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Connectionist Modeling of Speech Perception

Athanassios Protopapas
Brown University

Connectionist models of perception and cognition, including the process of deducing meaningful
messages from patterns of acoustic waves emitted by vocal tracts, are developed and refined as human
understanding of brain function, psychological processes, and the properties of massively parallel
architectures advances. The present article presents several important contributions from diverse points
of view in the area of connectionist modeling of speech perception and discusses their relative merits with
respect to specific theoretical issues and empirical findings. TRACE, the Elman/Norris net, and Adaptive
Resonance Theory constitute pivotal points exemplifying overall modeling success, progress in temporal
representation, and plausible modeling of learning, respectively. Other modeling efforts are presented for
the specific insights they offer, and the article concludes with a discussion of computational versus

dynamic modeling of phonological processes.

Connectionist modeling, a term often used synonymously with
neural network modeling, refers to a class of models with a special,
intrinsically parallel, architecture. These models consist of 2 num-
ber of interconnected units, or nodes, with modifiable connection
weights, which determine the strength of influence one node can
exert on another. Such models have been used in many areas of
psychological modeling with varying degrees of success. In this
article, the psychological process of interest is speech perception,
that is, the transformation of the acoustical speech signal to mean-
ingful lexical items (words or morphemes). A brief introduction to
the basic issues in speech perception and word recognition is
presented first. Some key concepts and terms of connectionist
modeling are also explained in the introduction. In the following
sections, particular approaches to speech perception modeling are
reviewed, conceptually organized around the major issues that
remain to be solved. Modeling efforts are evaluated on grounds of
psychological validity and biological plausibility and not by their
performance in task-limited situations. Empirical findings from
experimental psychology are brought to bear on the discussion
whenever appropriate.

Basic Issues in Human Speech Perception

In the present article, the term speech perception is meant to
encompass the processing performed by the human brain that
begins with the auditory registration of a speech waveform and
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concludes with the identification of the spoken words in it. The end
goal in speech communication is the registration of the meaning of
entire utterances and not merely the identification of their individ-
val meaning-carrying constituents. Nevertheless, ignoring the
complexities arising from syntactic and semantic processing is a
common initial approach, warranted to the extent that a good deal
of progress can be achieved by breaking down the complete
problem into more manageable pieces. By this working definition,
it becomes clear that researchers need to understand the way
information is represented at the various stages of processing from
acoustic to lexical, as well as the processes that perform the
mappings. In the following paragraphs, key concepts and problems
in speech perception modeling are introduced, necessarily greatly
simplified because of space considerations. Presentation of each
theme is made with the goal of orienting the reader to be better
able to evaluate the models presented later, and this is obvious in
that only those points of view that most easily lend themselves to
connectionist conceptualization are developed. For more balanced
presentations and thorough discussions (and references) of the
basic issues in speech perception, one is advised to consult, for
example, Altmann (1990), Altmann and Shillcock (1993),
Marslen-Wilson (1989), and Miller and Eimas (1995a, 1995b). In
the discussion of specific models, selected empirical findings are
introduced when they are necessary for understanding and evalu-
ating the claims of and arguments for and against each model.

Conventional wisdom holds that some form of power spectrum
(i.e., the distribution of acoustic energy across frequency bands
over time) constitutes the representation of sound that enters the
auditory cortex (see, e.g., Blomberg, Carlson, Elenius, & Gran-
strom, 1986, and following commentaries). Most modeling efforts
to date, as well as engineering attempts at speech recognition
machines, ignore the complexity arising from the existence of
sounds other than clear speech from a single speaker in this power
spectrum and concentrate on the processing of a single speech
stream. This is the case in all the models reviewed below, and,
though a special and (probably) unusual case, it is implicit in all
following discussion.

Assuming an initial auditory representation of a single speech
stream, how are words identified in it? The auditory representation
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must be transformed into the form in which the lexicon is encoded
before a matching process can take place. Because of the great
variability in the acoustic realization of lexical items, discussed
below, directly mapping from acoustic to lexical representations is
considered at best impractical. That is, the lexicon cannot be
specified in terms of raw power spectra, and thus prelexical rep-
resentations are commonly hypothesized, that is, transformations
of the sound properties into representations of a linguistic nature,
before contact is made with the mental lexicon. The prelexical
representations most frequently considered are features, phonemes
(often called plainly segments), and syllables.

The term feature, often preceded by the qualifier acoustic/
phonetic, is used here to refer to acoustic characteristics (and
constellations thereof) that are useful (though not necessarily dis-
tinctive) in a language because they correlate with distinctions
between classes of speech sounds and, therefore, with differences
in meaning. Sometimes a notion more akin to phonological fea-
tures is used in modeling, referring to abstract properties of an
idealized speech representation that need not have any acoustic or
articulatory physical correlate and only serve to distinguish be-
tween abstract phonological categories that are used to describe
phonological phenomena. The particular meaning of the term
feature in a model of speech perception tends to depend mostly on
the distance between a model’s input representation and real
speech (i.e., an acoustic signal).

It seems to be an implicit (if unwarranted) assumption in much
of the speech literature that the speech signal is transformed to a
phonemic representation prior to making contact with the mental
lexicon. The term phoneme is used in phonology to refer, at an
abstract level, to constituent parts of words. Phonemes are often
represented by letters in alphabetic scripts; for example, the word
bat is made up by the phonemes /b/, /2/, and /t/, spelled with the
letters B, A, and T, respectively. Elegant and efficient descriptions
of the phonological organization of language are made with ref-
erence to phonemes. In acoustic phonetics, however, phonemes
remain elusive; that is, it has not been possible to identify invariant
acoustic correlates of phonemes in the speech stream. If it were
possible to decode the speech waveform into a series of phonemes,
a large part of the problem of speech perception would be solved.
In reality, the variability in acoustic realization of phonemes (as-
suming, for a moment, that phonemes are the fundamental blocks
of speech communication) restricts our options to classifying
classes of sounds, often termed phones, into phonemic categories;
this is by no means a trivial task. With respect to the treatment of
phonemes, a sharp distinction between models is evident: On the
one hand, there are models that attempt to explicitly identify
phonemes from the speech stream on the basis of acoustic prop-
erties. The scope of these models typically excludes word recog-
nition. On the other hand, there are models that take phonemic
representation for granted in their input and are concerned with
presumably subsequent processing stages. Unless great advances
are made with respect to the role of phonemes in speech commu-
nication, neither approach is likely to prove particularly fruitful
when it comes to integrating acoustic processing with lexical
access.

The third candidate unit for prelexical representation is the
syllable, which, in phonology, is a unit of organization of ordered
series of phonemes into language-specific structures. It has been
argued that syllables also constitute the unit of motor planning in

speech production, and recent empirical work has examined the
role of syllables in perception. So far, syllabic conceptualization
has depended heavily on phonemic representations, that is, the
syllable is viewed as a structured set of phonemes rather than as a
unit, or as a vehicle for encoding and coproducing phonetic fea-
tures that may perhaps later be perceptually assembled into pho-
nemes or directly into words. There is little mention of syllables in
the models discussed below; however, implicit reliance on
syllable-sized units is sometimes evident in the form of phonotac-
tics and context-dependent phonemes. Specifically, phonotactics
are language-specific constraints on the possible phoneme se-
quences that are usually defined with respect to a syllabic frame.
Context-dependent phonemes are a practical way of retaining the
phoneme as the basic unit while acknowledging its contextual
variability, but it may be hard to distinguish this from a syllabic
representation to the extent that syllabic position constitutes a
primary correlate of acoustic variation.

Acoustic variability in the realization of lexical items includes

. variability in the physical properties of the sound sources (e.g.,

differences in size between the larynges and the vocal tracts of
different speakers) as well as within-speaker variability arising
from differences in the situation in which an utterance was pro-
duced (e.g., ambient noise, emotional state of the speaker, speak-
ing rate). In addition, depending on one’s choice of prelexical
units, there is variability in the acoustic realization of these units
arising from the speech context in which they are produced,
generally termed coarticulation. For example, the [s] is pro-
nounced differently in sue and in see because of the influence of
the following vowel, which partly determines the vocal tract con-
figuration while the [s] is produced.

An additional source of variability can be found in phonological
processes that alter the acoustic realization of lexical items under
certain conditions. For example, the word red may be pronounced
reg when the word car follows it. More generally, the place of
articulation (i.e., the point of maximum constriction in the vocal
tract) is, in some cases, assimilated from one phoneme to the one
preceding it. In this case (red car), the alveolar place of /d/ is
changed to velar, to match that of the ensuing /k/. Although
listeners have no trouble understanding the intended word (in fact,
they may have trouble realizing this phonetic alteration even if
instructed to attend to it), it remains a problem for models of
speech perception that aim to identify words in the speech stream.
Recent modeling attempts have been directed at this problem, as
discussed in a later section.

Assuming some form of prelexical representation, it remains to
identify the lexical items present in the original speech signal. An
obvious first reason this is not a trivial task is that there are no
boundary markers in speech, that is, in contrast to the white space
that separates words in script there are few (if any) acoustic cues
signaling the beginning and end of each word. In fact, coarticula-
tion and phonology apply indiscriminately across words as they do
across syllables (recall the red car example). Much research and
debate has been centered around this issue of segmentation, that is,
of defining word boundaries prior to identifying words. An alter-
native approach has been to sidestep the issue entirely: Just iden-
tify all the words possibly present in an utterance and use other
processes to sort out which ones make up the best interpretation.
For example, given the input /katal/, plausibly corresponding to
the beginning of catalog up to the /, it remains possible that the
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word cat has been spoken, followed by a and another word that
begins with /, or that the word catalyst is being spoken instead. Or,
in a noisy situation, it is possible that the word cataract was
actually said but the /t/ was heard as /I/. The latter approach would
hold that all possibilities are entertained as long as they are not
disfavored by subsequent acoustic information or by semantic or
syntactic interpretation.

The concepts of activation and competition have been instru-
mental in shaping our understanding of this sort of problem. Even
though it may be possible to define the solution as a serial search
through a (possibly structured) set of lexical items until we find the
ones consistent with the input, experimental findings indicate that
it is fruitful to think of each lexical item as an independent
processing unit that gathers evidence for itself and becomes acti-
vated as this evidence accummulates (and fading back into its
resting state when it mismatches the input). In parallel with this
activation process, lexical items compete with each other for
stretches of the input: In the above example, cat would compete
with catalog and catalyst for claiming the [kat] portion of the
input. Though consensus has not yet been reached, it appears that,
at least in the context of connectionist modeling, activation and
competition are the most natural ways to think about lexical
access. Most current connectionist models of lexical access use
some form of activation and competition, either explicit or
implicit.

An important controversy in speech perception, as undoubtedly
in other mental faculties as well, concerns the directionality of
processing. That is, is the flow of information constrained to occur
only from sensory registration to subsequent levels of analysis, or
does information from later stages of processing flow backwards
to affect earlier stages? For example, is phonetic analysis based on
properties of the acoustic signal only (and knowledge of phonetics,
of course), or does information about known (or possible) words
affect how the acoustic signal is interpreted phonetically? The
former view, generally termed autonomous, is more in keeping
with serial processing conceptualizations and sometimes discred-
ited in connectionist modeling. The alternative interactive view
holds that there are no in principle limits to the connectivity, hence
to the flow of information, within the system. As review of some
recent models below indicates, the debate is far from obsolete, as
it evolves to challenge our views of what constitutes a processing
stage and how much different stages can be reasonably considered
to be separate.

One issue often ignored in modeling is the role of learning and
development in the formation and continued function of a speech
perception system. A great deal of speech perception must neces-
sarily be learned during development, at least to the extent that
languages differ in their phonetic properties as well as in their
vocabulary. Some processing mechanisms, such as the transfor-
mation from acoustic to phonetic and other prelexical representa-
tions, can be argued to be innately specified or at least greatly
constrained in how they can develop through exposure to a lin-
guistic environment. The particulars of prelexical and lexical rep-
resentations, however, are necessarily learned, as are all the words
in one’s language. It is a very important property of the mature
speech perception system that new words can be learned with ease
without causing old ones to be forgotten. It is also the case that
exposure to a word has measurable effects on how subsequent

words are processed, that is, the system can be primed as a result
of its own processing.

There is now a wealth of evidence that the plasticity of one’s
speech perception system undergoes substantial changes during
one’s lifetime. For the purposes of the present review, it suffices to
note that infants arrive at their linguistic environment equipped
with sophisticated capabilities to discriminate, remember, and
group auditory events of linguistic significance. In the first few
months of life, the sound system of one’s native language is
mastered, often at the cost of losing the ability to perceive acoustic
differences that are important for making distinctions in other
languages. Words and linguistic structures are subsequently mas-
tered with increasing facility as speech production and perception
approach their mature, fluent adult targets. Understanding speech
perception will depend on discovering the nature of innate biases
and the extent to which they shape subsequent development. For
this reason, developmental considerations are often invoked below
in the presentation of connectionist modeling efforts.

Connectionist Modeling in Psychology

As with my cursory review of key issues in speech perception,
space considerations do not permit an adequate presentation of
connectionism, the many kinds of models that are available, and
the philosophical implications for building and using them. The
interested reader is directed to Anderson and Rosenfeld (1988) and
Anderson, Pellionisz, and Rosenfeld (1990) for a collection of
seminal studies on connectionist modeling, Quinlan (1991) for an
introduction to connectionist models in psychological research,
and Hertz, Krogh, and Palmer (1991) for a mathematical approach
to neural networks. In addition to their contribution to the under-
standing of innateness in developmental processes, Elman et al.
(1996) provide an excellent introduction to modermn connectionist
thinking and its applications to psychological modeling, with an
emphasis on developmental issues.

Inspired by what is known about brain processing structures,
connectionist models have been gaining ground in psychology for
several decades now. The major strengths of connectionist models,
which are often termed neural networks, lie in their combination of
processing flexibility, massively parallel architecture, and potent
statistical generalization. In general, a neural network comprises a
number of interconnected units, or nodes, each of which is char-
acterized by an activation value. The connections between the
nodes are weighed by the amount in which they allow activation to
flow through them from one node to the other. There are no in
principle limits to the interconnectivity between nodes; activation
can flow simultaneously along any or all connections, and there
may be very complex interactions between nodes. The degree of
activation of all the nodes and the particular connection weights at
a particular instant define the state of the entire model at that
instant. Figure 1 (left) shows an example of a generic network of
interconnected nodes.

Typically, but not necessarily, the nodes are arranged into layers
of particular modeling significance; for example, a subset of nodes
may be designated input nodes, receiving activation from environ-
mental sources, whereas another subset may be designated output
nodes, activation of which is taken to constitute the output of the
model. Nodes with connections only to other nodes but not to the
external world are termed hidden units (see Figure 1, middle).



CONNECTIONIST MODELING OF SPEECH PERCEPTION

i O000-- 0|

Input Units

Figure 1. Schematic diagrams of artificial neural networks. Left: General form of an unstructured network of
interconnected nodes. Each node, represented by a circle, has an associated activation value at each point in time,
and each connection, represented by a line, has an associated weight that controls the amount of activation that
may flow between the nodes it connects. The arrows indicate the direction of activation flow between nodes.
Middle: Layered network in which groups of nodes, enclosed by dashed lines, are taken to represent levels of
information processing of special interest. As indicated by the arrows, the flow of information in this network
is restricted to be unidirectional, from the bottom layer to the top layer, and there are no direct connections
between nonadjacent layers. Note that connection directionality is independent from node grouping; each reflects
an arbitrary decision made on the part of the modeler regarding the type of processing desired in the model and
often dictated by practical (e.g., computational) constraints. Right: Shorthand representation of the same
three-layer feedforward network, in which arrows between layers signify full connectivity between all node pairs
of the two connected layers. Missing connections are equivalent to present connections with zero weight and are
used to simplify calculations in matrix form. Dashed boxes enclose an arbitrary number of nodes and are labeled
by their functional role in the model as input, output, and hidden (from the external environment). Training of
such networks to map a set of input vectors (i.e., pattern of activation on the input layer of nodes) to output
vectors is often done by adjusting the connection weights depending on the difference between actual and desired
output for each input pattern. A special algorithm, called back propagation, is used to compute the relative
contribution of each connection weight to the final output beginning with the output layer and proceeding
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backward by taking into account the connectivity and activation levels at each stage.

Such layered construction is very common, and specialized learn-
ing algorithms have been developed for training layered models to
perform mappings from an input to an output layer. When direc-
tionality is thus imposed on a model as a result of specifying an
input and an output end, constraints on the flow of information are
used to further subdivide classes of networks into feedforward, in
which activation flows only from input to output without feedback
connections (or loops), and recurrent, in which there exists at least
one closed loop of activation flow.

Connectionist modeling owes much of its appeal to the capacity
of the models to learn from a set of exemplars and then successfuly
generalize to other similar, but not identical, situations, in a way
often strikingly resembling biological behavior. Powerful algo-
rithms have been devised that set the connection weights between
nodes to perform a desired mapping between input and output. In
some cases a teacher signal is required that modulates the modi-
fication of connection weights depending on how closely the
actual output of the model resembles a desired output; obviously,
the success of such supervised algorithms depends critically on
defining not only a set of correct input—output relations but also on
defining an appropriate metric of what constitutes a good match
between an actual and the correct output and a rule for transform-
ing a poor match to a change in connection weights. Gradient
descent methods are generally used whereby in each training step
the connection weights are updated in the direction in which the
output error would be most sharply reduced. Backward error
propagation, often abbreviated as back-prop, is the most widely
used training algorithm of this type for multilayered feedforward

networks, updating weights between intermediate layers to a de-
gree proportional to the contribution each weight is computed to
have in producing an erroneous output. Alternatively to supervised
learning, unsupervised learning algorithms operate by exposing the
model to a representative variety of inputs and letting the dynamics
of the model develop stable representations of the salient features
in their input space. Clever arrangement of the architecture of the
model and selection of appropriate input stimuli and learning
algorithm are critical for the eventual success of a model in either
case.

Few issues have attracted as much attention as the notion of
distributed versus localist representation in connectionist model-
ing. The difference is deceptively simple: In the latter case, each
node in a network (or only in part of the network) stands for
something of significance to the modeler that can be aptly labeled.
For example, there may be a node for the word boat, in the sense
that activation of that node is taken to directly correspond to the
degree of match between the word boat and the speech input to the
network. This sort of explicit internal representation contrasts
sharply with the former, distributed kind, where each node in the
network corresponds to nothing in particular but the entire state of
the network (or a part of it) is taken to encode what is of interest
to the modeler. In general, localist representations are easier to
design, understand, and present, and, indeed, they are quite popular
in the connectionist literature on psychological modeling. Distrib-
uted representations, however, have been often proposed on the
basis of more important advantages. Resistance to damage is an
oft-cited example: In a localist representation, damaging a node
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permanently and entirely removes what that node stood for,
whereas in a distributed representation damaging any single node
may scarcely have any effect. Other important advantages of
distributed representations concern the improved signal-to-noise
ratio in pattern encoding as well as the more compact representa-
tion of patterns and, intrinsically, of the similarities between them.

As mentioned, connectionist modeling is often appealing be-
cause of the models’ purported resemblance to brain processing
structures. In psychology, however, connectionist models are
never brain models in any physically meaningful sense (though in
neurophysiological modeling things can be quite different). That
is, connectionist models are not, in general, brain models; they are
at best broad abstractions of brain models. The numerosity of
biological networks and the complexity of the chemical interac-
tions that make them functional are well beyond our current
modeling reach for any realistic scale. However, the abstraction
from a network of real neurons to a connectionist model may be a
very reasonable one if it turns out that all the particular, chemical
and such, properties of biological neurons are not critical to the
function of the network, that is, if the functional properties of large
biological networks of real neurons are equivalent to those of
much smaller networks of simple abstract interconnected units. It
cannot be overemphasized that in psychological models a node is
rarely, if ever, meant to correspond to a biological neuron. Rather,
by using a parallel network structure that resembles that of bio-
logical networks, it is hoped that some fundamental functional
characteristics of the entire biological network are retained, even in
the absence of close correspondence between the actual processing
elements.

Despite this great leap of faith in abstraction, the issue of
biological plausibility is not to be brushed aside. Unfortunately, it
is often difficult to define specific criteria that can be applied to
particular models. In fact, it is easier to identify an implausible
aspect of a model than to deem a model biologically plausible. A
guiding principle is that connectionist modeling of psychological
processes is not about mapping an input to an output with an
artificial neural network; it is about understanding how the brain
works. Therefore, models may not violate what is known about
brain structure; even gross abstractions ought to be justified. A
model that incorporates dirty processing tricks to get things done
is doomed to irrelevance in the long run. Because the current
understanding of brain behavior is rather patchy, concrete criteria
are difficult to establish. In the following paragraphs, some exam-
ples are given of considerations related to the notion of biological
plausibility, to further illuminate its practical aspects (see
O’Reilly, 1998, for a more detailed discussion).

There are many ways in which one wants to keep modeling
efforts as close to brain function as possible, including constraints
on biological learning and processing. For example, if a biological
system is known to perform a given mapping within a few pro-
cessing stages, one would be well advised to construct models of
the process that do not exceed the biological process in number of
steps (Thorpe & Imbert, 1989). This does not imply that we must
always wait for a complete understanding of the biology before we
attempt to model the macroscopic scale of events, for not only is
such complete understanding never guaranteed, but also modeling
work can greatly motivate and inform biological research efforts.
Nevertheless, what we know about biology must influence how we

build our models; clearly unrealistic architectures and processing
schemes are to be avoided.

Moreover, if a biological system is known to constantly adapt to
new stimuli in a way that influences subequent processing and
adaptation, it is best to build this capacity for on-line learning into
the function of the model. Note that a capacity for learning in
general is never in itself sufficient for claims of biological plau-
sibility and is only necessary when learning and adaptation are
clearly part of the behavior of interest. In this respect, speech
perception is not a memoryless process (priming and adaptation
effects being cases in point); however, whether adaptive charac-
teristics are critical or not may depend on the particular goals of
individual models.

A related issue concerns the type of training that produces a
desired behavior in a model and the extent to which an ad hoc
learning procedure can be justifiable in a given modeling context.
For example, it is one thing to model a more-or-less fixed struc-
ture, such as the vestibular—occular reflex, which stabilizes retinal
images by causing eye movements that compensate for head
movement, or the local bending reflex in the leech (both discussed
extensively in Churchland & Sejnowski, 1992, pp. 338-378), and
quite another to model lexical activation. In the former cases,
evolution has presumably contributed most of the model’s struc-
ture and function and it is not unreasonable to use any available
method to arrive at the connection weights in the model that give
rise to the desired behavior, possibly including methods of setting
the weights that would be impossible in a biological learning
system (e.g., manually setting the weights; cf. the discussion by
Churchland & Sejnowski, 1992, pp. 130-139). In the case of
lexical activation, however, the function of the model is a result of
learning to process the sounds of a language over development. In
this case, it is less well justified to count on biologically impossible
methods of setting the weights; it would be more informative to
explore the kinds of initial biases and learning strategies that result
in the mature model than to aim directly for the final product.

Aside from arguments for biological plausibility or psycholog-
ical parsimony, how connectionist models are evaluated and how
they compare with other kinds of models are greatly constrained
by the nature of the available evidence and the state of research
into the psychological phenomena of interest. Specifically, pho-
netic perception and word recognition are often investigated in the
psychological tradition of setting up experimental conditions, more
often than not in a highly unnatural task situation (with respect to
normal communication), and establishing the statistical signifi-
cance of differences between them, with secondary (if any) atten-
tion given to quantification (e.g., effect sizes or raw response
times). Modeling of such results usually takes the form of a rather
qualitative type of data fitting, whereby conditions in the model
that correspond to the human experimental conditions are expected
to produce the same pattern of differences. In cases where quan-
titative human data are available (e.g., psychometric functions or
time series), a more stringent fit is expected from the model data
curves, but the transformations from node activation to the exper-
imental measure can be ad hoc and subject to parameter setting. It
is not clear what error measures are appropriate to assess the
statistical reliability of a fit and what magnitudes of deviation are
acceptable given the greatly simplified nature of models that can
be practically implemented. However, all of these criticisms can be
levied at least as forcefully against nonconnectionist models,
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which also generally lack the rich dynamics of connectionist
networks that can be examined to provide insights into processes.
In addition, connectionist models are by necessity quantitatively
implemented. Thus, although implementation constraints may
limit their scope, their advantage over qualitative box-and-arrow
models is indisputable in that precise and testable predictions can
always be generated, sometimes even for experimental manipula-
tions not in the original conception of the model.

It is not an unreasonable expectation that models of speech
perception demonstrate, at least in principle, the ability to trans-
form acoustic signals into a representation that is linguistically
relevant. This is an area where models are still judged on absolute
performance measures, in part because they generally lag so far
behind human performance that no rigorous evaluation is yet
meaningful, and also because of an interest in automatic speech
recognition technology. In the following sections, models of pho-
netic perception are examined first that learn to extract phonetic
properties from the sound signal. The processing of these phonetic
properties and their assembly into words is then considered in the
next sections, beginning with the TRACE model and continuing
with approaches that address its main weaknesses.

Phonetic Categorization

Several researchers have investigated the ability of connection-
ist models to correctly categorize speech signals into phonetic
classes. Most such attempts were driven primarily by performance
considerations in the search for an artificial speech-recognizing
machine (see Tebelskis, 1995, for a recent review). Some of the
findings, however, are relevant in the sense that successful appli-
cations provide an existence proof of the power of statistical
generalization in the absence of predetermined structures, whereas
patterns of failure illustrate the need for specific linguistic con-
straints in the systems. Demonstrations that phonetic categories
may, at least to some extent, be learned solely on the basis of
statistical regularities in the acoustic signal, and without reference
to articulatory gestures or to innately determined gesture-sound
decoding modules, should temper the strongest claims of some
nativists who would claim that speech perception, or at least
phonetic categorization, is a wholly innate human faculty (e.g.,
Fodor, 1983; Liberman & Mattingly, 1985).

Training Phonetic Identification

Watrous, Ladendorf, and Kuhn (1990) trained a three-layer
network, with recurrent connections from each hidden unit to itself
(but otherwise feedforward and without lateral connections), to
identify and discriminate between the voiced stops [b], [d], and [g]
spoken by a single speaker in the context of a following [i], [a], or
[u]. The input to the network consisted of time-aligned spectro-
gram representations of the syllables. With a different network
using delayed connections with simultaneous input from adjacent
time frames and a more hierarchically organized structure,
Watrous (1990) achieved remarkable performance on the three-
consonant forced-choice task in the context of the three vowels
encountered during training and perfect performance in
consonant-vowel-consonant (CVC) syllables containing the vow-
els [e] and [#]. Analysis of the latter network showed that weights
were tuned to activate the appropriate units on the basis of spectral

characteristics of the consonant release and that the context-related
variance associated with each consonant was handled optimally by
the system. In the same study, other networks were trained to
discriminate consonantal manner of articulation (for a single place
of articulation), medial bilabial stop voicing (rapid vs. rabid),
vowels, formant trajectories, and nasal duration, with overall per-
formance always exceeding 99%. Watrous (1990) concluded that
“acoustic phonetic speech recognition can be accomplished using
connectionist networks” (p. 1753). Analyses of the trained net-
works indicated that the feature extraction units were trained to
extract relevant spectral cues and not to abstract holistic templates.
This shows that, in principle, the acoustic signal alone contains
sufficient cues for phonemic discrimination with a single speaker
and a single speaking rate and that these cues can be extracted
automatically by statistical generalization of the sort an artificial
neural network can be trained to do. This constrained case, how-
ever, poses a much easier problem than that of general word
recognition in any speaker’s natural running speech. The ad hoc
nature of the networks’ structure (a different one for each prob-
lem), and the neurally implausible training method, preclude more
optimistic conclusions relevant to either human speech perception
or machine word recognition.

The phenomenon of categorical perception, that is, the abrupt
shift in stimulus labeling as acoustic properties are gradually
manipulated and a corresponding relative difficulty in the discrim-
ination of acoustically different stimuli that are perceptually as-
signed the same phonetic label, has received considerable attention
since the earliest stages in speech perception research (see Repp,
1983, for a review). In a study of phonetic category acquisition,
Seebach, Intrator, Lieberman, and Cooper (1994) used a biologi-
cally motivated network structure and training method to investi-
gate whether categorical perception of stop consonants must be
prewired in the brain or may be prenatally learned instead. Infants
at a very young age are known to perceive categorically
consonant—vowel (CV) syllables containing phonemes such as [b]
and [p] (Bertoncini, Bijeljac-Babic, Blumstein, & Mehler, 1987,
Eimas, Siqueland, Jusczyk, & Vigorito, 1971). The usual assump-
tion is that the representations and processes that underly the
categorization must be innate because there is insufficient time for
infants to learn the categories. Infants, however, have functional
hearing several weeks prior to birth, and it is possible that some
phonetic categories are tuned prenatally on the basis of the im-
poverished auditory input available to the infant. Seebach et al.
(1994) processed speech to simulate the intrauterine environment,
and trained a five-“cell” BCM network (Bienenstock, Cooper, &
Munro, 1982; Intrator & Cooper, 1992; see Figure 2) to distinguish
between the syllables [pa], [ka], and [ta], spoken by a single
speaker. After training, the units responded strongly to specific
spectral characteristics of the input (e.g., low-frequency bursts),
and the network successfully generalized (98%) to novel
unvoiced-stop syllables from two different speakers (one male and
one female) as well as to voiced-stop syllables (96%), even though
no voiced stops were used in training.

The significance of this work with respect to the development of
human speech perception is somewhat dubious, considering that
neonates’ phonetic categorization does not necessarily follow the
boundaries of their native language (see reviews in Aslin, Jusczyk,
& Pisoni, 1998; Jusczyck, 1997). For example, stop consonant
categorization along voice onset time (VOT) continua, that is, as a
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Output

Group-specific
inhibition

Figure 2. An example of a BCM network composed of N groups of 3
neurons each. All input features (nodes) are connected to all neurons in all
groups. Summed output from all neurons in each group is fed into all
neurons of the inhibition module, each neuron of which inhibits all neurons
in a single group. The network learns through competition to inhibit all but
the most active group, thus clustering the input patterns into discrete
categories. From Evidence for the Development of Phonetic Property
Detectors in a Neural Net Without Innate Knowledge of Linguistic Struc-
ture, by B. S. Seebach, 1990, unpublished doctoral dissertation, Brown
University, Providence, RI. Copyright 1990 by B. S. Seebach. Adapted
with permission.

function of the time between the burst from releasing the conso-
nantal constriction and the onset of vocal fold vibration, is initially
based on universal VOT boundaries and is later modified toward
language-specific boundary values after considerable exposure to
one’s native language. It thus appears that initial perception of stop
consonants is based on universal auditory features and not on
spectral patterns learned in utero. In other words, there must be
innate precursors to the phonetic feature detectors, which are not
developed on the basis of prenatal auditory input. Whether such
precursors are innate speech-specific feature detectors or more
general auditory mechanisms remains to be investigated. The study
of Seebach et al. (1994) only shows that, in principle, sufficient
acoustic information is present even in degraded speech signais to
enable the formation of appropriate phonetic categories.

Phones in Context: Learning Larger Prelexical Units

The simple CV syllables made up of an initial stop consonant
followed by a vowel constitute an interesting special case of the

general problem of phonetic identification because the acoustic
realization of stop consonants is highly context dependent, so that
this constrained problem is nontrivial, yet there are enough com-
monalities between the stimuli that it is not impractical to seek a
relatively straightforward solution. Rossen (1989; see also Ander-
son, Rossen, Viscuso, & Sereno, 1990) used a neural network
model to identify such syllables even in the presence of noise.
Multiple two-dimensional intensity maps were used in the input
representation as it was demonstrated that no single map could
outperform the combination of all three maps together. The model
consisted of a three-layer feedforward module trained with back-
propagation (see Figure 1, right), followed by an autoassociative
iterated map using the Brain-State-in-a-Box (BSB) algorithm of
Anderson, Silverstein, Ritz, and Jones (1977). Output representa-
tion was localist, with a four-neuron group assigned to each of nine
possible output phonemes (/p/, It/, /k/, M/, Id/, Ig/, fal, fi/, fuf). The
network was trained to activate both the consonant and the vowel
phoneme of each CV syllable presented, effectively acting as a
syllable-recognition network. Apart from the argument for redun-
dant representations, the contribution of this model must be eval-
uated with respect to its output representation. In particular, the
syllabic nature of the network’s responses is in agreement with
recent arguments for the need (or the existence) of a syllabic level
of representation in human speech perception (see reviews by
Dupoux, 1993, and Eimas, 1997).

Principled arguments based on the university of syllables and
the relationship between speech perception and speech production,
as well as empirical arguments based on experimental findings
supporting a syllabic representation, can be formulated to defend
this position. The model of Rossen (1989) shows that multiple
acoustic cues combine to yield fairly accurate estimates of the
components of spoken syllables. Even though the output is ex-
pressed in phonemes and not unitary syllables, it is phonemes in
context, as opposed to isolated phonemic segments, that the net-
work identifies. It remains to be determined whether phonemes in
context must be entire syllables as commonly understood in lin-
guistics; that is, whether structural constraints on the possible
orderings of phonemes are treated as describing entire syllabic
frames (or templates) or, alternatively, simpler context-dependent
phonemic units of representation are the appropriate level of
description. Given the high degree of context dependence (coar-
ticulation) found in natural speech, it is not surprising that context-
dependent models have been proposed to deal with the intricacies
of the multiple and sometimes conflicting cues to phonemes. It
thus seems reasonabie to attempt to model phonemic context
dependency using linguistically meaningful units, such as sylla-
bles, for the representations.

In the same genre, but with the emphasis on a different issue, the
three-layer feedforward network of Elman and Zipser (1988) was
trained with the back-propagation algorithm to distinguish be-
tween CV syllables containing a voiced stop consonant ([b], [d], or
[g]) and one of the vowelis [i], [a], or [u]. Much like in the networks
mentioned above, the input to this network consisted of temporally
aligned spectrograms and was presented all at once. Training the
network to assign the appropriate phonetic labels (consonant iden-
tity, vowel identity, or syllable identity) took more than 100,000
training cycles and resulted in an overall accuracy of about 95%
(based on vowels and consonants). It was observed that distorting
the input by adding noise to it was necessary to achieve the highest
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performance. The explanation for the advantage of using noisy
input was that the idiosyncracies of particular training exemplars
were blurred by noise, thus enabling the network to form better
generalizations. This is an important issue in statistical learning
where the specificity of training to the available input set must be
offset by the need for successful generalization over category-
equivalent test exemplars not present in the training set. Most
interesting was the analysis of the representations developed at the
hidden layer. Specifically, hidden units were found to maximally
respond to particular kinds (groups) of sounds, such as vowel
sounds or consonant sounds. It appeared, in other words, that over
the course of learning the internal representation of the network
developed in the way most appropriate for the task as it is typically
conceived in theoretical treatments of speech.

Repeated simulations with different initial random weights gave
rise to similar but not identical representations, leading Elman and
Zipser to propose using multiple networks, each using a different
internal representation. In simulations where the network was
trained separately on the vocalic and on the consonantal portions
of the syllables, hidden units were found to respond maximally to
particular phonemes, such as an alveolar stop, in spite of the
acoustic variability in the tokens of the phoneme in different
contexts. On the basis of these findings, Elman and Zipser argued
against strong nativist claims about speech representations. How-
ever, their claims must be tempered by the fact that the training
method (including the learning algorithm, the nature of input
representations, and the number of training cycles) does not seem
to have much in common with biological learning, to the extent the
latter is understood at all.

Mapping Auditory to Phonemic Space

Phonetic categorization implies a distorted mapping from input
space to perceived (categorical) space, whereby large uniform
regions in input feature space map onto smaller cluster regions in
phonemic space that are maximally distinct. For example, stimuli
differing in VOT in uniformly distributed steps map onto two
distinct categories, within each of which discrimination between
stimuli is very difficult. In contrast, discrimination between exem-
plars that belong to different categories, though not further from
each other in feature (e.g., VOT) space, is very easy. This mapping
is performed by the neural network models effortlessly by clus-
tering input representations and associative, competitive, or super-
vised learning. In the case of vowels, a side effect of this distorted
mapping is that vowels equally distinct in acoustic F,—F, space
(first and second formant frequency, i.e., frequency of the first and
second energy peak in the acoustic spectrum) sound more similar
when they are near the category centroid (in formant space) than
when they are farther away from it. This effect, known as the
perceptual magnet effect, can be observed as follows: for a pair of
exemplars from a vowel category, discrimination between the two
is more likely when they are close to the category centroid (pro-
totype) than when they are farther away from it (but equally distant
from each other; Kuhl, 1991; Kuhl, Wiiliams, Lacerda, Stevens, &
Lindblom, 1992).!

Guenther and Gjaja (1996) used a simple competitive neural
network with formant frequency input and an auditory map com-
posed of topographically organized nodes with fixed inhibitory
connections to one another to demonstrate the formation of vowel

category clusters in auditory space. The clusters were formed by
unsupervised competitive learning after exposure to exemplars
naturally distributed (i.e., not uniformly but normally around
vowel centroids) in the formant space. No category labels or
correct responses were ever presented to the network; the model
self-organized to reflect the distribution of its input representation.
The resulting auditory map closely modeled the perceptual magnet
effect, including the formation of category-like clusters and
prototype-like responses at the categories’ centroids. It was thus
shown that self-organization of a language-specific vowel space is
possible given only formant frequency detectors and a neurobio-
logically plausible clustering processes through competitive inter-
actions, without knowledge of target categories and, indeed, with-
out prior knowledge that categories must be formed at all. As with
the work of Seebach et al. (1994), the results of the simulations
reported by Guenther and Gjaja (1996) must be taken into account,
in that formant frequency detectors may need to be posited for
language learning, but category-specific information and the fact
that categories must be identified need not. The presence of finely
tuned spectral peak detectors in the auditory systems of many
animals, including amphibians, suggests that positing innate for-
mant detectors in the human brain as well is not far-fetched. Again,
it remains to be specified to what extent the formant frequency
detectors in the human brain remain in the general auditory system
or have evolved toward speech-specific functions.

Conclusion

In summary, the models reviewed above show that a good deal
of phonetic information is present in the auditory signal and that
mechanisms that extract this information can be found through the
statistical generalizations of neural networks. However, with the
exception of the model of Guenther and Gjaja (1996), the networks
described offer no psychologically realistic options for human
speech perception modeling. In addition, these networks lack
compensatory mechanisms for several spectral properties with no
linguistic relevance that stem from interspeaker differences,
within-speaker variability, and from the transfer functions of the
medium (e.g., recording equipment) and the surrounding environ-
ment (but see Carpenter and Govindarajan, 1993, for speaker
vowel-space normalization using neural networks, and Grossberg,
Boardman, & Cohen, 1997, for modeling speaking rate effects on
phonetic categorization). On the other hand, auditory feature de-
tectors are usually assumed to be innately present in the human
brain. Networks, such as the ones presented here, may be trained
under supervision to develop such detectors. The resulting pro-
cessing structures would then preprocess the auditory signal, for a
model of speech perception that could learn using pre-existing
feature detectors like humans are thought to do.

Interactive Activation

The most prominent connectionist model in the area of speech
perception has been, for a number of years, the TRACE model, as
proposed by McClelland and Elman (1986; Elman & McClelland,

1 But see also Aaltonen, Eerola, Hellstrom, Uusipaikka, and Land
(1997), Lively and Pisoni (1997), and Sussman and Lauckner-Morano
(1995) for more recent findings and interpretations.
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1986) with some computational modifications (McClelland, 1991).
Actually, there have been two distinct computational implementa-
tions: TRACE I was built to model data on phoneme perception,
and TRACE II addresses issues of lexical access. The two versions
share a number of architectural characteristics and mainly differ in
their input representations and the stored lexicon. There are three
functionally defined levels (or layers) of nodes: the feature level,
the phoneme level, and the word level (see Figure 3). In a localist
representational scheme, the TRACE model devotes one indepen-
dent processing unit (node) to each representational unit in each
level. In order to overcome the problem of temporal representa-
tion, each unit is repeated many times— once for each time slice.
Each unit becomes activated when the units on the other levels that
are consistent with it are activated. Activation is allowed to flow
upwards as well as downwards, so word activation induces pho-
neme activation, which in turn may cause feature units to become
activated (contingent on parameter settings). Naturally, feature
activation causes phoneme nodes to become activated, which in
turn activate word units. Special control parameters specify the
computational details, such as the rate of decay and the type of
influence between levels. For computational reasons, only positive
(excitatory) activation is allowed between levels, whereas nodes
inhibit other nodes within the same level. This way, nodes in one
level indirectly inhibit nodes in the adjacent levels by exciting
other nodes in them. '

The model, illustrated in Figure 3, functions as follows: As time
progresses, input is applied to successive time slices of feature
detectors, but units at previous and upcoming time slices can be
activated because of the overlap between features and phonemes
and between phonemes and words. The final activation state of
each time slice thus depends on large portions of the input,
possibly the entire utterance, if more than one interpretation is
locally possible. This way the model can also anticipate features
because a word activated by its initial phonemes activates all of its
phonemes, which, in turn, activate their corresponding feature
detectors in future time slices before input to those time slices is
present.

Modeling Context Effects

TRACE 1 successfully handles contextual variability in
acoustic—phonetic processing, including left-context and right-
context effects and perceptual restoration of phonemes (i.e., dif-
ferences in phonetic perception depending on preceding or follow-
ing phonetic context and the inability to detect that a phonetic
segment is missing when it has been replaced by noise, respec-
tively). The context effects can bias interpretation of ambiguous
stimuli or modulate the connection weights between particular
features and phonemes depending on adjacent segments, thus
potentially modeling phonological effects, articulatory constraints,
as well as various other acoustic interactions between cues for
different classes of phonemes. Simulations showed that weight
modulation by activation of adjacent time slices improved voiced
stop consonant identification from 79% correct to 90% correct,
when presented followed by a single vowel (i.e., [b], [d], or {g]
followed by {a], [i], or [u]). Weight modulation also facilitated
identification of missing stop consonants (when the initial 175 ms
were removed), a task in which human participants were found to
perform similarly (Elman & McClelland, 1986).

Feature
Level

high

low:

Figure 3. Schematic diagram of TRACE II, a model of phoneme and
word perception, and of the interactions between the two (McClelland &
Elman, 1986). As time unfolds, input is presented to successive units of the
feature layer, from left to right, and activation spreads through the entire
network (including past and future positions). At the lowest level, graded
feature detectors are activated by acoustic analysis of the input at 5-ms
intervals (in practice from idealized featural representations). Activation
flows upward to phoneme units, each of which spans 11 feature units.
Active phoneme units excite word units that contain them, send top—down
activation to features consistent with their ideal composition, and inhibit
other phonemes at the same temporal position. Active word nodes inhibit
other word nodes occupying the same temporal position and send top—
down activation to their constituent phoneme nodes. From “The TRACE
Model of Speech Perception,” by J. L. McClelland and J. L. Elman, 1986,
Cognitive Psychology, 18, p. 9. Copyright 1986 by Academic Press.
Adapted with permission.

TRACE accounts for trading relations found in the perception of
stop consonants, such as the interaction between VOT and onset
frequency of the first formant (F,) (Summerfield & Haggard,
1977; see Repp, 1982, for a review and interpretation of the
phenomenon). In a number of simulations, segments with lower F,
onset needed higher VOT to activate /k/ as strongly as segments
with higher F, onset. This continuity in stop consonant perception,
in accordance with perceptual trading relations experiments, does
not prevent TRACE from exhibiting categorical perception. The
transition between voiced and unvoiced responses, as the feature
specifications are moved along the VOT and F, continua, is much
sharper than would be expected by the small feature differences
because of competitive inhibition between the units at the pho-
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neme level. The probability of correctly discriminating stimuli
within a phoneme category is also much lower than the probability
of discriminating stimuli in different categories, because activation
feedback from the phoneme level to the feature level diminishes
feature differences between patterns that correspond to the same
phoneme.

TRACE II similarly models lexical effects, that is, differential
processing of sublexical (including acoustic) representations de-
pending on the lexical status of the result. For example, ambiguous
segments are perceived unambiguously when in appropriate lexi-
cal context: A feature specification ambiguous between [b] and [p]
activates /p/ more strongly than it activates /b/ if followed by [lag]
because the word plug is thus formed, whereas there is no word
blug. Ambiguous segments in single syllables are more likely to be
interpreted so that the syllables follow the phonotactic rules of the
language. For example, an input feature specification between [r]
and [I] in the context of [s__i] activates /I/ much more strongly
than /r/ because /sli/, although not a word, exists as part of words
in the lexicon (sleep, sleeve, etc.), whereas /sri/ does not. Thus,
there is no need for explicit specification of phonotactic rules
because the statistical properties of the contents of the lexicon
suffice to define them.

Because word activation builds up given matching input as time
progresses, lexical effects in TRACE are predicted to be minimal
on word-initial segments, rising gradually throughout the word,
and much stronger on word-final segments; in the latter case, more
activation has already accumulated at the lexical level to support
compatible segments. This prediction has been challenged by
results of subsequent phoneme monitoring experiments. Cutler,
Mehler, Norris, and Segui (1987) found lexical effects to be
modulated by list composition, disappearing in monotonous lists,
and appearing in more varied lists, and argued for an attentional
mechanism and a serial dual-outlet model. Attentional modulation
in noninteractive models was likewise proposed by Eimas, Mar-
covitz Hornstein, and Payton (1990) and Eimas and Nygaard
(1992), on the basis of the interaction of lexical effects with word
predictability and with secondary tasks. None of these effects can
be accommodated in TRACE because there is no provision for
stimulus-extrinsic factors, such as competing cognitive tasks,
global attention, or long-term lexical statistics.

The nature of lexical effects has been a point of contention not
only with respect to TRACE but more generally in speech percep-
tion research. In contrast to the predictions of TRACE, where such
effects may occur at any point along a word, Frauvenfelder, Segui,
and Dijkstra (1990) found lexical effects on phoneme identifica-
tion only after the point at which a word becomes unique. They
failed to find any lexically mediated inhibitory effects that would
be predicted by the combination of top—down information flow
and lateral interphoneme inhibition of TRACE. Moreover, Mc-
Queen (1991) found lexical effects on word-final phoneme iden-
tification only when using stimuli degraded by low-pass filtering,
and then only in the faster response times (but see Pitt & Samuel,
1993, for a meta-analysis of the lexical effects on phoneme iden-
tification). According to TRACE, lexical effects should manifest
. themselves, if not independent of stimulus quality, certainly even
with high quality stimuli. Finally, Pitt and Samuel (1995) found
lexical effects early in the words and before the words’ uniqueness
points, as predicted by TRACE, but not gradually rising toward
later positions in the words. Taken together, these findings suggest

some limits to the interactive character of lexical-phonemic pro-
cessing, at least of the type predicted by TRACE. The distinction
between top—down expectation and activation of the adaptive
resonance theory (reviewed below) may offer an alternate ap-
proach for a principled establishment of such limits. It appears
more plausible that attentional mechanisms play an important role
in constraining the flow of information along various paths and
directions. It is at present unclear, though, how such mechanisms
might be implemented in an interactive activation framework.
Alternatively, simple recurrent networks, such as the dynamic-net
model (Norris, 1990, 1992, also reviewed below), offer an ap-
proach to context effects with much less emphasis on top—down
lexical information flow.

Word Activation and Recognition

With regard to the time course of word recognition, TRACE
follows the basic guidelines of the early Cohort model (Marslen-
Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978), a fully
interactive model of word recognition in which word units join a
candidate list (cohort) as their onset specification matches the
acoustic input and are then pruned when mismatches occur until a
single candidate, fully compatible with the acoustic input, is left
and thereby recognized. As in TRACE, later versions of Cohort
(Marslen-Wilson, 1987; Marslen-Wilson, Brown, & Tyler, 1988)
were modified to assign activation values, as opposed to a binary
cohort membership-nonmembership distinction; in contrast to
TRACE, the interactive character of the Cohort model was re-
stricted to the initial phase of processing. In an additional departure
from the Cohort model, TRACE can also handle ambiguous or
distorted word onsets because words can be accessed at any point
in their specification by compatible phonetic input, as long as they
are correctly aligned. The relative importance of word onsets
(Marslen-Wilson & Zwitserlood, 1989; cf. Connine, Blasko, &
Titone, 1993) is also preserved, in that word-initial information is
more effective in activating a lexical entry. This is modeled indi-
rectly in TRACE and does not depend on any special assumptions
about word onsets. Words activated by their initial segments
contribute to the activation of their constituent phonemes by pro-
viding positive feedback, and words whose initial segments are not
matched are suppressed by within-level inhibition and require
stronger activation later to stand out as likely candidates. Recently,
Allopenna, Magnuson, and Tanenhaus (1998) provided evidence
for the weak rhyme effects that are predicted by this account (but
precluded in Cohort) using an eye-tracking paradigm.

One robust finding in human speech perception is that the
frequency of occurrence of a lexical item affects its probability of
activation such that more frequent items are recognized faster than
less frequent items and, in cases of phonetic ambiguity or impov-
erished acoustic information, are more likely to be recognized
(Marslen-Wilson, 1987; Zwitserlood, 1989; see Bard & Shillcock,
1993, for review and a related discussion). Such frequency effects,
although not currently accounted for by TRACE, might be accom-
modated by adjusting the resting activation of words. In models
that incorporate a word learning stage with variable frequency of
presentation between items such effects are naturally accounted for
as a part of the models’ statistical properties.

The problem of word segmentation is not addressed separately
in TRACE because the speech stream is automatically segmented
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as a by-product of lexical activation. Therefore, there is no need
for word-boundary cues or access-initiation strategies. As in hu-
man speech perception, in many cases a word can be successfully
recognized in TRACE only after part of the next word is heard or
even later (Bard, Shillcock, & Altmann, 1988; Grosjean, 1985;
Luce, 1986). Finally, because of the temporal spread of the feature
detectors and their connections to the phoneme units, the model is
able to cope with assimilation phenomena at word boundaries. In
the case that more than one word is possible, TRACE can come up
with all possible alternative candidates for a decision to be made
by interactions at higher levels of processing.

Criticisms of TRACE

According to McClelland and Elman (1986), the success of
TRACE is attributed to its massively parallel, interactive process-
ing and to its architecture, which directly implements the assump-
tion of an utterance being decomposable into sequences of units at
several processing levels. More recently, McClelland (1991) ef-
fectively reduced the entire model to an argument for interactive
activation, in accordance with some researchers’ intuitions about
the processing of the brain. It is not clear yet that the results
achieved by TRACE cannot be successfully modeled by more
linear approaches, or that the type of processing that produces
these results is similar to human speech processing. Massaro
(1988, 1989) and Norris (1982, 1992, 1993), among others, have
argued against interactive processing, putting forward noninterac-
tive models to account for the same problems. Norris (1993), in
particular, argued that “behavior that looks like interaction be-
tween processes can arise from learning, rather than from any
genuine on-line interaction between processes” (p. 215). This
position is discussed in more detail below.

A number of significant deficiencies of TRACE have been
pointed out by McClelland and Elman (1986), mostly concerning
the representation of time. Specifically, the requirement that each
unit on each level be repeated for each time slice leads to a very
inelegant representation with no known homologue in biological
systems. This temporal slicing has very important implications for
learning because whenever a new word is learned it must be copied
to each time slice individually. In addition, each new word, pre-
sumably represented by a new node at each time slice, must be
connected via bidirectional inhibitory projections to all other
words, an unlikely feat for learning systems (cf. Grossberg, 1986).
Another problem is that TRACE is presently unable to handle
speaking rate variability, as well as other global differences such as
speaker characteristics and accent. The failure of TRACE to deal
with real speech is also a major shortcoming. The main reason for
the inability of TRACE to handle real acoustic input may be the
temporal variability of speaking rate (Elman, personal communi-
cation), a problem that had also baffled speech recognition
engineers until the relatively recent emergence of dynamic
programming.

Besides the fact that TRACE does not recognize speech, and is
thus more of a tool for psychologists than an application for
engineers, another limitation of TRACE is that it does not learn
anything. It is prewired to achieve all its remarkable results, thus
effectively encoding the knowledge and intuition of its designers.
This is desirable in a way, insofar as there is a commitment to the
perceptual mechanism. That is, the performance of the system does

not rely on some intractable generalization of a powerful mapping
network but, rather, reflects the researchers’ knowledge about
human speech processing. However, many aspects of human
speech perception (e.g., the language-specific segmental specifi-
cations and contrastive feature sets) are learned during develop-
ment, and, certainly, the lexicon is constantly enriched and ex-
panded. Although the form of lexical representations and the way
they arise (as a result of exposure to a linguistic environment)
might be universal and genetically encoded, the phonological and
phonetic structures of any given language are not. Therefore, a
complete model should be able to derive the representations hu-
mans learn during development by exposure to the language,
abstracting the appropriate regularities using some initial set of
constraints. Furthermore, the hard-wired functional structure of
TRACE and other Interactive Activation models may in fact be
neurobiologically unlearnable (and not merely unlearned in the
models’ implementations), casting doubt on the psychological
relevance of the simulations (Grossberg, 1987).

Other shortcomings of TRACE include the small set size in each
of its levels (incomplete sets of phonemes and features and a small
vocabulary), which might have significant consequences for the
resulting behavior. It is unclear how the model would behave with
a realistic lexicon, a full set of phonemes, and complete feature
descriptions. McClelland and Elman (1986) only used a restricted
set of phonemes and words to demonstrate particular effects, and
in some simulations they even left out parts of the system that they
considered irrelevant to the phenomena being modeled. Finally, it
may be disturbing to some that a model of parallel distributed
processing is, in fact, using localist instead of distributed repre-
sentations, therefore missing out on an important innovation the
connectionist field has brought about. In all, TRACE is certainly
showing its age, and more modern approaches are needed to
address the host of recent findings in the field. Indeed, alternative
approaches have been developed that address many important
issues not adequately covered by TRACE. The following sections
are organized by reference to the main weaknesses of TRACE,
namely, the representation of time, the need for learning, and the
role of phonological structure in the lexicon. Each of these issues
is first introduced generally and approaches to resolve it are then
discussed.

Temporal Representation and Integration

A problem that comes up in speech modeling and in other
language-related domains is that they are intrinsically temporal.
Speech, in particular, is represented in an acoustic waveform,
which is air pressure (or spectral energy) as a function of time. To
represent that in a neural network, most earlier models would just
present to the network an entire time frame simultaneously, with a
unit or a subset of units devoted to each of a number of time slices,
possibly differentially weighting the slices by distance from the
current time slice. This way, one avoids rather than solves the
problem of time, perhaps in a way very unlike the brain (cf. the
naive view of time in Port, Cummins, & McAuley, 1995).

Spatializing Time

Direct time-to-space transformation can be thought of as a
special case of time-delay architecture, whereby special nodes in
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the network represent input at certain time differences. Time
Delay Neural Networks (TDNNs) are usually realized with
delay units between adjacent nodes and have been proven
useful in speech recognition (Haffner & Waibel, 1992; Lipp-
man, 1989; Waibel, Hanazawa, Hinton, Shikano, & Lang,
1989). Waibel (1989) examined internal representations formed
by a TDNN trained to discriminate between the three voiced
stop consonants ([b], [d], and [g]) and found them encoding
linguistically plausible features such as formant movement de-
tectors and boundary detectors. In addition, hidden units were
found to operate in a (temporally) shift-invariant manner, lead-
ing to phoneme recognition without explicit segmentation.
More recently, Windheuser and Bimbot (1993) trained a TDNN
to recognize distributed phonemic representations, in terms of
binary phonetic features, as opposed to the usual single-unit
representation per phoneme. Using real speech input from a
single speaker, the network achieved its highest performance
(95.9%) using an expanded, redundant feature set and more
detailed labeling of diphthongs.

Using a neural network with time-delayed temporal repre-
sentations for speech processing is equivalent to making a
critical assumption about acoustic representation, that is, that
there is a short-term storage of the exact acoustic information
from previous times in an unprocessed form. Although not
impossible, it is rather unlikely that the brain functions this
way; temporal axes have so far been identified only in sound
localization structures in noncortical nuclei. Rather, it might be
better to include the temporal information in the network struc-
ture, so that the context information is instantiated as a modu-
lation of the processing properties. We have been unable, so far,
to identify storage structures in the brain that are not processing
structures as well. One of the reasons that neural networks have
such an appeal for cognitive modeling is that storage and
processing in neural networks are integrated and indistinguish-
able in the connection weights and the spreading of activation,
unlike in digital computers and other symbolic machines where
there is a processor that acts on data that are stored separately
from the program. By using TDNNs, one reduces the networks
to static statistical approximators, thus abandoning one of the
primary reasons for using neural networks in the first place, that
is, to use brain-like processing of brain-like representations.

Fortunately, alternative architectures have already been devel-
oped for representing temporal sequences in neural networks (see
review in Mozer, 1993) and, more specifically, for speech-related
simulations (Elman & Zipser, 1988; Lippman, 1989; Norris, 1990,
1992). However, it is still more difficult to train some temporally
varying models than static models like TDNNs. The known train-
ing methods require long training times, large amounts of com-
puter space, and tend to be unstable as well. A popular option is
back propagation of error through time, which is essentially an
unfolding of the network by duplication for each time step, fol-
lowed by regular back propagation of the error from an arbitrarily
distant point in time (Pearlmutter, 1989). A more economical
alternative is to include delays for the recurrent units and train the
network by copying the previous values to the next time step and
then using standard backward error propagation (Elman, 1990;
Norris, 1990).

The Elman-Norris Net

Previous work by Jordan (1986) on sequence production had
demonstrated that adding delayed recurrent links from a network’s
output units back to the hidden layer through a state layer (see
Figure 4, left) enabled the network to encode and reproduce
sequences of vectors. The addition of the state layer acted as a
previous-context layer, feeding back into the hidden units the
network’s prior output states in parallel with the new input. Con-
nections from the state units back to themselves ensured encoding
of sequences of arbitrary length because the prior context was also
influenced by its own prior context. An additional advantage of
this type of recurrent network is that the recurrent links may have
fixed weights because they only need relay prior state and all
computations can be performed by the forward connections. Thus,
the standard back-propagation algorithm can be used for training,
avoiding the computational expense and other complications of
other recurrent training methods.

Elman (1990) modified Jordan’s architecture to model temporal
pattern classification and series prediction. In contrast to Jordan’s
net, which needed to compute the next item to be produced in a
sequence based on the currently active output item, a temporal
pattern classification network (like a speech recognition network)
must identify a given inpur sequence based on the current plus
prior inputs and classify each sequence appropriately (cf. Norris,
1990). Thus, the recurrent links were connected from the hidden
layer and not from the output layer, to store previous input context
and, recursively, the context of previous context and so on, be-
cause there were closed loops in the connections. As already
mentioned, such a network can be trained using standard back
propagation. Training to predict the next item in a sequence, as
opposed to a variant of the auto-association task, forces the net-
work to develop representations that model the temporal structure
of the input pattern sequences. Simulations showed that the net-
work accurately predicted future segments when the regularities in
the training sequences provided the appropriate information (El-
man, 1990). Because the prediction error was maximal between
learned sequences, and very small within such sequences, Elman
(1990) also proposed that a network of this type may be used to
discover word units in an input stream by hypothesizing bound-
aries at points of low predictability.

Treating speech as a sequence of events, rather than as a
spatialized pattern of activation, Norris (1990) proposed a
dynamic-net model that also included recurrent connections within
the hidden layer (Figure 4, middle). The network was trained to
identify words (treating phoneme outputs as “don’t care” condi-
tions) and phonemes (likewise ignoring word outputs) in alternat-
ing training epochs. Early versions of this network showed insen-
sitivity to changes in input rate and shift-invariant sequence
recognition, as desired (Norris, 1990). More recently, lexical ef-
fects on phoneme identification, phoneme restoration, and com-
pensation for coarticulation were exhibited by networks of this
kind (Norris, 1992). It was thus shown that a recurrent network can
perform word recognition by preserving context in its hidden layer,
without resorting to artificially spatial representations of time (like
that of TRACE).

On the basis of the performance of this kind of recurrent
networks, Norris (1992) made a number of interesting remarks on
the nature of interactive and top—down processes. He argued that
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the two are distinct concepts and that it is sometimes very difficult,
if at all meaningful, to attempt to classify connectionist models as
such. He also argued that backward error propagation during
learning is a form of top—down information flow, although during
testing activation is only allowed to proceed in one direction. In
Norris” view, “talk of interaction implies that we have identified
two or more processes in the model that might potentially inter-
act,” whereas “if we want to classify a model as ‘top—down’ or
‘bottom—up,” all we need to know is the direction of information
flow as it passes from input to output” (1992, p. 367). In a network
like the dynamic-net, it is not possible “to slice the model up into
two discrete stages corresponding to word and phoneme recogni-
tion” because, with the exception of the weights between the
hidden units and the output units, “everything else in the network
is involved in computing some intermediate representation that
subserves both word and phoneme recognition” (Norris, 1992, p.
368). Norris concluded that his model is entirely bottom-up,
claiming that information flows in one direction only, and argued
against the need for interactive models of speech processing such
as TRACE.

An alternative interpretation might be to consider an effect
top—down in phonetic processing, if lexical information of any sort
can influence phonetic decisions. This would imply a theoretical
commitment to treating phonetic processing as essentially lower
level than lexical processing, even though the simulations reported
by Norris (1992) indicate that in practice such segregation is not
necessary. Because the hidden layer in the dynamic-net model
encodes both lexical and phonemic sequential information (in
other words, the hidden layer encodes feature bundles in context),
the model’s decisions about phonemic identity cannot be assumed
to be free of lexical influences. However, the view that there is no
top—down flow of information may be an artifact of the way the
model is schematized. In Figure 4 (middle), the hidden layer has
been drawn in a manner functionally equivalent to having within-
layer delayed connections, but insofar as previous context is con-
sidered input to the hidden layer, parallel to current input, the
recurrent connections may arguably be considered top—down in-
formation flow. For this reason, the computing hidden units here
have been named state units because they encode the present state
on the basis of which the output layers indicate the presence of a
phoneme or word in the input. The relay hidden units have been
named context units because they encode the prior information in
the context of which the computations of the input are performed.

Shillcock, Levy, and Chater (1991) used a similar recurrent
network (Figure 4, right) with three output node groups corre-
sponding to the previous, current, and upcoming phoneme, all
trained simultaneously, to model the phoneme restoration effect
and data on phoneme monitoring (see also Levy, Shillcock, &
Chater, 1991). Their model, too, showed phoneme restoration for
slightly degraded input, without any reference to word frequency
or similarity. In fact, the authors claimed that this kind of network
captures the phenomenon more accurately than TRACE because in
the latter word activation may override acoustic information, ef-
fectively hallucinating phonemes. Shillcock et al. (1991) used a
binary featural representation, on the basis of the acoustic features
of Jakobson, Fant, and Halle (1972), for the model’s input, and
phonemes for its output layer. Training of the network was done
using the copyback technique. An extended output window was
used to illustrate expectancies and right context restoration. A

more recent version (Shillcock, Lindsey, Levy, & Chater, 1992)
used a featural input representation motivated by current develop-
ments in phonological theory, again using mostly binary values.
Most interestingly, context effects were successfully modeled even
though there were no localist lexical representations in the model,
allowing Shillcock et al. (1992) to argue for a direct mapping of
the (phonetic) featural representation to the semantic level, that is,
a distributed representation of the lexicon.

Gaskell and Marslen-Wilson (1997) also proposed a similar
model with a distributed lexical representation, that is, in the
word-output layer (of a network like that in Figure 4, middle), each
node did not correspond to a single word but participated in the
representation of many words. The implications of modifying
Norris’ net to use a distributed output representation are most
important with respect to the concepts of activation and competi-
tion because, in contrast to a model of localist lexical output, there
is no direct correspondence between node activation in a distrib-
uted representation and lexical item activation. Rather, the distance
between the layer’s total activation pattern and each word’s rep-
resentation is taken to quantify word activation. In this way,
simultaneous activation of many lexical items is realized by an
activation pattern in the model that is intermediate between the
activation patterns corresponding to the lexical items involved.
Competition between lexical items cannot thus be encoded as
activation flow between nodes and its behavioral consequences
can only be evidenced indirectly in the way word “activation” (i.e.,
distance between patterns of node activation and of lexical spec-
ification) is affected in the model’s function as processing time
progresses. Notably, the network does not rely too much on
similarity between items, which would cause it to settle for inter-
mediate (nonword) activation patterns, but displays the desired
sensitivity to input phonetic features that has been shown in human
speech perception. It remains to be demonstrated that this kind of
distributed representation is capable of modeling the complex
behaviors successfully captured by TRACE and the dynamic net,
and that the observed advantages are indeed a consequence of the
representational scheme and not of the parameter setting of the
particular model.

The Shortlist Model

The debate notwithstanding over whether such a context-
preserving model may be called strictly bottom—up and what
exactly that would mean, the dynamic-net model shows that a
recurrent neural network can be successfully trained to recognize
words from sequences of feature bundles using an internal repre-
sentation of time in the form of context-encoding units. To the
extent that one can account for experimental findings usually cited
as evidence to support TRACE using this architecture, the
dynamic-net model constitutes a considerable improvement. It is
not the case, however, that such a simple net alone can incorporate
all the functionality of TRACE, in particular with respect to
right-context effects and the selection of words among competing
candidates. For example, given the input [korpa], the network
cannot know whether carpet, carpenter, or car pollution is the
correct parsing before receiving information about several more
segments. As already discussed, TRACE takes care of this prob-
lem by duplicating the lexical network for each possible temporal
alignment and by competition (through mutual inhibition) between
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active words occupying the same temporal position. To address
this issue, Norris (1994) added a competition network, on top of
the recurrent recognition network, in which words detected in the
input stream were entered as candidates and allowed to compete
with each other, depending on their phonological overlap. The
competition network is wired on the fly by a program from the list
of most active word nodes of the word recognition network.
Because only a few words are active enough to be used in the list,
the model was named Shortlist (Norris, 1994).”

The operation of Shortlist is as follows: Ideaily, a dynamic-net
model first takes featural input from analysis of the speech signal
and activates output nodes corresponding to words that contain
these feature-bundle sequences. In practice, phoneme strings were
looked up serially in an electronic dictionary to make implemen-
tation of the final stage possible using a realistic vocabulary,
without the need to train a huge word-recognition network. At each
time step, the most active word nodes are entered into a shortlist,
and their phonological constituents are looked up to determine the
degree of overlap between them. A small competitive network is
then wired (see Figure 5a), in which the words are allowed to
inhibit each other for a fixed number of iterations before their
resulting activations are noted. The entire process is repeated with

logarithm

Figure 5. Examples of Shortlist competition networks. (a) Competition
network after presentation of the string [katolag], only including candi-
dates that perfectly match the input (not all candidates are shown). Note
that, as candidates are entered into competition after discrete time steps in
the lexical search, time-alignment information is available to align the
word nodes appropriately, resulting in a network identical to the word level
of TRACE with all subthreshold nodes, and the connections to them,
removed. Between-word inhibition is proportional to the degree of overlap,
indicated here by numbers (of phonemes) next to the inhibitory connec-
tions. (b) Competition network after presentation of the string [maimain],
including candidates matching the input to various degrees (not all candi-
dates are shown). Candidates perfectly matching the input are shown in
bold outline. Note that the alternative interpretations may only be resolved
after subsequent context is presented. In the meantime, multiple activation
of the same word is possible without confusion because competing nodes
are unrelated tokens. In addition, the temporal alignment allows even
tokens of the same word to compete appropriately with each other (e.g.,
here two tokens of mime compete for a common /m/).

the next phoneme or, in the full (unimplemented) model, with the
next bunch of features. In fact, the competition network is an
interactive activation network equivalent to the word level of
TRACE, but with all subthreshold words and connections to them
removed. The proportion of connections and nodes thus removed
is very large and results in tremendous savings on computations,
making a large-vocabulary implementation possible, whereas the
result is not affected because only inactive (or almost inactive)
nodes and connections are ignored.

Shortlist successfully simulates activation of lexical items that
match the phonemic input, competition between them, and selec-
tion of the item combination best allocating all input phonemes.
McQueen, Norris, and Cutler (1994) recently tested the predictions
of Shortlist regarding inter-word competition using a word spot-
ting task. They found that words embedded in word beginnings
(such as mess in [domes], the onset of domestic) are harder to spot
than the same words embedded in phonemic strings that don’t
begin words (e.g., mess in [nomes)). In addition, imperfect pho-
nemic matches (using input that is ambiguous, or that deviates
from the internal specification by a few features) activate the
appropriate lexical candidates if the mismatch is not too large (e.g.,
[figarit] activates cigarette), and longer words are more resistant
to degradation than shorter words.

In all, the dynamic-net model offers an attractive alternative to
TRACE with respect to temporal representation, and Shortlist
augments the system with a necessary competitive stage, whereby
candidate lexical items are selected on the basis of both prior and
subsequent context. The activation levels of the word nodes in the
small competitive network seem to model well findings from the
cross-modal priming task regarding the time course of multiple
word activation, competition, and selection (e.g., McQueen et al.,
1994; Norris, McQueen, & Cutler, 1995). Furthermore, although
phonemic processing is certainly affected by lexical information
because of the shared hidden layer and its recurrent connections,
word activation that results not from bottom—up information flow,
but from interlexical competition, does not influence phonemic
processing. This suggests that there is a very specific (and testable)
limit to the possible lexical effects on phonemic categorization and
their time course. More specific simulations are needed to inves-
tigate the relationship between word length and word overlap
(human data reviewed and TRACE simulations reported in
Frauenfelder & Peeters, 1990), neighborhood effects (how the
number of phonemic neighbors, i.e., lexical items differing by a
single phoneme, affects lexical processing; Cluff & Luce, 1990;
Goldinger, Luce, & Pisoni, 1989; Luce, Pisoni, & Goldinger,
1990), and the as yet inconclusive findings on word-final embed-
ded priming (such as activation of the word bone on hearing
trombone or the word lip when tulip is heard; cf. Gow & Gordon,
1995; Shillcock, 1990; Tabossi, Burani, & Scott, 1995).

With respect to the remaining shortcomings of TRACE, namely,
lack of a learning mechanism and implausible architecture, Short-
list constitutes little improvement. Specifically, back propagation

2 The list is also kept short, in the case of many active candidates, by
limiting its maximum length to cut down on computational cost. Simula-
tions showed that a limit as low as two allowed the model to function
appropriately. A limit of 30 was used in the simulations reported by Norris
(1994).
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is no less biologically implausible than hard-wired connections
(Grossberg, 1987, pp. 47-50; see O’'Reilly, 1998, for a biologically
plausible version of error-driven learning). The plausibility of
on-the-fly setting up of a whole new competitive network and its
connections at every time step is also questionable. The fact that a
given vocabulary may be learned during training is certainly an
improvement, but how the learned phonemic and lexical informa-
tion of the recurrent network is used to align the candidate items in
the shortlist is left somewhat unspecified at this point. In particu-
lar, it is still unclear how the lexical and phonemic nodes are
combined to yield the phonemic representation of each lexical item
that is necessary for setting up a competitive network. Further-
more, the network is certainly unable to learn more new words
once trained without either forgetting others already learned or
needing representation of the entire training set. The model’s
treatment of nonwords (or novel words) is also unclear. Finally,
Shortlist offers no improvement over TRACE with respect to its
input, which is also far removed from a realistic speech signal. On
the other hand, Shortlist is a relatively recent model compared with
TRACE, and future investigations will likely address many of
these issues and other possible shortcomings.

Learning and Development

Most connectionist models, with the notable exception of
TRACE, are trained on a set of data to generalize to another set of
data. This is usually accomplished by successive presentations of
an activation vector to the input layer of the network, and com-
parisons of the network’s actual output to the desired outcome,
followed by some sort of weight adjustment to reduce the observed
discrepancy. Alternatively, connection weights may be tuned
through competition and reinforcement on the basis of internal
activation patterns only (i.e., without explicit error computation).
For example, correlated inputs can cluster into categories by acti-
vating the same units and strengthening connections between these
active units. Active nodes may also compete for activation so that
prototypical input patterns end up strongly activating a single
output node.

For the purpose of building a functional model of speech per-
ception, it is not necessary to include a learning component
(TRACE is a case in point). Nevertheless, to construct a complete
model, plausible not only biologically, but also developmentally,
the issue of network modification as a result of interaction with the
environment must be addressed. In addition, models that are
trained by a neurally plausible form of learning, such as BCM
(Bienenstock et al., 1982) and ART networks (discussed below),
may be more likely to develop representations similar to those of
the brain.

Adaptive Resonance Theory

The Adaptive Resonance Theory (ART), proposed and contin-
uously refined through the years by Grossberg and colleagues at
Boston University, combines neurobiological plausibility with
mathematical rigor to account for a host of psychological and
neural findings, including memory, learning, attention, priming,
pattern recognition, etc. (a recent review can be found in Carpenter
& Grossberg, 1995). A detailed description of even one of the
many versions of ART networks that have appeared in the litera-

ture is well beyond the scope of the present review; the reader is
referred to Carpenter and Grossberg (1991) for a more complete
discussion of ART and its applications. A reading of Grossberg
(1986) is recommended for a palatable yet rigorous introduction to
the ART formalization and concepts, with emphasis on speech-
related issues.

In this section, the ART is briefly sketched, with emphasis on its
speech perception modeling applications, because it encompasses
a biologically plausible and psychologically relevant learning
component.® Learning is incorporated in ART as an intrinsic part
of the functional system and not, as in most neural network
models, as an initial preparatory phase of statistical generalization.
ART networks learn continuously, although the learning rate and
the conditions that must be met are adjustable and may be influ-
enced by attentional demands as well as by age constraints. Fur-
thermore, learning in ART networks does not involve any separate,
biologically implausible, mechanism: Weights are updated accord-
ing to a differential equation as are the units’ activations, only at
a slower rate, on the basis of the correlation of activation flow with
postsynaptic activation. Multiple ART modules may be combined
to associate categories at different levels of representation, as well
as between lists and their component units (Grossberg & Stone,
1986).

An example of an ART network is illustrated in Figure 6,
including (a) an input layer [ that registers an incoming vector (or
vector sequence in the case of dynamic input), (b) a feature layer
F, that admits bottom—up input from 7 and top—down expectations
from F,, and (c) a category layer F, that learns stable categories,
on the basis of the featural patterns activated over F,, and projects
expectations based on its own pattern of activation back to F,. The
connection weight matrices between the two layers, called adap-
tive filters, are learned on the basis of the network’s experience and
adjust the flow of activation between the layers. ART networks are
different from most networks of other architectures on several key
points, including combining stable learned categories and the
ability to learn new ones, top~down template learning without
weight transport, matching between top—down expectations and
bottom—up patterns, and continuous associative learning inte-
grated in the system’s function (Grossberg, 1987).

An implicit conceptualization in many connectionist systems,
the distinction between short-term memory (STM) being an acti-
vation pattern and long-term memory (LTM) being a connection
weight matrix is rarely made explicitly and in this terminology, as
it is in ART. The two kinds of memory are treated in a unified
manner, in terms of differential equations expressing the connec-
tion weight values and the activation of each node as functions of
time, connection weights, and node activation, albeit in different
time scales; node activation and decay are much more rapid than
alterations of LTM traces. In contrast to most other existing
connectionist systems, ART learning is performed noncatastrophi-

3 By psychologically relevant, it is implied that the model’s learning
conditions and states can be cast in terms of psychological significance. For
example, short-term memory activity, realized as an adaptive resonance,
leads to modification of a category prototype, whereas failure to recognize
an exemplar affects vigilance and attentional gains that lead to formation of
new categories by strengthening connections to uncommitted patterns
(Grossberg & Stone, 1986).
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Figure 6. Basic architecture of an adaptive resonance module (based on
Grossberg, 1987, and Grossberg & Stone, 1986). A preprocessed input
pattern [ is registered at the feature detector layer F,, giving rise to a
short-term memory (STM) activation pattern X. The existence of input
activation 7 also excites the attentional gain control G and the orienting
subsystem A, but the latter is inhibited by the STM pattern X in F, and does
not become activated. The connection weights, called long-term memory
(LTM) traces, between F,; and F, form an adaptive filter, through which
activation flows upward to the coding level F,. As a result, a higher-level
STM pattern Y is formed in F,, which is enhanced by interactions between
the F, nodes. F, activity inhibits the attentional gain control G and projects
a learned top—down template (expectation) down to F, through a distinct
adaptive filter. Because of the F, nodes’ firing threshold and the lack of
attentional input from G, the resulting overall X* activation at F'; will be
lowered if the top—down expectance mismatches the bottom—up STM
pattern, thus releasing inhibition of the orienting subsystem A. Activation
of A nonspecifically resets active F, nodes to allow a new STM pattern to
emerge and another top—down expectation to be matched against the STM
pattern in F,, until either a sufficient match is formed or the stored
templates are exhausted. In the case of a good match between top—down
and bottom—up pattern activation in F,, X* and Y excite each other and
result in a system resonance that lasts long enough for the slow-changing
LTM traces to be updated. External nonspecific attentional signals through
G may override bottom—up information in particular circumstances. From
“Competitive Learning: From Interactive Activation to Adaptive Reso-
nance,” by S. Grossberg, 1987, Cognitive Science, 11, p. 35. Copyright
1987 by the Cognitive Science Society. Adapted with permission.

cally for the existing categories that have been previously formed
in the system. Input patterns deviating substantially from all stored
categories do not destroy the existing structures because of the
combined efforts of an attentional gating system that matches
learned expectations to sensory patterns and an orienting sub-
system that resets active categories that fail to produce an accept-
able match to the input (see Grossberg & Stone, 1986, and Gross-
berg, 1987, for more details on the system’s operation).

A property of ART networks that is very important for speech
perception modeling is the distinction between top—down and
bottom—up activation that makes it possible to prime STM acti-
vation of expected patterns but not actually activate them without
sensory input. Referring to Figure 6, the attentional gain control G
is constructed to output a nonspecific excitatory signal into the
sensory feature level F, when excited by some attentional gain
mechanism. The attentional gain may be activated by factors
outside the speech perception system (e.g., task-specific attentional

allocation) or by speech input. Because of their activation thresh-
old, nodes in F, will not generate output unless excited by at least
two of the three possible sources (I, G, and F,). If the input
matches the top-down “expected pattern” then F; nodes remain
suprathreshold, but if there is a mismatch, then individual F; nodes
will only receive input from one source, either from I or from F,
and will be forced to shut off. Importantly, top-down active tem-
plates alone cannot give rise to F, pattern activation unless a
matching sensory input is registered. The conceptual parallels of
this analysis to the well-known priming effects in spoken word
recognition are obvious: Associates of heard or seen words will be
active in F, but not in F, before sensory input in their support can
be registered. Interactive activation effects (often modeled with
reference to TRACE) can be accommodated without the embar-
rassing tendency of TRACE to hallucinate phonemes because of
word-node activation without bottom—up support.*

ART networks are capable of learning new categories without
forgetting existing ones and without the need for an external
omniscient teacher. In the case of a good match between top—down
and bottom—up pattern activation in F;, X* and Y (see Figure 6)
excite each other and result in a system resonance that lasts long
enough for the slow-changing LTM traces to be updated, enhanc-
ing the category’s representation. The orienting subsystem A
serves to indicate when an acceptable match or a substantial
mismatch has occurred. The capability of ART networks for con-
stant learning from specific new exemplars may account for
speaker-specific effects on word recognition (Mullenix, Pisoni, &
Martin, 1989; Nygaard, Sommers, & Pisoni, 1994; see reviews and
discussions in Johnson & Mullenix, 1997). The LTM traces do not
reflect an abstract representation of words, but an average of all
prior occurrences of a word with the latest speakers’ utterances
least decayed (recency effect). Therefore, words spoken by either
a very well known or a recently heard speaker will match the
stored patterns best. This way one can also adapt to speakers with
unknown accents or peculiar pronunciation.

Expanding the system to include more STM levels of represen-
tation and, consequently, more LTM connection matrices between
them, allows for the construction of a multilevel system with
higher-order levels chunking, or grouping, lower-order patterns
and their temporal order (Figure 7). The LTM connections be-
tween successive levels learn to encode the relative importance
and the temporal order of features (i.e., patterns of activation) at
one level and represent them as categories at the immediately
following level (Grossberg & Stone, 1986). It must be noted that
this automatic context-dependent scaling property of ART net-
works is very important for modeling speech perception where
many acoustic cues are often present, but the importance of each
depends on its current acoustic—phonetic context. Furthermore, the
development of language-specific phonemic representations re-
quires the tuning of sensory features according to the properties
that are salient for a particular language (Jusczyk, 1993, 1997).

4 The well-known phenomenon of phonemic restoration (Samuel &
Ressler, 1986; Warren, 1970), whereby listeners perceive speech in which
a portion has been substituted by noise as if it were intact, does not fall
under this notion of hallucination because the noise replacing the speech
signal is compatible with the perceived phoneme, even though not quite
specifying it.
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Figure 7. A “macrocircuit governing self-organization of recognition and
recall processes” (after Grossberg, 1987, p. 52; Grossberg & Stone, 1986,
p- 59). Auditory processes A; and motor processes M, self-organize at
several levels to encode linguistic features, phonetic categories and pho-
nemes, items (syllables), and lists (words), as required for speech percep-
tion and production. Short-term memory (STM) patterns at successive
stages affect each other through adaptive filters with self-organized long-
term memory traces. Codes stabilize through learning, and associative
maps are formed between encoded invariants at the auditory and motor

hierarchies. Note that categories, items, and lists need not necessarily .

correspond to traditional notions of phonemes, syllables, and words. Fur-
thermore, category codes are represented by distributed patterns of activa-
tion over entire layers and not locally by single specialized nodes. From
“Competitive Learning: From Interactive Activation to Adaptive Reso-
nance,” by S. Grossberg, 1987, Cognitive Science, 11, p. 52. Copyright
1987 by the Cognitive Science Society. Reprinted with permission.

The context-dependent importance of such features may be ex-
ploited by a syllabic grouping at a subsequent level of an ART
network.

ART networks of this type have been shown to form stable
category codes from input patterns and temporal sequences. Such
networks, however, cannot encode embedded and overlapping
patterns while maintaining their stability. This realization led to the
development of masking field networks (Cohen & Grossberg,
1986, 1987; Grossberg, 1986), in which longer patterns are always
favored over shorter patterns. If longer patterns were left to com-
pete (without advantage) with old short patterns embedded in
them, long words made up of strings of short words could never
form stable representations. For example, a word like catalog
would not be able to overcome the activation of the words cat, g,
and log and establish itself as a unique new category. However,
masking fields cannot yet self-organize to form stable category
codes like the ART networks, and therefore the long-list advantage
must be hardwired into the system.?

Articulatory-Phonetic Categories

The development of phonetic categories in infants is a stage
necessary for language development that is still not well under-
stood. Gupta and Mozer (1993; Gupta, 1994) proposed a connec-
tionist model that simulates the development of phonological
representations through development of attractor states. The model
also shows the loss of sensitivity to nonnative contrasts found in
10-month-old infants (Werker & Tees, 1983, 1984; see recent
reviews on children’s phonetic reorganization in Werker, 1993,
1994). A syllabic nature of phonological representations is a basic
assumption of this work that is based on evidence for greater
accessibility (in infants) of the syllable than of the phoneme as a
perceptual unit (Bertoncini, Bijeljac-Babic, Jusczyk, Kennedy, &
Mehler, 1988; Bertoncini & Mehler, 1981; see recent reviews by
Jusczyk, 1997, and Eimas, 1997). A part of the network’s success
in preference for syllabic units is the result of a gating component
in the input to the network. The most interesting demonstration is
the gradual loss of phonetic contrasts that are not salient for
phonemic categorization when the attractor states are formed.

Additional useful insights on learning and adaptation may be
found in models of speech production development, in which the
acoustic environment is hypothesized to lead to articulatory motor
synergies, which in turn lead to vocal tract configurations that
produce sounds gradually approaching those of one’s native lan-
guage. One such model was sketched by Grossberg (1986, pp.
253-257). Recently, an implementation of this idea was developed
by Guenther (1994, 1995b) that uses random babbling as a way to
explore the articulatory space and its mapping onto auditory space.
The model is called Directions (in orosensory space) Into Veloc-
ities of Articulators (DIVA) and in its initial formulation used
orosensory targets for the sounds. Orosensory targets were chosen
over often-proposed muscular or articulatory arrangements to ac-
count for the motor equivalence observed in speech production (in
that several distinct configurations of individual articulators may
lead to the same vocal tract shape, and thus to the same sound).
The model was implemented as an adaptive neural network that
learned the mapping from phonetic specification to articulatory
motor commands through a prewired speech recognition module,
training associations between phonetic and orosensory space, and
between orosensory and articulatory space (see Figure 8). Subse-
quent versions of the model (Guenther, 1995a; Johnson & Guen-
ther, 1995) were modified to use acoustic (as opposed to orosen-
sory) targets for the sounds, on the basis of recent evidence that
sometimes widely different vocal tract configurations may be used
for the production of the same phoneme (Espy-Wilson & Boyce,
1993; Perkell, Matthies, & Svirsky, 1994; Perkell, Matthies, Svir-
sky, & Jordan, 1994). Preservation of the orosensory mapping
allowed the model to capture motor-equivalent compensatory ar-

5 Nigrin (1990, 1993) developed a self-organized neural network
(SONNET) that combined the desirable properties of ART and masking
fields. The use of networks like SONNET in the context of speech
perception has not yet been investigated. Given the pervasiveness of
pattern embedding in words, the combinatorial characteristics of morphol-
ogy, and the fact that morpheme patterns must be mapped to stable, learned
category codes, the architecture of SONNET may be a fruitful approach to
modeling word learning and recognition.
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Figure 8. Schematic diagram of the Directions Into Velocities of Articu-
lators (DIVA) model developed by Guenther (1994, 1995b), as revised by
Guenther (1995a) and Johnson and Guenther (1995), to model phonetic—
articulatory development through random babbling and mapping of audi-
tory space onto articulatory direction space. Learned mappings are indi-
cated by enclosing dotted lines. The most recent version of DIVA is
illustrated here, which uses auditory targets as opposed to the orosensory
targets of the earlier versions. The orosensory mappings may need to be
reincorporated to account for compensatory articulator motion in cases of
external perturbation. From “A Modeling Framework for Speech Motor
Development and Kinetic Articulator Control,” by F. H. Guenther, 1995, in
Proceedings of the Xllith International Congress of Phonetic Sciences
(Vol. 2, p. 93), Stockholm, Sweden: KTH and Stockholm University.
Copyright 1995 by KTH. Reprinted with permission.

ticulation in the case of external perturbation even in the absence
of auditory feedback, in agreement with human production data.

Two issues raised by the DIVA model are closely related to the
problem of the development of speech perception. First, a major
theoretical assumption of DIVA was that the orosensory (initially)
and auditory (more recently) targets were not single points in their
corresponding space, but convex regions capturing the range along
which any one parameter (i.e., feature) is allowed to vary for a
given sound. This convex region hypothesis, along with the asso-
ciative learning technique, led to each phoneme’s full featural
(orosensory or auditory) specification, but with varying impor-
tance for each feature. In contrast to underspecified models (dis-
cussed below), where only the articulators that are necessary for a

phoneme’s production are specified, the convex region in target
space defines allowable positions for all degrees of freedom. In
contrast to fully specified models, where all articulators’ positions
are defined exactly for every phoneme, DIVA’s representation
allows greater variability in features whose change would not alter
the produced sound’s category. This approach led to an impressive
fit to experimental data pertaining to anticipatory and carryover
coarticulation, speech rate effects on articulator velocity and
movement distance, and vowel reduction in fast speech and in
languages with sparse vowel spaces (Guenther, 1995b). The im-
plications for speech perception models may be to abandon tem-
plate matching and the notion of idealized spectra for phonetic
identification and to explore instead the acoustic space that can be
produced by a vocal tract, assigning entire regions to phonetic
categories.

The second important contribution of DIVA that is relevant to
this article concerns the nature of the representations in the orosen-
sory and articulatory levels. In particular, instead of coding vocal
tract configuration and articulatory positions, DIVA codes direc-
tion of change in vocal tract configuration that maps onto articu-
lator movement (cf. the notion that the units of speech are dynamic
articulatory actions and not neutral, static constructs; cf. Browman
& Goldstein, 1995, p. 181). For example, reducing the lip aperture
would map onto upward jaw movement, downward movement of
the upper lip, and upward movement of the lower lip. Thus, motor
equivalence is modeled very accurately even in situations never
encountered during learning, such as simulated bite-block and
lip-perturbation experiments (Guenther, 1994). The relevance of
this hypothesis for speech recognition is in the importance of
concentrating on the dynamic (i.e., time-varying) properties of
acoustic representations, looking for targets that are being ap-
proached, as opposed to concentrating on static regions of minimal
spectral change. Further support for the importance of time-
varying spectral portions comes from studies showing higher dis-
criminability of such portions (Furui, 1986; Lindblom & Studdert-
Kennedy, 1967) and from the well-known undershoot effect
(Lindblom, 1963) frequently observed in natural speech, whereby
acoustic targets are approached but not entirely reached. With
respect to the development of speech perception, in particular,
there is evidence that children are much more dependent on
spectral changes relative to static portions than are adults (Nit-
trouer, 1992; Nittrouer, Crowther, & Miller, 1998; Wallet & Car-
rell, 1983).

Conclusion

In addition to learning the auditory—articulatory map and the
structure of phonemic categories, a complete account of speech
perception development must incorporate learning at several lev-
els. For example, learning new words must be designed to be an
integral part of the model, but so far only ART includes an account
of how such learning might be accomplished (but not how long
words could be learned or favored over their shorter component
words). The ease of word learning in humans and the flexibility of
the lexicon, both in production and in perception, strongly indicate
that learning words is, in a way, part of perceiving them. Consider
also the need for a complete model to account for nonwords.
Nonwords must be completely analyzed and decomposed into their
constituent segments (in terms of which the lexicon is described)
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before it is possible to decide that they are not valid words. Then,
their existing description should be immediately usable if they are
judged to be unknown words rather than illegal segment se-
quences. The way to incorporate the novel representations into the
lexicon should be similar to the general one-shot learning mech-

anism that has been observed in many domains of human behavior.”

Unfortunately, in most existing connectionist models, learning
new things usually involves multiple presentations of them, along
with repetitions of the already stored data. This is clearly an
unacceptable formulation for a novel-word learning model.

Phonological Representation and Computation

It has been noted that, in the course of speech perception,
item/type representations of stored knowledge (e.g., phonological
structure and lexical form representations) must come in at some
point to replace pattern/token representations of sensory processed
input (i.e., activation patterns in phonetic feature space). New
words, for example, are likely learned by adults on the basis of an
already known phonemic inventory, not only by principles of
storage economy (which may not be applicable) but also for a
parsimonious account of morphological and phonological pro-
cesses. The nature of the phonological representation(s) and the
processes that transform these representations to and from others,
such as acoustic/phonetic patterns, lexical items, and motor plans,
remain the subject of much speculation. Fortunately, these issues
have recently attracted some interest and commendable modeling
efforts are under way. As discussed below, some conceptual leaps
may be necessary before more exciting results can be obtained, at
least with respect to the representation of phonetic features and
the dynamical (vs. computational) treatment of phonological
processes.

Lexical Underspecification

One view of lexical representation (as well as other aspects of
grammar that can be described by systems of distinctive features)
holds that properties that are predictable or not distinctive are
simply left unspecified (see Archangeli, 1988, for an overview).
For example, in English, a vowel is not specified for nasality
because there are no English words differing solely on the basis of
vowel nasality, and, moreover, this feature is typically assimilated
from the following consonant, such that vowels preceding a nasal
consonant (e.g., /n/) are realized as [+nasal], whereas vowels
preceding nonnasal consonants are not nasalized. More impor-
tantly, there are default values for features that are considered
predictable, and thus not lexically specified, whereas nondefault
values for the same features are specified. An important implica-
tion of this postulated representational scheme for word recogni-
tion is that a matching asymmetry would be expected: A feature
that is not specified lexically would match any input value,
whereas a feature that is specified would match (and mismatch)
accordingly.

Lahiri and Marslen-Wilson (1991) and, more recently, Nix,
Gaskell, and Marslen-Wilson (1993), provided evidence for an
underspecified internal representation of lexical items by demon-
strating such a matching asymmetry between phonetic features. In
Bengali, an Indic language in which nasality is distinctive for
vowels, a nasal surface vowel (i.e., in the speech input) was

interpreted in a gating task by the listeners as underlyingly either
nasal or oral. In contrast, an oral surface vowel was never inter-
preted as underlyingly nasal. This asymmetry was explained by
Lahiri and Marslen-Wilson (1991) on the basis of an underspeci-
fied lexical representation in which the feature [+nasal] must be
included in the lexicon, but the opposite [—nasal], being the
default, is redundant and thus not specified. Therefore, a [+nasal]
in the speech input will match a [+nasal] in the lexicon, and will
not create a mismatch where no nasality is specified. Likewise, a
[—nasal] in the input will mismatch a [+nasal] in the lexicon and
will neither match nor mismatch an unspecified representation.

In a similar vein, Nix et al. (1993; see also Gaskell & Marslen-
Wilson, 1994, 1996) found that English listeners were likely to
interpret a surface labial or velar consonant as coronal in the
context of a following labial or velar segment, respectively, but a
surface coronal would always be perceived as an underlying coro-
nal. For example, the utterance [leik] could be perceived as either
lake or late before [kruz] (cruise), but the utterance [lert] could
only be perceived as late regardless of context. (Phonological rules
of place assimilation describe these phenomena in more detail.) On
the basis of the more recent findings, however, Marslen-Wilson,
Nix, and Gaskell (1995) argued that the underspecified represen-
tation alone cannot account for the data and that a process of
phonological inference is necessary to determine the viability of
the transformations given the context (which might span a word
boundary).

The claim for an underspecified representation is very attractive
and theoretically grounded, but it may be hard to distinguish from
alternative theories postulating multiple, fully specified represen-
tations. Stevens (1993, 1995), for example, proposed marking
features in the (fully specified) lexicon as modifiable, and Klatt
(1980) proposed storing several alternative spectral templates for
each lexical item to cover the range of variation. Functional
underspecification may be the result of any of these implementa-
tions. Alternatively, the convex regions hypothesis shown to work
for articulatory compensation (Guenther, 1994, 1995b) might work
equally well in the perceptual process, especially given an
auditory—articulatory mapping as described earlier. In particular,
each item (which may be a word or a syllable) can be represented
in all dimensions not with point values, but with ranges of allow-
able variation. The ranges may be context-dependent so that the
temporal patterns formed through self-organization differ accord-
ing to prior and following patterns. These differences may be
specific to one dimension or may involve many. For example,
place information for syllable-final stop consonants may be al-
lowed to vary between velar and labial. The variation would be in
the direction that minimizes the distance between the current and
the following region, which specifies the place of the following
consonant (cf. Guenther, 1995b, on modeling coarticulation). The
reason a region may be more attractive than an unspecified free
range is that radical underspecification does not put any restriction
on the range of variation of an unspecified feature, and that may
not be always desirable. For example, in Korean and Japanese
there is no distinction between what English listeners hear as /1/
and /U, so the corresponding 1/r phoneme might be unspecified for
the features that distinguish the two in English. In a region repre-
sentation, however, there would be a context-dependent allowable
range of the relevant acoustic—phonetic specification (including,
e.g., the third formant frequency), naturally accounting for any
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syllable-based variation as well. Regions may not offer a func-
tional advantage over multiple specifications but they constitute a
more coherent and unified approach to lexical and sublexical
representations and may be more naturally implemented in con-
nectionist models.

Phonological Representation and Inference

Gaskell, Hare, and Marslen-Wilson (1995) trained a recurrent
neural network to recognize phonetic specifications of labial and
velar consonants as underlyingly coronal in the appropriate pho-
nological contexts (e.g., [regkor] as red car and [gubboi] as good
boy). They used a network similar to that of Shillcock et al. (1991,
see Figure 4, right), again trained to identify the preceding, current,
and next phoneme (in phonetic feature specification), given the
phonetic feature specification of the current input. According to
the human data, the network should learn to interpret surface
labials and velars as possible underlying coronals when the fol-
lowing segments were labial or velar, respectively. In addition, if
the network is to develop an underspecified phonological repre-
sentation, it must also learn not to do two things. First, the network
must never interpret surface coronals as noncoronals, regardless of
context. Second, the network must never interpret a surface velar
as an underlying coronal in the context of a following labial and,
conversely, never interpret a surface labial as an underlying coro-
nal in the context of a following velar. For example, the network
should never interpret [leikpraid] as late pride.

The results of the simulations showed that the network basically
learned the autoassociation task between input and output features
and that labial and velar input consonants mapped onto coronal
output consonants in some cases. Unfortunately, because of the
nature of the featural specification, the network failed to pick up
exactly how critical the single-feature difference between labial
and velar was, so it sometimes responded with an underlying
coronal segment in cases of surface labial or velar segments in the
opposite context, that is, a following velar or labial respectively.
However, the mapping from noncoronal to coronal in different-
place contexts was not as frequent as in the same-place contexts.
The network sometimes (11% of the time) mapped noncoronals to
coronals in other following contexts (e.g., a vowel). Further ex-
perimentation with high-frequency words showed that the network
represented longer sequences in its recurrent hidden layer (cf. the
dynamic-net model of Norris, 1992) and took word identity into
account when deciding whether to interpret a surface noncoronal
segment as coronal or not.

The two main drawbacks of featural representations such as the
one used by Gaskell et al. (1995) are (a) the lack of structure (or
affinity relations) and (b) the inability to express continuity (as
underlying articulatory actions). Structure is necessary to account
for the common featural groupings of phonological transforma-
tions and the ensuing generalizations (cf. the notion of underspeci-
fication considered in the context of feature geometries and
autosegmental phonology; Kenstowicz, 1994, pp. 506-513). Con-
tinuity is indispensable in making apparent the nature of assimi-
lations, which can be thought of more naturally as anticipation or
perseveration of a gesture (cf. Browman & Goldstein, 1995). In
addition to these representational deficiencies, the dissociation
between the signified in the input and output layers may be the

source of much difficulty in modeling transformational processes,
as explained below.

Structure in Phonetic Feature Space

Articulatory (Browman & Goldstein, 1989) and independent
theoretical phonological considerations (Clements, 1985) have
converged on the development of a structured featural description
in which phonetic features, being a direct consequence of articu-
latory movement, exhibit certain interdependencies that reflect the
articulatory anatomy and motor planning (Fowler, 1995). In other
words, phonological changes are clustered so that linguistic fea-
tures that are primarily controlled by physically coupled articula-
tors tend to be affected in unison. In the course of learning to speak
and understand a language, ensuing associations develop between
physical constraints in articulation and frequent acoustic patterns.

One may think of the mapping between auditory space and
articulatory motor control as defining regions of tolerance for each
phonetic segment that result from a language-specific optimization
of articulatory motor planning. In a self-organized map that de-
velops through exposure to a speech environment, such dependen-
cies must automatically evolve as part of the acoustic—-motor
structure. In order for this organization to occur, the system must
be left to discover the denser regions in articulatory and in auditory
space, as well as the mapping between the two, given a primitive
feature sensory input (i.e., not of linguistic features but of acoustic
properties). Demonstrations that such a developmental process is
possible are given by models such as DIVA, the predictions of
which closely follow findings on children’s speech development.

In a featural representation, it is essential that information about
what goes with what be preserved, so that phonological effects are
naturally accounted for. In a model that learns its representations
from raw auditory input through exposure to endless speech sam-
ples, and perhaps with an articulatory loop component, it may be
unnecessary to arrange the input features in any structured way. In
a case, however, where phonological phenomena are to be ac-
counted for, but the phonetic input is presented preprocessed ad
hoc, one must make featural geometry explicit by design. For
example, features related to tongue positioning for consonant
articulation are likely to function in unison, whereas those that
specify vowel roundness and duration should not be allowed to
participate in the same phenomena.

Continuity and Identity

Assimilation processes, like the one studied by Marslen-Wilson
et al. (1995), are usually viewed as features spreading in time even
though they are often formalized as symbol-rewrite rules. Recent
advances in articulatory phonology place great importance on the
continuity of articulator motion. Assimilatory processes, such as
the one leading to the place change under study, are described
naturally when the relationships between nodes in a structured
feature hierarchy and the continuous identity of each node-feature
are preserved. In the context of place assimilation modeling,
continuity is of the essence because it makes a substantial (if only
conceptual) difference in what the learned associations are. Asso-
ciating specific input patterns to arbitrary output patterns is likely
to sidestep the most important issue in feature assimilation mod-
eling, namely, that the presumed continuity in underlying (articu-
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latory) action gives rise to the observed (phonetic) pattern and as
such it may have to be “undone” (phonologically decoded).

In addition to within-layer identity, or continuity, preservation
of between-layer identity has been a subject of some discussion in
the connectionist literature. The idea is that the network must
somehow represent that the features at the input layer are essen-
tially the same thing as the features at the output layer. A concern
about neural networks that are trained to map input to output
vectors stems from the fact that there is nothing in a network’s
representation to indicate that the nodes representing, for instance,
the output place feature have anything in common with the nodes
representing input place features. For a network like the one of
Marslen-Wilson et al. (1995), there was just greater variability in
the association between some nodes at one layer and other nodes
at another layer.

The problem of using structurally unrelated nodes to represent
the same kind of information at two different stages in a transfor-
mation process is closely related to the criticism on the lack of
“preservation of stem and affix” (Pinker & Prince, 1988, p. 108) in
an interactive activation model of the past tense (Rumelhart &
McClelland, 1986). Specifically, context-dependent phoneme
nodes were used in that model to represent a present-tense verb at
the input layer and its past-tense form at the output layer. As far as
the network was concerned, there was only a mapping from one set
of arbitrary pattern activations to another, without any representa-
tion of the fact that, in most cases, a part of the input pattern was
the same thing as a part of the output pattern, that is, the verb stem.
In essence, the regular pattern of transformation includes an au-
toassociative component and a context-dependent suffixation.
Symbolic treatments of morphological and other transformations
involve variables, which may stand for certain kinds and inherit all
properties of the things they stand for in all instantiations of their
representation. For example, denoting a verb stem with s and the
standard /d/ past-tense suffix with p, we may write a general rule
of the form [past : s — s + p], where the same s is present on both
sides of the transformation rule.

Fodor and Pylyshyn (1988) made similar remarks regarding the
ability of neural networks to exhibit this rule-like systematicity of
cognitive and linguistic processes. In a symbolic context, learning
once that s — s + p is enough for all existing tokens with the
“stem of regular verb” property to take the place of s in both sides
of the equation. Moreover, p remains the same for all cases of s. In
connectionist implementations so far, this systematicity evidently
does not arise from the learned mapping. On the other hand, the
inability of traditional computational accounts to adequately de-
scribe linguistic behavior outside of few well-prescribed (and
perfectly systematic) domains suggests that an entirely different
approach may be most beneficial. Specifically, recent progress in
dynamical systems modeling has shed new light on our under-
standing of symbols and computations. Recurrent neural networks,
being a powerful kind of dynamical system that can be trained to
implement any mapping, may arguably constitute our current most
promising option. Nearly all models discussed in this article are in
fact recurrent networks, and each has particular strong and weak
points. None has so far succeeded to stand up to the criticisms of
Fodor and Pylyshyn (1988), but the alternatives are far from
having been fully explored. More attention to the structure of
representations and the learning processes is necessary before

connectionist modeling can reach its mature stage in the area of
speech perception.

Dynamics Underlying Symbolic Systems

In a dynamical model of psychological processes, there need not
be an explicit symbolic representation on which computational
processes apply. Kolen (1994) made a case of demonstrating that
ascribing computation to a dynamical system is, to a large extent,
subjective. That is, unless the performance measures are translated
into competence symbols, there can be no computation. Given a
time-varying system of local interactions (brain) that produces
overt measurables (behavior) and possesses a certain degree of
plasticity to strengthen connections between associated events,
interactions with the environment lead to a self-organized internal
structure that closely mirrors that of the environment. The system’s
states that are clustered enough to be discernible can be translated
into discrete entities (symbols), and the processes that take the
system from one state to the other can be then formalized as
computations. In the domain of speech production and perception,
clusters (ranges) of numerical values of articulatory parameters
(gestures) are likewise mapped onto what Browman and Goldstein
(1995) called the “macroscopic structure of contrastive categories”
(p. 184), that is, the features and phonemes of phonological
theory.®

Dynamical systems, such as recurrent networks, that exhibit
symbolic behavior are neither symbolic systems nor implementa-
tions thereof. Recurrent networks operating in real time are the
models, even if superimposing a symbolic structure on top of them
helps us to see the generalizations better.” Recurrent neural net-
works are dynamical systems capable of behavior of arbitrary
complexity, including the implementation of symbolic systems.
Pinker and Prince (1988) and Fodor and Pylyshyn (1988) gave
connectionism only implementational status, that is, that connec-
tionism models the neural substrate underlying computational sys-
tems best described by symbols and rules. However, connectionist
models can potentially account not only for all symbolic behavior
but also for all departures from it, which symbolic modelers rush
to characterize as performance limitations. Surely, much work
needs to be done before such claims can be taken literally. It
remains to be demonstrated that a functioning system can exhibit
human-like systematicity consistently without explicit symbolic
computations.

¢ Articulatory parameters are likely unnecessary and perhaps irrelevant
in the case of vowel representations because of the variability in vocal tract
configurations that can lead to the production of vowels other than /a/, /i/,
and /u/. Grouping of acoustic features, such as formant frequencies, can
give rise to the discrete linguistic categories while preserving their internal
structure (Guenther & Gjaja, 1996). Recent investigations on vowel dis-
crimination have led Aaltonen et al. (1997) to an essentially identical
interpretation: “. . . on the auditory processing level [the listener’s experi-
ence with spoken language] is organized into clusters of similar, frequently
heard speech sounds. The ability to discriminate sounds within the same
cluster is impaired . . . and at the subsequent phonetic processing level the
category limits are adjusted to fit the pattern of clusters” (p. 1102).

" Note that Grossberg (1987) also rejects the distinction between a
model’s low-level mechanism and architecture, and its functional proper-
ties.
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Importantly, these ideas must be tested at the lexical level.
Recent advances in recurrent networks and in self-organizing
learning models have greatly expanded our understanding of pho-
netic perception, organization, and lexical activation, and have
only begun to explore the potential of dynamical models in psy-
chological modeling. Beyond lexical activation, however, it is
unclear how the dynamical systems view would hold. Norris
(1994) had to resort to a copy of TRACE's word level, with
temporally aligned localist word nodes, to account for the perva-
sive effects of context and competition ordinarily encountered
in the speech perception literature. ART networks and self-
organizing masking fields may constitute an attractive alternative,
but, for the time being, no large-scale implementation of multiple
levels is available (but see Grossberg et al., 1997, for computer
simulations modeling rate-independent speech categorization).
Certainly these directions need to be explored in future connec-
tionist models.

Concluding Remarks

Speech perception is a vast, challenging field, many aspects of
which have been extensively investigated, though several remain
poorly understood. Connectionism offers parallel distributed ap-
proaches to modeling, enlightened by both behavioral findings and
neurobiological considerations. The recent advances in under-
standing and using recurrent neural networks have led to impres-
sive progress in speech perception modeling at several levels,
including phonetic category formation and identification, phoneme
and word activation, and intralexical competition. Although no
unified approach has yet emerged that might be useful in building
an artificial speech recognition machine, several networks have
been used to successfully model human data by matching not only
significant differences between experimental conditions (e.g.,
Gaskell & Marslen-Wilson, 1997; Norris et al., 1995) but some-
times also the time-course of lexical activation (e.g., Allopenna et
al., 1998). Still, notably missing from connectionist implementa-
tion are prosodic features of speech that have long been implicated
in lexical processing and segmentation. Issues of phonological
development and word learning are also underdeveloped com-
pared, for example, with lexical activation or the directionality of
processing.

The neural and psychological plausibility of the existing models
spans a wide range, with the most extensively and successfully
applied model, TRACE, being highly implausible, whereas the
most neurally rooted theory, adaptive resonance, remains mostly
unimplemented in any realistic scale. Researchers have success-
fully used simple networks with recurrent connections only in the
hidden layer to model context-dependent effects without cumber-
some temporal representations, but the models suffer from an
implausible and inflexible learning scheme. Models of phonetic
and articulatory development have pointed at the high potential of
self-organized networks in forming appropriate representations
and modeling categorical speech effects. Future models must com-
bine the insights learned from different approaches into a coherent
multilevel model of speech perception from sound to word.
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