
Many psychological experiments require vocal responses
to be recorded in response to some visually displayed or
otherwise presented stimulus. “Naming” tasks, in particu-
lar, present a stimulus for the participant to pronounce its
name, as for example in object naming, in which images of
objects are displayed and the name of the object is the cor-
rect response. The Stroop (1935) task is perhaps one of the
best-known color-naming tasks, in which color words are
displayed with an incongruent font color—for example,
the word “red” displayed with green letters, in which case
the correct spoken response is “green,” not “red.”

DMDX1 is a Win32 program that presents stimuli for
psychological experiments and collects responses while
measuring response time (RT). According to its creators,
DMDX is “designed to precisely time the presentation of
text, audio, graphical, and video material and to enable the
measurement of reaction times to these displays with milli-
second accuracy” (Forster & Forster, 2003, p. 116). DMDX
is very simple to use and quite flexible in setting up and con-
trolling many types of experiments, so there is a large user
base for it and an active mailing list for help and support.

In addition to mouse clicks, keyboard presses, and
external button-box responses, DMDX can collect and
time vocal responses spoken into a microphone through
the computer’s audio card. Spoken responses are saved
as individual audio files. Because it is so simple to set
up a naming task with no special equipment other than a
headset (or plain microphone) connected to the standard
audio hardware, DMDX is a particularly good choice for
researchers using such experimental tasks.

However, when working with naming tasks, there is an
inevitable complication not present with other types of re-

sponses (e.g., using the mouse or a response button). The
complication is that the experimenter must examine each
and every response made by the experimental participants
to check its accuracy. In the context of DMDX, this means
that the experimenter has to listen to each individual audio
file saved in the experimental run, and manually code
whether the corresponding response is correct, incorrect,
or missing. This is a very time-consuming process, and
also an error-prone one, because the experimenter must
take care to match the item numbers between the audio
files and the response coding scheme.

In addition to determining response accuracy, which
must necessarily be done manually, experimenters typically
want to examine each recorded RT, to ensure that the voice-
trigger mechanism has correctly registered it, because there
are several sources of unreliability in automatic RT mea-
surement. Too-high background noise, a transient event,
nonspeech sounds made by the participant prior to the
response (e.g., lip smacking, coughing, hesitation fillers,
etc.), or late responses to the preceding items can cause RT
triggering to register an incorrect measurement. Although
it is possible to exclude some sources of timing errors by
setting absolute thresholds (e.g., discarding response times
below 100 msec or above a certain delay), it is not possible
to ensure reliable response times entirely automatically.

CheckVocal is a Windows program written for the ex-
perimenter who uses naming tasks, aiming to facilitate
the manual processing of spoken responses by automat-
ing all cross-checking and track-keeping, so that the ex-
perimenter will only have to check the accuracy of the
response and its timing, using a convenient visual display.
Thanks to multimodal presentation and optimized au-

	 859	 Copyright 2007 Psychonomic Society, Inc.

CheckVocal: A program to facilitate checking
the accuracy and response time of

vocal responses from DMDX

Athanassios Protopapas
Institute for Language & Speech Processing, Research Center “Athena,” Maroussi, Greece

CheckVocal is a Windows application that facilitates checking the accuracy and response time of recorded vocal
responses in naming and other experimental tasks using the DMDX display and response collection software.
CheckVocal handles all keeping-track and presents each recorded response audiovisually (as waveform, spectro-
gram, and sound played out) along with the corresponding printed correct response and registered response time.
The user simply decides whether the response was correct, wrong, or missing, with a single mouse click advanc-
ing to the next response. Response time correction can be done manually or automatically (retriggering by a power
threshold). Data safety and integrity is ensured by cross-checking and status saving, so that interrupted sessions
can be resumed later. CheckVocal is freely available to the DMDX community via a dedicated Web page.

Behavior Research Methods
2007, 39 (4), 859-862

A. Protopapas, protopap@ilsp.gr

860     Protopapas

Figure 1 shows a screen shot from the main Check​Vocal
window, which displays the correct response (“pint”) on the
top row and the waveform and spectrogram of the recorded
response below it. CheckVocal displays each waveform and
spectrogram along with the corresponding timing mark that
was registered by DMDX in the course of running the ex-
periment. At the same time, CheckVocal plays out the re-
corded response; not from the beginning of the file but from
the RT mark onward, so that the experimenter can verify
that the beginning of the spoken response is not lost.

If the experimenter finds that the RT mark is inappro-
priately placed, he or she may click on the waveform or
spectrogram to manually place the timing mark, or request
that CheckVocal automatically retrigger to calculate the
RT on the basis of an adjustable threshold. For cases in
which an intruding event (lip opening, filler, etc.) pre-
cedes the actual response, CheckVocal can automatically
detect the next onset following a silent interval after the
current RT mark. Every time a response waveform is dis-
played or a timing change is made, the sound is played out
automatically from the timing mark on. To further verify
timing, the experimenter may, if desired, click to hear the
sound up to the timing mark (play left), or to zoom into the
waveform in higher temporal resolution.

For each displayed waveform, the experimenter must
indicate, with a single mouse click, whether the spoken
response is correct or wrong, or whether there is no re-
sponse. This is done rapidly on the basis of comparing
the printed correct response with the auditorily presented
recorded response. The response to the next item (trial)
is then automatically loaded and immediately displayed
and played out. Thus, if the voice-trigger threshold (either
from DMDX or in CheckVocal) is properly adjusted (or if
the experimenter is not interested in the response times),
going through the responses can be extremely fast, with a
single click per trial.

tomatization, an experimenter can process more than a
thousand trials per hour.

CheckVocal is written in Python, a powerful object-
oriented scripting language,2 with Tkinter, the standard
Python interface to the Tk graphical user interface tool-
kit, and the Snack sound toolkit3 for sound file handling,
waveform and spectrogram display, and filtering, all of
which are open-source free software.

How CheckVocal Is Used
DMDX reads information about the experiment from

an RTF file (“item file”), in which each trial is described
as an item with a numeric ID, along with timing, display,
and other information controlling the experiment. DMDX
saves its output data in a plain text file with .azk exten-
sion (“AZK file”), in which items (trials) are listed in the
order presented, followed by the corresponding registered
response time. These files are parsed by CheckVocal and
the necessary information is extracted. In addition, the
experimenter must also provide the correct responses
in a separate text file, with a filename starting like the
item but ending with “‑ans.txt”. For example, for experi-
ment Exper1.rtf, the answers should be in Exper1‑ans.txt.
Let us assume that Exper1.rtf is a naming experiment in
which the words “cat” and “dog” appear on the screen in
two separate trials, and that the correct responses to these
strings are “yes” and “no,” respectively. Then Exper1.rtf
will contain the following item specification,

11 * "cat" / ;

12 * "dog" / ;

and Exper1-ans.txt must contain these lines to specify the
corresponding correct responses:

1 yes

2 no

Figure 1. The main response viewing window of CheckVocal, with the correct response
displayed in the top row, the recorded spoken response displayed as a waveform and the cor-
responding spectrogram, the rating and listening buttons in the row under the spectrogram,
and the auxiliary function buttons (zoom, trigger) in the bottom row. The current timing
mark appears as a bright red line over the waveform and spectrogram, and a faint gray line
marks the original response time registered by DMDX.

CheckVocal for Vocal DMDX Responses     861

file was loaded from is saved in the system registry so
that it can serve as default location for the next run of
the program. All that is necessary to run CheckVocal is to
select an AZK file and to click on “Proceed.” However, a
number of options are provided for additional flexibility.

When each item in an experiment has a different correct
response, the displayed response string changes with every
audio response, and it is not difficult to check immediately
for accuracy. If, however, most responses are of one of a
few types (e.g., three or four color names in a Stroop task),
most audio responses will be the same, as will most cor-
rect response strings. In this situation, it is easy to stop
paying attention to the fixed response string displayed on
the screen and thus to possibly miss an incorrect response.
To help avoid this situation, the option is given to blink
the displayed response word so that it attracts the experi-
menter’s visual attention. Perhaps the most useful option is
to blink “on change”—that is, whenever there is a change
of correct response, which is when attention is needed. The
option to blink “always” is also available.

To signify a missing response, CheckVocal uses the
time-out value determined from the item file, in accor-
dance with DMDX convention. However, should the ex-
perimenter prefer a different value to serve as “missing”
flag for the subsequent statistical processing, this can be
set as manually specified “time out.”

The default output option of one row per subject, with
tab-separated items, is reasonably convenient for most
statistical processing programs. However, alternative out-
put formatting is available—for example, space-separated
or comma-separated instead of tab-separated items, and
subject columns instead of subject rows. In addition, the
output can be saved in AZK format, if further processing
with other AZK-reading software is required.

Vocal response timing typically relies on the DMDX
Vox (voice trigger). If the Vox was not properly adjusted
when the experiment was run, response times will be in-
accurate, and most likely unusable. DMDX provides an
offline voice trigger option, to automatically recalculate
RTs given a power RMS threshold, which is adjustable
from this panel. The duration (window length) over which
power is calculated is also adjustable. Power calculation
depends on a proper zero level, but cheap microphones
and poor audio cards providing no biasing current in most

CheckVocal shows a progress indicator and the total
number of responses to be examined. Backward and for-
ward navigation through the responses allows checking
and correction of mistakes, if necessary. The process can
be interrupted at any time, and then optionally resumed
later simply by rerunning CheckVocal and selecting the
same AZK file for processing.

The output of CheckVocal is saved in a plain text file
with a filename starting like the experiment (item) file,
but ending with “-datalist.txt”. By default this is a tab-
separated file of RTs, one line per subject, including a first
row of column headings (with the item numbers). Follow-
ing DMDX convention, incorrect responses are indicated
with negative RT values, and no-response trials are indi-
cated with negative values equal to the timeout parameter
of the experiment. This output file from CheckVocal is
trivial to load directly into a spreadsheet or statistical pro-
gram for further processing.

How CheckVocal Operates
CheckVocal is composed of a few main objects and sev-

eral secondary objects and functions. One object holds
parameters that need to be globally accessible. Another
implements the graphical interface shown in Figure 1,
using Snack sound objects and canvas items, and responds
to the user’s actions. A third main object handles the lin-
ear procedures of data parsing, status updates, and output,
launching interactive panels when needed.

CheckVocal makes heavy use of sequence objects of-
fered in the Python language, in particular dictionary and
list objects. Lists are used to hold participants, trials, files,
and correct responses; dictionaries hold indices of par-
ticipant IDs and trials, as well as dates and numbers. The
flexibility and convenience offered by these constructions
offered by Python cannot be overemphasized.

In brief, CheckVocal operates in the following sequence:
As soon as a root window is initialized and withdrawn,
SetupWindow collects the user’s selections, notably the
AZK file to process. A CheckVocal object then parses
the AZK file and sets up lists of participants and trials,
validating each component along the way. The RTF file
is parsed to determine the time-out value, and the correct
responses are read from the ANS file and verified against
the available item list from the participant data. Then the
existence of all needed response audio files is verified.

If a previous unfinished session is detected, the user
is given the option to continue or start over. The list of
responses to check is passed on to CheckWaves, which
presents the graphical interface with the waveform, spec-
trogram, and action buttons, and modifies RT values ac-
cordingly. When CheckWaves returns, the original order
of participants in the experiment is reconstituted, as de-
termined from the AZK file, and the output is saved along
with the log file.

Parameters and Adjustments
When CheckVocal is started, a setup panel is displayed

(see Figure 2), on which the experimenter may set various
options. Selection of an AZK file to process responses
from is mandatory. The folder in which the selected AZK

Figure 2. The initial setup screen of CheckVocal, with all the
adjustable parameters at their default settings.

862     Protopapas

can be reasonably confident in the reliability of the data
in the resulting files.

The output of CheckVocal (including data list, change
log, and subject selection) is always saved in the same
folder as the working data file (and the accompanying item
and answer files as well). This way, all results and process-
ing associated with the data will be in the same place and
will run no risk of being overwritten (e.g., by the same
experiment run later with a different group of participants).
For data safety, the output will not overwrite an existing
file unless confirmed by the user. So, if a -datalist.txt file
for the same experiment already exists in the current work-
ing folder, the experimenter will have the option to specify
a different output file name (and/or folder).

Obtaining and Installing CheckVocal
CheckVocal is free, open-source, public-domain soft-

ware, available from the author’s Web site at www.ilsp
.gr/homepages/protopapas/checkvocal.html. A self-extracting
executable can be downloaded that contains all necessary files
and libraries. Installation amounts simply to extracting the
contents of the downloaded archive to a convenient folder.
Experimenters who plan to use CheckVocal a lot may wish to
create a shortcut to CheckVocal.exe on their desktop or quick-
launch toolbar. The source code (Python script) is also avail-
able from the same Web page, for experimenters with Python
and Snack already installed on their computers.

Author Note

The author thanks Jonathan Forster, for permission to use and modify
the DMDX icon; Kåre Sjölander, for providing the Snack DC filtering
solution; Fredrik Lundh, for “An Introduction to Tkinter,” freely avail-
able on the Web at effbot.org/tkinterbook/; Markus Damian, Gareth
Gaskell, Kathy Rastle, and Michael Reynolds, for providing valuable
feedback on an early version; and Eleni Vlahou and Persefoni Bali, for
continuous tireless testing. Correspondence regarding this article may
be sent to A. Protopapas, ILSP, Artemidos 6 & Epidavrou, GR-15125
Maroussi, Greece (e-mail: protopap@ilsp.gr).

References

Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display
program with millisecond accuracy. Behavior Research Methods, In-
struments, & Computers, 35, 116-124.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions.
Journal of Experimental Psychology, 18, 643-662.

Notes

1. www.u.arizona.edu/~kforster/dmdx/dmdx.htm.
2. www.python.org.
3. www.speech.kth.se/snack/.

(Manuscript received July 24, 2006;
revision accepted for publication December 27, 2006.)

common equipment result in a fluctuating or offset zero
level in the recordings. The option to remove DC off-
set corrects this problem, so that voice triggering works
properly.

The size of the display window can also be adjusted
to suit recorded response duration, personal preferences,
and individual circumstances. Finally, an encoding option
is offered, currently supporting Greek response strings in
addition to Western (Latin) ones. More encoding options
can be added for users requiring different response encod-
ing who are willing to provide test materials and help with
testing.

Data Safety
One very important feature of CheckVocal concerns

the safety and integrity of the experimental data. Because
the main goal of the program is to facilitate a common
procedure and speed up the process, any lack of reliability
or sensitivity to failures (of power, hardware, or operating
system) would defeat its purpose. Taking into account the
total number of responses for a naming experiment with
a few tens of participants and a few hundred responses
from each of them, it is of crucial importance to ensure
that any interruption of the response-checking procedure
does not invalidate work already done. For this reason,
Check​Vocal saves its status completely after every single
response, flushing all of its file buffers, so that data loss
may be avoided even in the case of a catastrophic failure.

During operation, a “console” window is present on the
screen, on which verbose status messages are reported,
to facilitate corrections in case something goes wrong. A
log file is also created. In addition to program status mes-
sages, all modifications made to response times are listed
both on the console window and in the log file. Of course,
no alteration is made to the original AZK file produced
by DMDX in the course of running the experiment. Thus,
the experimenter has access to all stages of data process-
ing and can compare the reliability of the procedures or of
voice triggering in different conditions and situations.

Data integrity is enforced at all stages of processing.
When item files are parsed, every participant’s item IDs
are checked against a reference item list and against the list
of correct responses. Any discrepancies in labels, missing
or incomplete data lines, or missing audio files result in
deactivation of the corresponding participant (with a mes-
sage to the user). When reading in previously saved status
files in order to resume processing, everything is checked
once more, including the existence of audio files and the
matching between status components, even among those
saved by CheckVocal itself, which are not normally ex-
pected to have been altered. In this way, the experimenter

http://www.ilsp.gr/homepages/protopapas/checkvocal.html
http://www.ilsp.gr/homepages/protopapas/checkvocal.html
http://www.u.arizona.edu/~kforster/dmdx/dmdx.htm
http://www.python.org

