Leppänen, Niemi, Aunola, & Nurmi, 
2004; Luyten & ten Bruggencate, 2011; Morgan, Farkas, & 
Wu, 2011; Parrila, Aunola, Leskinen, Nurmi, & Kirby, 
2005; Protopapas, Sideridis, Mouzaki, & Simos, 2011; 
Scarborough & Parker, 2003; B. A. Shaywitz et al., 1995; 
Stainthorp & Hughes, 2004; Thomson, 2003; see recent 
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Abstract
The concept of Matthew effects in reading development refers to a longitudinally widening gap between high achievers and 
low achievers. Various statistical approaches have been proposed to examine this idea. However, little attention has been 
paid to psychometric issues of scaling. Specifically, interval-level data are required to compare performance differences 
across performance ranges, but only ordinal-level data are available with current literacy measures. To demonstrate the 
interpretability problems of contrasting growth slopes, we use data from a longitudinal study of literacy development. We 
explore the possibility of comparing across ages, matched for performance, and we examine the consequences of nonlinear 
growth, temporal lag estimates, and individual differences in developmental progression. We conclude that, although 
conceptually appealing, the widening gap prediction is not empirically testable.
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review in Pfost, Hattie, Dörfler, & Artelt, 2014). Overall, it 
seems fair to say that Matthew effects in reading develop-
ment remain elusive, as their predicted long-term effects 
have proved remarkably difficult to establish empirically. 
Frequently, the data point in the opposite direction, that is, 
of children with low initial reading performance partially 
closing the gap between them and their higher-performing 
peers.

The question of how best to investigate the presence of 
Matthew effects in longitudinal data has received some dis-
cussion in the literature from a statistical point of view (e.g., 
Bast & Reitsma, 1997; Parrila et al., 2005). Various types of 
models and tests have been proposed and considered, yield-
ing little practical difference in outcomes despite differing 
assumptions and operationalizations. An indicative sample 
of recent studies can be found in a special issue of this jour-
nal devoted to the topic of Matthew effects. Several authors 
applied varieties of multilevel growth modeling. For exam-
ple, Protopapas et al. (2011) modeled the growth of raw 

scores and examined group differences in linear time slopes. 
Luyten and ten Bruggencate (2011) and Morgan et al. 
(2011) modeled the growth of item response theory–scaled 
scores; the former examined the covariance between per-
son-level random intercepts and linear time slopes and the 
latter examined the effects of predictor variables on person-
level intercepts and linear time slopes. Besides growth 
modeling, Protopapas et al. (2011) also examined variance 
differences in raw scores across time, and Cain and Oakhill 
(2011) examined group × time interactions in raw scores 
(see Note 1). All of these approaches capitalize on statistical 
comparisons between performance differences across time.

Consider the top left panel in Figure 1, which displays a 
rough schematic of the prototypical Matthew effect, through 
a linear modeling lens. Time flows along the horizontal 
axis; performance on some measure is referred to the verti-
cal axis. Mean performance of two groups is plotted as two 
separate lines, indicating a linear increase in performance as 
a function of time. The two groups differ in performance: 

Figure 1. Diagrammatic illustration of growth comparisons that are relevant for the evaluation of Matthew effects.
Note. Each panel shows the hypothetical performance of a subgroup, high performing atop low performing. The horizontal axis corresponds to time 
(scaling in years or grades). The vertical axis corresponds to the performance measure under examination for potential Matthew effects. See text for 
explanation.
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their distance, in units of the specific measure scale, is d
1
 at 

Time 1 (t
1
) and d

2
 at Time 2 (t

2
).

The idea behind testing for Matthew effects is that if d
2
 

is greater than d
1
 then this is evidence for divergence, that 

is, the lower-performing group is “falling behind” com-
pared to the higher-performing group. When several longi-
tudinal data points are available, permitting reliable 
estimation of growth, direct comparisons between distances 
can be replaced by tests of interaction between slopes (that 
is, the linear effect of time) and groups. This approach 
offers more power, provided that the developmental pro-
gression is reasonably approximated by straight lines.

The question, however, remains: Can any of these statis-
tically sophisticated approaches provide evidence relevant 
to the Matthew effect framework? Here we suggest that a 
very important issue has received less attention than it 
deserves. It seems that a critical obstacle in establishing the 
purported Matthew effect may not be statistical in nature 
but, rather, psychometric. Specifically, we argue that the 
typically used measurement instruments fail to establish a 
metric scale on which differences can be meaningfully 
compared across distant performance levels.

Scaling of behavioral measurements is understood to be 
less than interval, generally conforming to an ordinal scale 
(Cliff & Keats, 2003). Typical practice, as expressed in intro-
ductory statistics and assessment textbooks, involves acknowl-
edgement of psychometric scales as ordinal, followed by total 
disregard of the theoretical and practical implications. 
Occasionally, “approximately interval” or “plastic interval” 
scaling is defined (e.g., Coolican, 1994, p. 193) to justify 
numerical calculations and quantitative statistical compari-
sons. There is a long-standing debate, including very strong 
criticism, concerning the nature of measurement in psycho-
metrics (e.g., Michell, 1997, 2008b, 2009). This may strike 
practicing psychologists and educators as overly philosophi-
cal, not really affecting their applied concerns and methods. 
However, when it comes to longitudinal comparisons of differ-
ences across performance ranges, the scaling problems mani-
fest themselves in pervasive ways that cannot be dismissed.

In the present article we consider the extent to which the 
empirical difficulty in establishing divergence as hypothe-
sized in the Matthew effects framework may be related to 
psychometric issues of measurement. To demonstrate the 
problems, we present and discuss a series of analyses, test-
ing longitudinal performance patterns for differential devel-
opment among core literacy skills. We discuss the effects of 
gradually diminishing improvement, typical of many psy-
choeducational scales, and we examine different ways of 
identifying divergence, focusing on the interpretation of the 
statistical findings. For simplicity, we consider only analy-
ses of raw data; item response theory scaling is specifically 
addressed in the discussion. Our main question is this: To 
what extent is it possible to document the presence of 
Matthew effects as patterns of longitudinal divergence?

Description of Data
The analysis employed data collected through the University 
of Crete longitudinal study on the development of reading 
skills, in which 587 students from 17 public elementary 
schools in Greece, attending Grades 2 to 4 in the 2004–2005 
school year, were followed through Grades 4 to 6 two years 
later. Details about the sample have been reported previ-
ously (Protopapas et al., 2011). The first assessment (Wave 
1) was administered at the spring of the first study year, 
followed by two measurements per school year (fall and 
spring, at roughly 6-month intervals), for 2 more years, 
totaling five measurements per child.

Of the large battery of tests administered to each child, 
only four are used here (more details about each measure can 
be found in earlier reports, e.g., Protopapas et al., 2007, 2011): 
(a) Spelling was assessed by a 60-word list, dictated in order 
of increasing difficulty (see Mouzaki, Sideridis, Protopapas, 
& Simos, 2007, for the psychometric properties of this test). 
(b) Word reading fluency was assessed by a 112-high-fre-
quency-word list, printed on a single sheet in order of increas-
ing length, to be read aloud. (c) Vocabulary was assessed with 
an adaptation of the Peabody Picture Vocabulary Test–Revised 
(PPVT; Dunn & Dunn, 1981; see Simos, Sideridis, Protopapas, 
& Mouzaki, 2011, for details of the adaptation and psycho-
metric analysis). Children were asked to identify one picture 
out of four that best represented the word pronounced by the 
examiner. (d) Reading comprehension was assessed with 
Subtest 13 of the Test of Reading Performance (Padeliadu & 
Sideridis, 2000; Sideridis & Padeliadu, 2000), which includes 
six passages of ascending length and difficulty, each followed 
by two to four multiple-choice questions.

In the following graphs and tables, raw performance on 
each measure is always reported as follows: number of cor-
rect words for spelling, number of correct words within 45 
seconds for fluency, raw PPVT total score (i.e., number of 
correct choices plus baseline) for vocabulary, and number of 
correct choices (answers to questions) for comprehension. 
Raw data points are plotted in Figure 2. Table 1 lists the cor-
relations between all measures at Wave 1 above the diagonal. 
Partial correlations, below the diagonal, control for grade.

The top and bottom quartiles of each measure at Wave 1 
formed the corresponding “high-performing” and “low-per-
forming” groups. That is, the low-performing group included 
the lowest 25% of children (i.e., those scoring below the 25th 
percentile), whereas the high-performing group included the 
top 25% (i.e., those scoring above the 75th percentile). Thus, 
in each analysis half of the data are used, excluding the mid-
dle 50% “average” performers (depending on the corre-
sponding grouping variable). Comparison of the top against 
the bottom quartile compounds positive and negative 
Matthew effects, because any “rich-get-richer” effects of the 
top quartile relative to the average performance are effec-
tively added to any “poor-get-poorer” effects of the bottom 
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quartile relative to the average performance. Therefore, our 
choice of subgroups maximizes the power to detect diver-
gence patterns, if any exist.

It should be noted that, because the sample is a commu-
nity cohort, low-ability subgroups are not necessarily 
learning disabled. However, a substantial proportion of 
children in the low-ability groups are at significant risk for 
learning disability. In particular, data from another Greek 
community sample suggest that low word reading fluency 
and especially poor reading comprehension are associated 
with other cognitive deficits such as processing speed, 
working memory, sustained attention, and executive skills, 

as well as with comorbid symptoms of attention deficit 
(Papaioannou et al., 2014).

To avoid problems related to regression to the mean, 
stemming from conflating grouping and dependent vari-
ables, initial-performance groups were formed on the basis 
of correlated but distinct measures. Because grouping was 
done on the basis of Wave 1 measures, only Wave 1 correla-
tions are pertinent to variable selection. Based on the 
observed pattern of correlations, fluency and spelling served 
as grouping variables for each other, as did vocabulary and 
comprehension. The longitudinal performance on each mea-
sure by each cohort is plotted in Figure 3 by the dotted lines, 
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Figure 2. Raw data for the four measures.
Note. Each line connects the data points of a single child over the five measurement waves.

Table 1. Correlations Among Measures at First Measurement (Wave 1).

Measure 1 2 3 4

1. Word spelling .81 .51 .47
2. Reading fluency .73 .43 .41
3. Receptive vocabulary .33 .23 .61
4. Reading comprehension .36 .29 .54  

Note. Pearson correlation coefficient is above the diagonal. Partial correlation coefficient, controlling for grade, is below the diagonal.
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grouped on the basis of high versus low performance on the 
corresponding selection measure. For example, in the top-
left panel we see the spelling performance of the bottom flu-
ency quartile versus the top fluency quartile. Children from 
each cohort are distinguished by marker shape: triangles, 
circles, and squares mark performance for children in the 
Grade 2, 3, and 4 cohorts, respectively. The performance of 
the middle 50% (average performers) is also plotted in each 
panel for reference, as a faint dotted trail between the top and 
bottom quartile (low and high performers).

Approaches to Establishing Matthew 
Effects
The data were modeled using linear mixed-effects models 
(see the appendix). Initially, the data shown in each panel of 
Figure 3 were fitted by a single model, in which the fixed 
effects of grade cohort (3 levels), group (high vs. low), and 
wave (linear) were allowed to interact. A significant triple 

interaction would suggest that group × wave interactions 
were not equal across cohorts. As it turns out, grade cohort 
interacted with longitudinal differences between perfor-
mance groups only for spelling, χ2(2) = 16.79, p < .0005, 
indicating that growth differences between performance 
groups were not fully homogeneous across cohorts.

Slope Comparisons by Cohort
To examine differential growth directly within each cohort, 
grade cohorts were examined individually. Models includ-
ing a group × wave interaction were compared to restricted 
models excluding the interaction (see the appendix). Table 2 
lists the outcome of this test series, including modeled 
slopes (linear effects of wave) for each performance group. 
In these tests, significant negative interactions correspond 
to convergence of the two performance groups within each 
cohort (indicated with “C”), whereas positive ones corre-
spond to divergence (indicated with “D”). There is scant 

Figure 3. Condition means (unstandardized data; filled markers joined by dotted lines) and modeled longitudinal progression (gray 
solid lines) for each dependent variable (grouping variable indicated within panel), for the cohorts of Grades 2 (triangles), 3 (circles), 
and 4 (squares).
Note. Unfilled light gray circles plot modeled intercepts for each cohort subgroup. The light gray dotted lines with light gray markers in between the 
high- and low-performing subgroups display the performance of the middle 50% of the sample that is not included in the analyses.
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evidence for either pattern of interaction but the little there 
is suggests that patterns of divergence may be discernible in 
spelling whereas patterns of convergence seem more likely 
in comprehension. Table 2 also lists the results of the same 
tests when the selection variable is the same as the outcome 
variable, to demonstrate the potential effect of regression to 
the mean, namely an increased rate of convergence.

The clarity of the conceptual picture reflected in these 
analyses belies a serious weakness arising from the nature 
of the measurement process. Consider the top right panel of 
Figure 1: At time t, the performance of the “low” group is P

1
 

and the performance of the “high” group is P
2
. To base com-

parisons on the difference P
2
−P

1
, as if it were a distance, 

amounts to an implicit assumption of constant-interval scal-
ing. That is, a 1-unit difference around P

1
 is supposed to be 

equivalent to a 1-unit difference around P
2
. Unless this is 

the case, direct numerical comparison between two slopes—
or two differences—is meaningless. It is not, however, typi-
cally established whether scales used to evaluate reading 
development in general, and Matthew effects in particular, 
satisfy this criterion. It is unclear whether it may be possible 
in principle to establish such invariance, given the nature of 
the constructs under measurement and the scales used to 
assess them. The problem is not restricted to linear model-
ing approaches. It is equally necessary to establish metric 
equivalence of changes across performance levels, regard-
less of the chosen statistical model. Because the whole point 
is to document (or refute) a “widening gap,” we need a valid 
measure of gap width. The same point applies to methods 
attempting to establish differences in measures of disper-
sion (e.g., the “fan spread” pattern); metric equivalence 
across performance levels is still required.

Consider a hypothetical case in which a group of low-
achieving children score “two years behind” in some scale 
of interest, that is, a sizeable achievement gap. For example, 

a child in this group might answer correctly questions of 
difficulty up to “Grade 2” level, whereas children in the 
comparison group answer correctly questions of difficulty 
up to “Grade 4” level. Now, a “comparable rate of develop-
ment” would be claimed if the low-achieving children 
improve by as many points as the higher-achieving children 
over the same period of time. Say, within 6 months the com-
parison group achieves a 2-point increase in raw score by 
answering correctly two questions beyond Grade 4 level. 
The comparable 2-point improvement for the low-achiev-
ing children would be to answer correctly two questions 
beyond Grade 2 level. But it is not clear that there is any 
sense in which two Grade 5–level questions can be consid-
ered equivalent to two Grade 3–level questions. In short, the 
meaning of interactions or slope comparisons is unclear 
unless they refer to largely overlapping performance ranges.

In terms of our data, the interpretability of the interac-
tions (or lack thereof) indicated in Table 2 is severely com-
promised by the lack of an established metric equivalence 
between the performance levels of the “low” and “high” 
groups.

Slope Comparisons Across Cohorts
To address this grave shortcoming, a potential solution 
might be to consider growth slopes from a common refer-
ence point. By definition, Matthew effects refer to groups 
differing in initial performance, so this sounds prima facie 
contradictory. However, differential growth need not be 
tested at equal ages. Instead, we may identify appropriate 
ages in the high-performing and the low-performing sub-
groups, at which they have similar performance. 
Traditionally this approach is referred to as a reading-level 
match design. The age difference would be the develop-
mental lag at that point. Comparing growth of the two 

Table 2. Differential Growth Between High-/Low-Performing Groups .

Grade 2 cohort Grade 3 cohort Grade 4 cohort

Growth E Interaction Growth E Interaction Growth E Interaction  

Dependent 
variable

Grouping 
variable High Low F2(1) p C/D High Low F2(1) p C/D High Low F2(1) p C/D

Spelling Fluency 3.9 2.3 33.71 .000 D 2.5 1.9 3.64 .056 1.9 1.8 .01 .928  
Fluency Spelling 5.0 4.8 .34 .558 3.7 4.0 .50 .477 3.5 2.8 3.30 .069  
Vocabulary Comprehension 5.6 7.1 6.63 .010 C 4.3 4.9 .83 .361 3.5 4.7 2.85 .091  
Comprehension Vocabulary 0.8 1.1 2.64 .104 0.5 0.9 7.32 .007 C 0.4 0.8 10.13 .001 C

Spelling Spelling 3.7 2.7 9.76 .002 D 2.1 2.0 0.12 .732 1.2 2.0 12.54 .000 C
Fluency Fluency 4.8 4.6 .13 .719 3.2 2.6 1.04 .308 3.3 3.1 .31 .580  
Vocabulary Vocabulary 3.8 9.7 92.52 .000 C 3.0 6.6 49.64 .000 C 1.7 5.3 23.94 .000 C
Comprehension Comprehension 0.3 1.7 61.36 .000 C 0.0 1.2 40.26 .000 C 0.0 1.0 32.66 .000 C

Note. For each combination of dependent and grouping variable, group × wave interactions are examined in separate analyses for each grade cohort. 
C = convergence; D = divergence. Rows on the bottom part of the table list the results of analyses with grouping variable being the same as the 
dependent variable. These analyses are strongly subject to regression to the mean, evident in increased “convergence” outcomes.

 by guest on November 26, 2014ldx.sagepub.comDownloaded from 

http://ldx.sagepub.com/


Protopapas et al. 7

groups from that point on might inform as to whether they 
are converging or further diverging. The common starting 
point, or at least nearby range along the critical dimension, 
obviates the scaling issue.

In Figure 4, the same panels as in Figure 3 are plotted 
again, highlighting performance of two subgroups: The 
low-performing subgroup of the Grade 4 cohort is displayed 
against the high-performing subgroup of the Grade 2 cohort. 
It is seen that, in each case, performance of these two sub-
groups is comparable, if not fully overlapping. Since the 
initial performance levels for these two subgroups are about 
the same, ordinal relations suffice for the comparison and so 
their developmental trajectories can be directly tested on 
the comparable intervals around their common intercept.

The modeled slopes of the growth trajectories high-
lighted in Figure 4 are included in Table 2. The interaction 
between wave and group for these pairs of growth lines, 
tested via model comparison, indicated significant diver-
gence for spelling, χ2(1) = 46.36, p<.0005, and fluency, 
χ2(1) = 29.67, p<.0005, but no significant difference for 
vocabulary, χ2(1) = 1.54, p = .215, or comprehension,  

χ2(1) = 0.13, p = .720. These findings suggest that spelling 
and fluency in the lowest-performing subgroup develop at 
lower rates than in the highest-performing subgroup, con-
sistent with a Matthew effect. As with the preceding analy-
sis, this approach yields no evidence for Matthew effects for 
vocabulary and reading comprehension.

Developmental Slope Invariance
Comparisons across cohorts are vulnerable to changes in 
children’s background experience, educational practices and 
materials, or other social and situational factors (“cohort 
effects”; see, e.g., Coolican, 1994, pp. 160–161). Moreover, 
the aforementioned analyses hinge on the stability of the 
growth rate of the high-performing subgroup, which serves 
as reference against which to evaluate the relative growth of 
the low-performing subgroup. If the high performers did not 
improve at a reasonably stable rate then the question of 
whether the low performers improve at a similar or lower 
rate would be difficult to examine using these data, because 
there would not be a constant reference to compare to. So, 

Figure 4. The same panels as in Figure 3, in which the modeled intercepts and slopes of only the high-performing subgroup of the 
Grade 2 cohort and the low-performing subgroup of the Grade 4 cohort are displayed (in black).
Note. Condition means for all subgroups are plotted in gray, joined by dotted lines, as in Figure 3.
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this question reasonably arises: Do the data actually justify 
the assumption of constant improvement for the high-per-
forming groups, against which the improvement of the low-
performing groups can be judged? Although a consistent 
developmental trajectory would not conclusively establish 
the required psychometric reference discussed above, it 
might nevertheless serve to partially alleviate the scaling 
concerns, in conjunction with the analysis of slopes in over-
lapping performance ranges (across cohorts).

Consider the bottom left panel of Figure 1. The perfor-
mance of the high-performing group is plotted with a decel-
erating slope, consistent with approaching “plateau” 
performance. The slope of growth for this group is given by 
angle a

1
 at time t

1
 and angle a

2
 at time t

2
. A sizeable initial 

rate of increasing performance appears substantially 
reduced later on—subject to the interpretational difficulties 
concerning nonoverlapping performance ranges, as dis-
cussed above. The diminishing slope would invalidate any 
attempt purported to assess the growth of the high-performing 
group, since a reliable estimate of slope presupposes stable 
linearity (see Note 2).

The stability of growth rates of the high-performing sub-
groups across the age range considered in this dataset was 
examined in two ways: First is between cohorts, by testing 
the interaction of cohort with the linear effect of wave. In 
this test, a nonsignificant interaction would indicate statisti-
cally equivalent slopes of linear growth for the different 
grade cohorts, that is, constant rate of growth throughout 
the entire age range in the data. Second is within cohorts, by 
testing the quadratic effect of wave on top of the significant 
linear effect. In this test, a nonsignificant quadratic term 
would indicate approximately linear growth across the five 
measurement points covering a 2-year interval. The former 
test is more demanding because it concerns a larger age 
range. The latter test is an absolute prerequisite to the inter-
pretation of any slope comparisons because linear slope dif-
ferences would be impossible to interpret in the presence of 
quadratic effects.

Table 3 shows the results of both tests. It is clear that the 
more demanding criterion is not met as the high-performing 

groups develop at significantly less steep rates in higher 
grades (the corresponding slopes are listed in Table 2 and 
displayed graphically in Figure 3). This finding raises con-
cerns regarding the interpretability of the slope comparison 
across cohorts.

The results of the within-cohort tests are only slightly 
more reassuring, as several of the growth curves apparently 
exhibit significant quadratic slopes. Negative coefficients 
predominate, consistent with diminishing improvement 
across waves. Vocabulary and spelling exhibit consistent 
decelerating growth across cohorts, occasionally reaching 
significance within cohorts as well. Fluency stands out 
insofar as there is no evidence of within-cohort growth 
deceleration, with quadratic effect estimates being nonsig-
nificant or positive. Still, even for fluency there is a signifi-
cant interaction of wave by cohort, that is, between-cohort 
growth deceleration.

In sum, none of our measures exhibited stable linear 
growth for the high-performing group, even though flu-
ency came close, at least within-cohort. It seems that the 
gradually diminishing rate of improvement for the high-
performing group fails to support its status as a fixed refer-
ence against which the low-performing group can be 
gauged. If the performance of a high-performing subgroup 
of children does not improve at a constant rate, this renders 
questionable any interpretation given to relative improve-
ments of lower-performing subgroups in the same or dif-
ferent cohorts.

Moreover, a more insidious problem becomes evident, 
given the discussion of ordinal scaling. The very notion of 
linear growth hinges on the assumption of equal amounts of 
improvement over equal time intervals, as this is what “lin-
ear” means. If performance is not measured on a constant-
interval scale then amounts of improvement cannot be 
meaningfully compared across performance ranges. Thus it 
is in principle impossible to test whether amounts of 
improvement are equal, and therefore it is impossible to jus-
tify the assumption of linearity. In other words, the scaling 
issue seems to undermine the notion of growth curve analy-
sis more generally.

Table 3. Slope Invariance Across Grades.

Dependent 
variable

Grouping 
variable

Cohort × wave interaction

Quadratic effect of wave

Grade 2 cohort Grade 3 cohort Grade 4 cohort

E
2–3

E
3–4

F2(2) p E F2(1) p E F2(1) p E F2(1) p

Spelling Fluency −1.45 −0.68 53.49 .000 −0.22 4.40 .036 −0.41 10.12 .001 −0.34 8.58 .003
Fluency Spelling −1.36 −0.23 16.36 .000 −0.01 0.00 .966 0.43 4.03 .045 −0.04 0.03 .870
Vocabulary Comprehension −1.23 −0.87 17.20 .000 −0.68 5.79 .016 −0.05 0.03 .860 −0.07 0.08 .784
Comprehension Vocabulary −0.29 −0.10 8.28 .016 −0.12 2.20 .138 −0.06 0.73 .394 0.01 0.03 .853

Note. Slope comparisons are displayed for the high-performing groups only. Left: Interaction between cohort and the linear effect of wave in analyses 
including all 3 grade cohorts. Right: Quadratic effects of wave in separate analyses for each grade cohort.
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Age Analysis by Performance Level
To circumvent the problem of performance scaling, an 
alternative suggestion might be to establish a temporal ref-
erence instead. That is, instead of comparing performance 
levels at any given age, one might compare ages at fixed 
performance levels. Absolute lags could then be established 
at predetermined time points, on the basis of which to base 
assertions regarding “catching up” or “falling behind.” The 
bottom right panel of Figure 1 illustrates this principle. At 
time t

1
, the low-performing group exhibits a certain perfor-

mance. We may calculate the corresponding time at which 
the high-performing group exhibits this mean performance. 
The difference between the two times is Lag 1 (l

1
 on the 

diagram). Similarly, at time t
2
 there is a temporal Lag 2 (l

2
 

on the diagram) in the attainment of the new performance 
level. These lags are affected by the decelerating slopes of 
the growth curves as much as by their differing angles, or 
even more, but they remain interpretable nevertheless, as 
they are expressed in absolute time (or grade) units. If Lag 
2 is significantly longer than Lag 1 then the low performers 
are falling behind, that is, there are Matthew effects. If Lag 
2 is significantly shorter than Lag 1 then they are catching 
up. All we would need to test the significance of this differ-
ence would be an estimate of variability along time, to 
define confidence intervals for the lags.

Unfortunately, it would be very difficult to apply this 
idea in realistic situations. Datasets are typically collected 
to cover a range of ages, by sampling children at predeter-
mined time (or grade) points. The distribution of scores for 
each time point is then properly calculated and compared to 
other time points. To perform the reverse analysis we would 
need to sample performance levels and record all ages that 
may achieve them, a distinctly unachievable feat. Figure 5 
illustrates the problem. We have plotted mean grade levels 
for a range of performance by averaging the estimated time 
points of the children achieving this performance. The time 
points were estimated by first computing a linear model for 
each child and then interpolating along the time dimension 
within the range of times and scores recorded (no extrapola-
tion outside the observed range). We then calculated the 
mean time at which each score was achieved, based on the 
children models that included this score in their observed 
ranges. These means are in meaningful time (i.e., grade) 
units.

However, as seen in Figure 5, the rate of increase in 
mean times is much lower than the rate observed in the 
underlying data. The reason is that average scores were 
recorded in a much larger range of ages than more extreme 
scores. In particular, estimates for low and high scores are 
obtained from nonrepresentative age samples. For example, 
consider spelling (top left panel). Raw scores around 30 
were recorded by many children in every grade, whereas 
scores less than 20 were only recorded by a few children, 

mostly from the Grade 2 cohort, and scores above 40 were 
recorded mainly by children from the Grade 4 cohort. 
Taking stock of the overall trends in the raw data (cf. Figure 
2), it seems reasonable to expect that many more low scores 
would likely be recorded in earlier grades and high scores in 
later grades, had we sampled them. The lack of data points 
before the spring of Grade 2 and after the spring of Grade 6 
severely limits the range of times (ages) contributing to the 
extreme score distributions much more than it limits the 
range of times (ages) contributing to average score distribu-
tions. This distorts the estimated means, rendering the 
resulting progression meaningless and therefore useless for 
the estimation of score-referenced lags.

Would it be possible to achieve the desired objective by 
sampling a wider range of ages? Although this might help 
diminish the sampling problem it would hardly eliminate it, 
due to inherent floor and ceiling effects: On one hand chil-
dren do not produce meaningful spelling scores before 
Grade 1. On the other hand it is impossible to improve 
beyond spelling every word correctly, which is the level 
approached by the better spellers (not uncommon in rela-
tively transparent orthographies). So the extreme scores 
will always be undersampled and hence the computed 
curves will be of doubtful reference value. Even though the 
temporal reference appears theoretically attractive, it does 
not seem workable in practice, with actual tests and realistic 
data distributions.

General Discussion
The results of our search for Matthew effects remain largely 
equivocal. Consistent with most previous studies (e.g., 
Aarnoutse & Van Leeuwe, 2000; Bast & Reitsma, 1997, 
1998; McCoach, O’Connell, Reis, & Levitt, 2006; Parrila et 
al., 2005; Scarborough & Parker, 2003; Thomson, 2003; but 
cf. Cain & Oakhill, 2011; Hart & Risley, 1995), we might 
conclude in favor of convergence, rather than divergence, 
for vocabulary and comprehension, the two least con-
strained of our measures (cf. Paris, 2005). In contrast, we 
might note some evidence for divergence in fluency and, 
especially, spelling (both being relatively constrained skills 
in the sense of Paris, 2005), again consistent with some pre-
vious reports (e.g., Bast & Reitsma, 1997, 1998; but cf. 
Aarnoutse & Van Leeuwe, 2000; Thomson, 2003). Overall, 
our results are consistent with the literature in producing 
little and inconsistent evidence for Matthew effects.

What do these findings mean for our understanding of 
literacy development? Having gone through all these analy-
ses, can we draw any conclusions with confidence? The 
aforementioned discussion suggests that we cannot. 
Specifically, the interpretability of the findings remains 
questionable, primarily due to pervasive scaling issues. The 
problem does not appear amenable to rectification by any 
sort of statistical procedure, as the scaling issues inherently 
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plague most, if not all, available psychoeducational mea-
sures. It seems that the main obstacle in establishing the 
purported Matthew effects may be psychometric in that our 
measurement instruments fail to establish a metric scale on 
which differences can be meaningfully compared across 
performance levels.

There is a clear sense in which a child measuring 150 
centimeters is 50% taller than a child measuring 100 cm: 
One can use a single 50-cm long stick, which will fit exactly 
3 times in the former case and 2 times in the latter. 
Unfortunately, there is no sense in which a child achieving 
a score of 150 on the PPVT is 50% more “vocabular” than 
a child achieving 100. The numbers are deceiving because 
the vocabulary construct is not a true interval scale. All we 
can be sure is that the higher score corresponds to higher 
vocabulary skill in the sense that the former child surpasses 
more same-age children than the latter child—the exact 
proportion depending on the specific score distribution for 
the norming group. The problem is that our measures are 
constructed and calibrated to yield quantitative estimates 

referenced against the norming population only. Thus, we 
can be reasonably confident in the percentage of children in 
the reference sample that perform better than a given score 
but we cannot ascribe any further quantitative properties to 
this score. Yet our psychometric scales provide numerical 
scores, and this tricks us into the impression that they are 
actual numbers, with quantitative structure (Michell, 2009), 
that directly map a constant-interval scale onto the theoreti-
cal constructs under study. This is far from being the case.

The scaling issue is inherent in the types of measures 
used in psychoeducational assessment and is not a particu-
lar flaw of classical psychometrics that can be alleviated 
through item response theory (IRT) methods. IRT scaling 
results in a latent construct, corresponding to individual 
ability (θ), which is presumed to be constant-interval and is 
treated accordingly as a quantitative variable. This θ con-
struct maps onto the mental construct of interest to the 
extent the measure is valid. Unfortunately, evidence of good 
model fit does not constitute evidence that the IRT latent 
construct is indeed constant-interval, as presumed, because 

Figure 5. Distribution of ages (in grade units) per score for each measure.
Note. Gray lines in the background display individual modeled linear growth (one line per child). Unfilled black circles show mean grade at the displayed 
score; horizontal black lines plot corresponding standard deviation.
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ordinal relations among abilities and difficulties suffice for 
adequate model fit (Michell, 2008a, 2009). In other words, 
IRT scaling is thought to be constant-interval only because 
it is a priori assumed so.

Even if the IRT latent construct were indeed constant-
interval, it is unknown (and unknowable) whether it would 
map uniformly (i.e., linearly) onto the mental construct of 
interest (cf. de Ayala, 2008). If it does not, then our measure 
is not on a constant-interval scale with respect to what we 
are trying to measure. Suppose there is a “reading ability” 
mental construct and a valid IRT-scaled instrument to assess 
it. At issue here is whether equal differences in θ correspond 
to equal differences in reading ability. Because the IRT 
model will fit as long as ordinal relations among selected 
items hold, interval scaling of θ—which is a priori assumed 
to hold and is a prerequisite to running the analysis—is 
uninformative with respect to the scaling of the mental 
construct.

Moreover, although IRT calibration is theoretically 
invariant, in practice it is sample-referenced and depends on 
culling of (a possible majority of) poorly fitting items and 
on assumptions about goodness of fit. As explained by Cliff 
and Keats (2003, p. 20), interval scaling is only possible 
when item characteristic curves never cross, a goal only 
attainable for narrowly constrained sets of items and popu-
lations, and when multiple-choice guessing rates are con-
stant across ability, which is unlikely to be true. In general, 
differences in item difficulty map onto differences in prob-
ability of correct response by different-ability children, but 
ability is not a true interval-scale construct on which mean-
ingful (noncircular) quantitative differences can be calcu-
lated. In other words, there is no absolute sense in which 
two children with θ

1
 = −2 and θ

2
 = −1 are “equally differ-

ent” with respect to another pair of children with θ
3
 = 1 and 

θ
4
 = 2. All we may conclude is that there are (ordinal) dif-

ferences in the sets of items that are likely to be answered 
correctly by each child, as in any other psychometric scale.

It follows from this analysis that the same criticism 
applies to any composite score derived from multiple mea-
sures (for example, combining word and nonword accuracy 
and fluency, or word decoding and comprehension), 
whether IRT scaled or not, because the arbitrary scale of the 
composite is removed from any grounding that might pro-
vide the necessary interval reference. All of this makes little 
difference in practice for most psychometric purposes, and 
is generally no cause for concern among educational psy-
chologists. However, when it comes to comparing differ-
ences among nonoverlapping ranges of performance then 
interval scaling attains crucial importance. If psychometric 
scaling tricks inherently cannot address the core of the 
problem, is there anything that can be done?

We contend that the problem lies with the notion of 
“equal progress” itself, which is ill-conceived from an 
empirical standpoint. How is a given amount of progress 

defined across grades and performance levels? As noted 
above, a 2-point increase in raw score means different 
things at different performance levels (e.g., two items of 
different difficulty and possibly altogether different proper-
ties). There is no clear sense in which two different words 
may constitute equivalent “one-word differences.” For flu-
ency measures, this problem can be somewhat reduced, by 
using reading lists (or texts) containing only easy words, all 
at about the same level. In that case the reading rate could 
meaningfully be referenced to actual “words per minute” 
because similar words would be counted against absolute 
time. This, however, does not seem possible for the other 
measures.

Moreover, scaling is often entirely arbitrary, and differ-
ent reasonable decisions may lead to different conclusions. 
For example, if a child reads 100 words per minute (wpm) 
at one time point, and then 120 wpm at a different time 
point, this can be expressed as a 20-wpm or as a 20% 
increase. If another child reads 50 wpm at the first time 
point and 60 wpm at the second time point, this can likewise 
be expressed as a 10-wpm or as a 20% increase. By raw 
counts, there is a Matthew effect, as the second child fails to 
improve as much as the first one, apparently “falling 
behind.” However, by relative proportions, both children 
progressed equally, so there is no Matthew effect. This 
problem is not limited to fluency assessments, but will be 
apparent with any rescaling operation, such as transforma-
tions commonly (and reasonably) applied to bring the data 
in closer approximation to the normal distribution, or to 
express a score in a more easily understood unit or range. If 
an important outcome hinges on such arbitrary scaling deci-
sions then the value of any general conclusions seems 
greatly undermined.

A partial remedy of the scaling problem may be pro-
vided by comparing development in overlapping ranges. It 
is even possible to approximate interval scaling based on 
ordinal data, when performance ranges are fully overlap-
ping (Mehta, Neale, & Flay, 2004). In this case, diverging 
slopes would indeed be consistent with further “falling 
behind” of the low-performing group. However, this com-
parison presupposes stability of the development rate that 
serves as reference. Herein lies the second major difficulty 
in the examination of Matthew effects. Measurement 
scales are typically normed to conform to certain distribu-
tions within age groups, not across them. Because there is 
a certain amount of ground to cover in skill development, 
which is gradually attained, and because there is more 
ahead than behind at the earlier levels, psychoeducational 
measures typically level off somewhat at higher ages. This 
is not a flaw in our versions of the tests. For PPVT, the 
quadratic effect over age in our sample is similar to that 
observed in a large U.S. study (Farkas & Beron, 2004; see 
Simos et al., 2011, Table 4, for the comparison). The 
increasingly shallower slope of growth curves for the 

 by guest on November 26, 2014ldx.sagepub.comDownloaded from 

http://ldx.sagepub.com/


12 Journal of Learning Disabilities 

measures we employed (compounded by within-cohort 
quadratic effects in several cases) prevents safe conclu-
sions regarding the cross-cohort slope comparisons. This 
problem may be handled by norming future instruments to 
produce strictly linearly increasing mean raw scores as a 
function of age. Although this approach would not solve 
the scaling issue, and would not allow comparisons of dif-
ferences across performance levels, it would permit mean-
ingful comparisons of growth slopes between groups with 
similar performance (see Note 3).

All of the aforementioned maneuvering around mea-
sures and scores would be gratuitous if we could directly 
examine the meaningful quantity of interest, which is the 
amount of time a given group may be said to lag behind, in 
relation to some—appropriately defined—reference group. 
Unfortunately, to compare time lags we need estimates of 
variation along the time dimension so that they can be used 
to determine effect sizes in the temporal dimension. If we 
could somehow measure lags l

1
 and l

2
 in the bottom right 

panel of Figure 1 we could confidently determine whether 
the low-performing group is catching up or falling behind. 
Unfortunately, reliable estimates of dispersion over the time 
dimension, for given scores, seem impossible to attain 
given (a) practical constraints of sampling and (b) the time-
limited nature of the development of skills under study. This 
realization serves to remind us of the fragility of the con-
structs themselves and, in particular, of the Matthew effects 
framework as a potential empirical research tool rather than 
merely a conceptual device for studying skill growth and its 
educational implications.

It should be noted that none of the issues discussed above 
are specific to particular studies or particular languages. 
The methodological criticisms outlined here do not depend 
in any way on properties of specific languages or orthogra-
phies. Although the data used for illustration originated in a 
Greek sample, the problems arise because of psychometric 
issues that are present in psychoeducational tests in general, 
and would apply equally to English as well as other 
languages.

For example, a straightforward application of our argu-
ments to the study of Protopapas et al. (2011) in Greek 
would indicate that the comparison of raw score differences 
across time points is based on an implicit assumption of 
constant interval scaling which, as we have argued, is not 
valid. Moreover, in the same study, modeling growth in 
reading comprehension using linear slopes fails on two 
counts: First, potentially differential curvilinear growth was 
ignored, thereby invalidating the between-groups compari-
son. And second, the notion of linearity itself cannot be 
established in the absence of constant interval scaling, thus 
invalidating the slope comparisons more generally. Similar 
arguments can be raised in relation to studies in other lan-
guages, such as that of Parrila et al. (2005), in which both 
Finnish-speaking and English-speaking children were 

examined, contrasting a highly transparent with an opaque 
orthography. Parrila et al. did model curvilinear growth via 
quadratic models, but they examined growth trajectories 
using latent growth modeling, in effect comparing rates of 
growth, i.e., score differences, across performance ranges. 
Moreover, they compared variances across measurement 
points. Both of these comparisons are undermined by the 
lack of interval scaling in the reading measures, in both 
Finnish and English, as the critical notion of “equal growth” 
cannot be established without a constant-interval scale. 
Therefore, neither “linear growth” nor “differences in 
growth” can be empirically demonstrated on the basis of the 
available data, thereby largely invalidating any conclusions 
drawn on the basis of the reported analyses, including the 
reported latent growth classes of Canadian and Finnish 
children.

To the extent that comparisons of performance across 
ranges cannot be used to establish an increase or decrease in 
achievement difference, meta-analytic approaches to stud-
ies of the purported widening gap are no more interpretable 
than the studies they are based on. Thus, comparisons 
between studies reporting increasing vs. decreasing achieve-
ment differences, such as that of Pfost et al. (2014), are sub-
ject to the same criticisms stemming from the lack of 
constant interval scaling. The suggestion that “highly con-
strained skills lead to a compensatory developmental pat-
tern” (p. 30) is naturally limited by the psychometric scales 
used to assess the skills in question in the original studies. 
The overall pattern of substantial heterogeneity in the find-
ings reported in this meta-analysis may be largely attributed 
to noise due to the inadequate scaling properties of the psy-
choeducational assessment instruments, which may cause 
unsystematic apparent differences in some performance 
ranges but not others.

Measurement problems are not our sole impediment to 
understanding relative rates of reading development and 
documenting longitudinal convergence or divergence. 
Further difficulties stem from a lack of conceptual clarity 
regarding developmental progression and insufficient 
empirical foundation of “typical” developmental curves. In 
most measurable (i.e., relatively simple) cognitive con-
structs a more-or-less standard pattern is observed: Within 
each individual an initial period of rapid growth is followed 
by a period of relatively diminished growth rate, a pro-
tracted period of relatively stable performance (possibly 
with slow growth or decline) and, finally, a period of decline 
(often associated with “old age”). Individual differences in 
performance are seen at all points along this progression 
except at the initial zero point. Now, if children start equal 
(at zero) yet exhibit different performance levels at some 
later point in time, this means that they must have pro-
gressed at a different developmental rate at least for some 
time. That is, individual differences in performance entail 
individual differences in rate of growth; specifically they 
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entail divergent performance at earlier times. Therefore, the 
“initial” differences postulated (or observed) in the Matthew 
effects framework are hardly initial as they must reflect 
divergent performance already. In this sense the Matthew 
effect can be said to be necessarily present in any skill 
where individual differences are present.

The ensuing phase, in which growth typically slows 
down, is the one usually examined for “Matthew effects,” 
that is, for divergent growth. At this point, differences in 
performance no longer entail differences in growth because 
a gap is already established. But the way growth is modeled 
within this period can easily obscure informative individual 
differences in developmental patterns caused by relative 
timing rather than differential growth. For example, early 
deceleration of individuals who reached their level of stable 
performance earlier may cause other individuals to appear 
to be “catching up” even though they may only be slower to 
reach their own phase of stable performance. Conversely, 
late initial rapid growth will appear sigmoid-shaped com-
pared to earlier-rising individual developmental curves. 
From the point of view of Matthew effects, such individual 
differences in developmental timing are reduced to ques-
tions of convergence or divergence, thus obscuring the cru-
cial role of individual growth curves, which remain largely 
unstudied. To address this problem it will be necessary to 
understand individual skill development in finer temporal 
resolution and to determine appropriate models to track 
growth at the level of the individual.

In Figure 6 we plot hypothetical growth curves for two 
pairs of children, assuming for a moment that performance 
can be meaningfully measured on a constant-interval scale. 
The pair on the left exemplifies the “developmental lag” situ-
ation, in which the second child follows an identical develop-
mental curve but is somewhat delayed in time. In contrast, for 
the pair on the right a more “genuine” performance difference 

is seen insofar as the lower-performing child never catches up 
to the level of the higher-performing one. Note that the pattern 
of growth differences along these distinct developmental 
paths hardly distinguishes among them. In both cases, an ini-
tial d

1
 > 0 is consistent with early-phase divergence, followed 

by further divergence as d
2
 > d

1
, demonstrating full-blown 

“Matthew effects.” Further on, in both cases d
3
 > d

4
, consis-

tent with later-phase convergence, that is, “catching up,” com-
pletely missing the crucial distinction between these 
developmental paths. In other words, even if the interval scal-
ing problems were somehow addressed, a focus on quantifica-
tion of the gap—either directly or via measures of local 
dispersion—would not achieve the desired goal of establish-
ing how reciprocal relations among reading skills and reading 
practice may produce wide disparity in individuals’ later read-
ing outcomes.

Within the field of learning disabilities, the “Matthew” 
concept was initially introduced to partly account for the per-
sistence and often apparent worsening of reading achieve-
ment in many students who present with early signs of 
difficulty in acquiring basic reading skills relative to their 
average-and above-average performing peers (Stanovich, 
1986). The notion that the risk for meeting criteria for reading 
disability may increase over time in these students and may 
comprise more complex and increasingly challenging skills 
(such as reading comprehension) provided further support 
for the need for early interventions targeting a wider range of 
poor readers—including those who perform in the borderline 
range on phonological decoding and word recognition tasks 
in the early grades. Several studies have established that low 
performers are unlikely to show adequate progress in subse-
quent grades unless they receive systematic and targeted 
interventions (e.g., S. E. Shaywitz et al., 1999; Snowling, 
Muter, & Carroll, 2007). Early learning difficulties can have 
critical, negative long-term educational, occupational, and 

Figure 6. Diagrammatic illustration of developmental growth curves.
Note. Each panel shows the hypothetical performance of two individual children. Axes as in Figure 1. See text for explanation.
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health consequences when not sufficiently addressed (e.g., 
Parsons & Bynner, 2005), but such negative outcomes may 
be preempted with adequate intervention (Bruck, 1987). 
Why two individuals reach the same end point via different 
routes and why some individuals end up having a lower sta-
ble performance level are, therefore, important questions 
with real-life instructional consequences. In this sense, the 
Matthew effects framework may be very useful conceptually, 
to think about reciprocal relations during skill development, 
and pragmatically, in highlighting the potentially grave long-
term consequences of poor early performance.

However, our analysis suggests that the Matthew effects 
framework does not lend itself to empirically testable 
hypotheses, defined by specific performance comparisons 
on the basis of available psychoeducational measures. Of 
importance, the present study did not examine longitudinal 
changes in the likelihood that particular students met crite-
ria for reading disability. Moreover, our analyses did not 
take into account emotional-motivational traits as they may 
be impacted by early reading-related capacities and in turn 
affect subsequent reading-related behaviors (e.g., class-
room engagement, exposure to print). In view of these limi-
tations, our results in no way negate the need for early 
interventions targeting basic reading skills in struggling 
readers. We suggest that, instead of trying to prove or dis-
prove the presence of fan spread or performance divergence 
effects, developmental and learning disabilities researchers 
turn to the study of the original mechanisms behind the 
Matthew effect, that is, the reciprocal relations between 
skills and learning experiences. Future attempts to examine 
the presence and potential consequences of Matthew effects 
may perhaps more fruitfully focus directly on the develop-
ment and strength of the reciprocal relationships that medi-
ate performance divergence (Stanovich, 1986) rather than 
on the elusive “widening gap” itself.

Appendix

Notes on Statistical Analyses
Data were modeled in R (R Development Core Team, 2011) 
using linear mixed-effects models (package lme4; Bates, 
Maechler, & Bolker, 2011) including random slopes per 
participant. Initially, the data shown in each panel of Figure 3 
were fitted by a single model including all 3 cohorts:

dv ~ cohort*group*wave+(1+wave|subj)
In this formula, dv stands for the dependent variable, the 
asterisk denotes an interaction among flanking terms, and 
the plus sign denotes additive (noninteracting) terms. The 
parenthesized factors denote random effects associated with 
participants, namely random intercepts and growth slopes. 
The wave factor was mean centered to minimize spurious 
random intercept–slope correlations (Baayen, 2008).

In this model, a significant triple interaction would sug-
gest that group × wave interactions were not equal across 
cohorts. This was tested by a χ2 test against a restricted 
model excluding the triple interaction:

dv ~ (cohort+group+wave)^2+(1+wave|subj)
In the restricted model, only up to second-order interactions 
were permitted, as denoted by the square term. To allow 
fixed-effects comparison by χ2 test, maximum likelihood 
estimation was applied, instead of restricted maximum like-
lihood (Faraway, 2006, pp. 158–159).

Similarly, to examine differential growth directly within 
each cohort, grade cohorts were examined individually, 
using models of the form

dv ~ group*wave+(1+wave|subj)
compared (via χ2 test) against restricted models excluding 
the interaction:

dv ~ group+wave+(1+wave|subj)
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Notes
1. In addition, McNamara, Scissons, and Gutknecth (2011) 

compared effect sizes of between-group differences in stan-
dardized scores across grades. Approaches employing stan-
dardized scores have been criticized for providing no insight 
into relative individual differences across times. Bast and 
Reitsma (1998) pointed out that standard score analyses can 
inform us only about changes in rank orderings over time. To 
compute standard scores, raw scores are transformed to dis-
tributions with equal variance. Scores for different ages are 
standardized by reference to distinct standardization samples. 
Individual differences at different ages are based on different 
subsets of items, because different items are of appropriate 
difficulty for different ages. As a result, quantitative differ-
ences in standard scores between children are not comparable 
across age groups and can be used only to compute percentile 
ranks. As noted by Stanovich (2000, p. 154), the only way for 
a low-performing child to fall behind in percentile rank is by 
“passing up” a lower-rank child, which, however, would also 
be subject to Matthew effects, to infinite regress. Thus the 
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process of standardization specifically prevents the detection 
of increasing differences. For this reason, in this article we 
do not consider approaches employing standard scores, even 
though they can be clinically relevant for identifying and 
following children with learning disabilities (for example, a 
practitioner may need to know how a student who was classi-
fied as a low achiever/at risk in one grade fares compared to 
the norm 1 or 2 years later).

2. Stable linearity is not strictly necessary if equality of curva-
ture can be established instead. However, testing for a null 
difference in quadratic terms hardly justifies the assumption 
of equal curvature, as the power to detect such higher-order 
differences is typically very low.

3. Other formulations in the literature seem to simply presup-
pose interval scaling and deal with growth curve estimation 
as if measures were quantitative (e.g., Francis, Shaywitz, 
Stuebing, Shaywitz, & Fletcher, 1996; cf. Rogosa & Willett, 
1985). These approaches will work in practice on overlap-
ping ranges when there is a common reference, either as a 
starting point or as a no-change state (plateau), in which case 
ordinal relations suffice to determine the existence of differ-
ences. However, they have yet to be formulated in a way that 
can be applied to the investigation of Matthew effects. Even 
if they were so formulated they would be applicable only to 
comparisons between groups over fully overlapping ranges. 
Therefore they would not directly address the issue of the 
“widening gap” across a range of skill development, while 
also being subject to the criticisms of reading-level match 
designs (e.g., Coolican, 1994; Jackson & Butterfield, 1989; 
see also Van den Broeck & Geudens, 2012).
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