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Introduction

Interest in human speech perception has led to the investigation of some options

for machine speech recognition using the development tools of the Laboratory for

Engineering Man/Machine Systems (LEMS) at the Division of Engineering at Brown

University. The results of using two kinds of cepstral features that can be extracted

from the speech signal are described below. The Perceptual Linear Prediction (PLP)

method has recently become popular in the speech recognition �eld, but had not been

tested at LEMS before; original processing used LPC-based cepstra. Features based

on Discrete Fourier Transform (DFT) spectra have improved recognition rates, due

mainly to recent improvements in nonlinear sampling of spectral values; exploration

of these is still under way. In the following chapters the LEMS system and speech

database are �rst described briey and then the system's performance is tested with

these two kinds of features. The PLP-based features and the resulting recognition

performance are described in Chapter 2. In Chapter 3 a spectral representation is

proposed that is based on DFTs computed on overlapping speech segments of various

lengths in order to preserve short-lived phenomena in the higher frequencies and in

Chapter 4 conclusions and directions for future research are given.

The primary motivation for this research comes from the realization that word

recognition is such a di�cult task for computers and so e�ortless for humans and

that signi�cant advances in the machines' performance can only be expected to arise

out of systematic investigation of the human auditory system and of the charac-
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teristics of the speech waveform. Since speech has evolved along with the human

auditory system, one expects that the two are matched to a very high degree and

that research in both will provide complementary pieces of information and direc-

tions for engineering arti�cial speech-recognition systems. The current state of the

art of machine speech recognition, impressive as it may be by engineering standards,

is substantially inferior to human speech perception performance, and it may be ar-

gued that a paradigm shift in engineering research is necessary. However, all options

have not been examined yet, and the limitations of current techniques should serve

as indications of where subsequent investigations should be directed.

The two methods described below, although within the realm of current engi-

neering developments, claim to approximate human auditory properties or match

properties of speech a little better than those traditional methods that have been

developed primarily with mathematical considerations in mind. The results of their

application to a hidden Markov model (HMM) speech recognizer will show whether

such improvements in the speech processing front-end to a statistical recognition

system may confer a signi�cant advantage for the system's performance. Lack of

substantial improvements, however, should not be taken as a clear indication that

more auditory-like speech parameterizations are fruitless for machine speech recog-

nition; that may reect the fundamental inability of current statistical systems to

capture some essential properties of human speech perception processes, or that such

systems are incompatible with speech representations that retain particular kinds of

linguistically relevant information.

The task of unconstrained word recognition in naturally occurring speech is at the

moment beyond the capabilities of current computational procedures and available

hardware. Whether that reects basic misconceptions about human speech and its

perception by humans or processing and storage limitations is not clear at this point.

However, in order to work on the problem at hand, it is not merely convenient, but

2



imperative, to constrain it so that it becomes manageable and within the scope of

our equipment. Restricted formulations of the problem of speech recognition may

involve constraints on the number of talkers whose speech can be handled by the

system, the number of words that can be recognized, the rate at which the words are

spoken, the acoustic environment and recording equipment used, or any combination

thereof. Thus it is possible to attain a very high level of performance with a suitably

restricted vocabulary consisting of words spoken one at a time by a single talker

only. Relaxation of these constraints leads to deterioration of performance and, in

consequence, to very important and interesting engineering problems. These prob-

lems change when di�erent variables are studied. For example, in a large-vocabulary

system, storage of all possible words and practical algorithms for determining which

one is most likely present in the speech stream are primary concerns. On the other

hand, in a small-vocabulary talker-independent system, the system's ability to adapt

to di�erent talkers, or to bypass their di�erences becomes most important. In the

following, discussion is restricted to the characteristics of the LEMS systems; a re-

view of the problems of other con�gurations and the techniques being employed to

solve them can be found in Rabiner & Juang (1993) [10].
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Chapter 1

The LEMS recognizer and speech

database

Before describing the particular methods that were tried in order to improve per-

formance, it was necessary to obtain some measures of the system's previous level

of performance, with an LPC-based feature analysis method, and of the best possi-

ble performance, that of human listeners. In this chapter, the characteristics of the

LEMS recognizer are discussed �rst and the speech database is described in order

to evaluate the problem at hand. Then a reference performance level is presented,

obtained with a human-listening experiment, and a baseline performance level is ob-

tained with an HMM trained on LPC features using existing LEMS signal processing

code. Other signal processing techniques currently being investigated by LEMS stu-

dents are still in development and results from them will not be reported here.

1.1 The recognizer

The speech research group in the Laboratory for Engineering Man-machine Systems

(LEMS) has developed a testing platform for various signal processing and statistical

learning algorithms based on a hidden Markov model. The word recognition problem
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has been constrained to recognition of \alpha-digit" words, i.e., a vocabulary con-

sisting of the 26 letters of the English alphabet (\a" to \z"), the ten digits (\zero" to

\nine"), and the words \period" and \space." For practical purposes this is a very

important word set, as it allows (indirectly) for recognition of any kind of text as

long as it can be spelled out. For purposes of engineering research it is also a very

interesting set, because the similarities between several words in the vocabulary lead

to the realization of important problems in speech recognition, solutions to which

may be extended to more general word-recognition systems.

Besides dealing with a di�cult to distinguish word set, the LEMS system has

also relaxed the constraint of words being spoken in isolation, thus being a true

connected-speech recognition system. This makes the problems of word identi�ca-

tion much harder because there are no clearly discernible boundaries between indi-

vidual words. In fact, word edges are often merged with those of adjacent words

making the task of word segmentation impossible on an acoustic basis. In order for

a word to be segmented out of the speech stream it must �rst be identi�ed. Relying

on silence segments is unreliable not only because of the words' being spoken in a

connected manner; the gaps in the acoustic energy that exist in the speech signal

often correspond to word-internal silence, such as that of unvoiced stop consonants

(i.e., [p], [t], [k], and [�c]). The approach taken in the LEMS system is to evaluate

entire \utterances," i.e., word strings, against the spoken segment, taking into ac-

count the probability of the whole string being present on the basis of combined word

probabilities.

Each word-model is de�ned as having a speci�c number of \states," each of which

is associated, during training, with sets of acoustic features based on processing of

the speech stream. The hidden Markov model (HMM) is trained on the transition

probabilities between such states as well as on their duration (explicit duration mod-

eling, see [7]). The feature vectors used by the system may specify up to 28 di�erent
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feature values, usually occupied by 12 cepstral coe�cients, 12 �rst order di�erences,

and up to four energy and energy di�erence features. Both discrete observations

and continuous observations may be modeled. In the discrete system each set of

features is quantized into a vector codebook by k-means clustering and the train-

ing is only taking the centroids of the clusters into account (via the codebooks).

In the continuous system the actual feature values are used, which usually results

in a performance improvement by a few percent at the cost of signi�cantly higher

computational requirements.

1.2 The speech database

The speech group in LEMS has created a speech database containing a large number

of continuously spoken alpha-digit utterances. Each of 120 male and female talkers

(all native American English speakers) spoke up to 48 strings of 10{20 words (letters

and digits) each, for a total of 8 hours of speech. The recordings were subsequently

divided into 3 �les per talker of up to 16 utterances each, with appropriate header

information about the talker and the validity and content of each utterance. In

the complete set, 80 talkers (about 5 hours of speech) are used for training and 20

talkers are used for intermediate testing (to adjust system parameters, etc.) The

speech from the remaining 20 talkers makes up the �nal testing set. The speech has

been sampled at 16 KHz and quantized to 16 bits with PCM encoding for ease of

application of a variety of processing algorithms.

In the work reported here, a subset of the database has been used, comprising

1942 utterances from 60 talkers, including 36 male and 24 female talkers. 1276

utterances from 45 talkers (27 male and 18 female) make up the training set and

666 utterances from the remaining 15 talkers (9 male and 6 female) form the testing

set. There are, on average, 12 words in each utterance. The reasons a smaller set

was used were limitations on CPU time and disk space. Since the subset used was
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randomly sampled from the entire database, including many repetitions of all words

and several talkers from each sex, it was not expected that this restriction would

result in performance signi�cantly di�erent from using the entire set.

1.3 Human word recognition performance

Before running the LEMS recognizer on the testing set, ceiling performance level had

to be established, as de�ned by human performance. One may argue that strings

of random letters and digits, being devoid of content, is not the kind of people are

used to perceiving and they should not be expected to excel at it. However, humans

are the best speech recognition machines around. Therefore one should not expect

any machine recognition performance to exceed human performance. The results of a

listening test should indicate the recognition performance for which one should strive.

Since there is no sentential context of any sort to aid human perception, and it is

known in advance that only letters, digits, \space," and \period" may be spoken, the

only advantage for human listeners is their lowest level speech perception system,

which our recognizer is built to emulate. This would not be true if, for example,

meaningful grammatical sentences were the utterances to be recognized. On the

other hand, since most letter strings in the LEMS database form real English words,

humans can use this information to anticipate upcoming letters. For this reason, the

present listening test is not a strictly appropriate control test and the validity of the

results cannot be precisely assessed.

1.3.1 Experimental method

In order to conduct this experiment the time data �les were converted to raw audio

format, downloaded to a Silicon Graphics workstation in the Department of Cognitive

& Linguistic Sciences, and the �les saved as single-utterances in Audio Interchange
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File Format (AIFF) so that they could be recognized and played out by the native

audio tools. A computer program was written to control the experiment, taking into

account the following issues:

� Because the digits and letters are spoken rapidly and continuously, this is a

very hard task, even for humans, and requires the listeners' undivided atten-

tion. Even so, it is frequently impossible to hear and write down all the words

in an utterance, particularly for the utterances of the fastest talkers. Thus,

each utterance was presented twice in order for the subjects to �ll in whatever

they missed the �rst time. This did not confer any unfair advantage for the

human listeners because subjects were instructed to complete the utterance on

the second pass but not to correct misheard words. Furthermore, the com-

puter had no restriction on the amount of time an utterance was examined in

order for the most probable interpretation to be identi�ed; human listeners'

auditory memory, however, is very limited both in capacity and in duration,

so the tasks would not be comparable if humans were only allowed a \passing"

interpretation and not a second presentation.

� Because humans adjust to the particular characteristics of individual talkers,

and since it was such a hard task to begin with, trials were blocked by talkers,

i.e., all utterances from one talker were presented before proceeding to the next

talker. Otherwise subjects would not be able to cope with the speed of speech

and talker variation at the same time, resulting in arti�cially high error rates.

Again, this was not an unfair advantage because the computer is also tested

talker by talker, although this has absolutely no e�ect on its performance.

The subjects were three graduate students in the Dept. of Cognitive & Linguistic

Sciences who volunteered their participation. They were instructed to write down

the words they heard in the order they heard them. They were informed that only

the letters \a" to \z," the digits \0" to \9," and the words \space" and \period" were
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possible words in this set. They had to press a button on the computer keyboard

to initiate a trial, and then press it again to repeat the same utterance in order to

complete their response. They were asked not to make corrections of misperceived

words on the second pass. After presentation of each block of 14 to 16 utterances

(all from one talker) the subjects had the option of continuing the experiment with

the next talker block or quitting.

1.3.2 Results and Discussion

The three subjects that participated in this experiment identi�ed the words in 343

utterances, for a total of 4697 responses. The total number of errors was 45, or 0.96%,

including 16 substitutions, 16 omissions, 9 insertions, and 4 reversals of order. The

substitutions including misperceptions of \t" as \d" or \g," misperceptions of \8"

as \a," and a few others which occurred only once, including an instance of an \m"

that was identi�ed as \n" and once vice versa. Two substitutions were caused by

recording or �le creation errors that resulted in the initial word being only partially

present (thus a supposed \b" was heard as \e").

Clearly, humans are quite good at this, although a one percent error rate is rather

high and reects the di�culty of the task. Two things need to be noted here: First,

people do not normally utter letters and digits at this rate. When no sentential

context is present to aid word perception, people speak slowly and try to articulate

more clearly. The characteristics of the LEMS speech database made this a hard task.

Second, humans had the advantage of realizing that most of the letter word strings

formed real words. This way, subjects may have anticipated the following word (i.e,

letter name) to continue or complete a word. Although it is impossible to precisely

quantify the extent of that with such a small overall error rate, it should be noted

that the majority of the errors were made in utterances forming real words, therefore

the extent of anticipation was limited. On the other hand, if the words were spoken
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at a slightly slower rate, there probably would have been almost zero omissions and

insertions, bringing the total percentage of errors down. So, overall, the advantages

of being human may outweigh the disadvantages in this task, but it is not possible to

perform a better controlled experiment given the nature of the speech database. It

is concluded that the ceiling performance sought for our computer recognizer should

approach 99% in order to be comparable to human performance.

1.4 Recognizer training and testing standards

The procedure and the speech �le sets used for this test have been kept constant for

all tests using di�erent methods and parameters. In particular, the same training and

testing sets already described (the small train and small test set, respectively)

were always used, and the same small subset of the training set was always used to

create the vector quantization codebooks. The number of coe�cients varied depend-

ing on the order of the model tested, but this was only important when generating

the features and when using the continuous HMM recognizer. The discrete model

always used three vector codebooks. The recognizer was trained for 30 iterations

using gamma-duration modeling in the discrete model tests and Poisson-duration

modeling in the continuous model tests.

Testing was done with the batchrec program, which takes into account the num-

ber of words correctly recognized (C), the number of substitutions (s), the number

of deletions (d), and the number of insertions (i), in relation to the total number of

words (T ) in the testing set, and calculates the percent correct (c) by the formula

c =
C � i� d� s

T

� 100%:

Since the words are not presented to the recognizer pre-segmented, but on a whole

utterance basis, and the observation probabilities are computed with respect to the

entire observation string, some form of alignment is necessary for the appropriate
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calculation of insertions and deletions.

A �nal test was conducted to examine sensitivity of the methods to the recording

conditions, using a small set of utterances (90 utterances total, from 3 talkers) that

were recorded both with the usual head-mounted microphone, that was also used for

the standard training and testing sets, and with beamforming from a microphone

array, at the same time. Thus the exact same utterances were available in two very

di�erent spectral environments, and a robust recognizer should be able to handle

them without substantial performance deterioration, since there was no di�erence in

speech content. Naturally, the speech from the head-mounted microphone sounds

like the speech in the training and testing sets. The speech from the microphone

array sounds distant and is much softer. Although there are no quantitative assess-

ments of the di�erences between the beamformed recordings and the head-mounted

microphone recordings, the beamformed data were subjectively judged to be very

intelligible. The �le lists and the shell scripts that were written to run the LEMS

programs can be found in the Appendix.

1.5 Recognition performance using LPC features

Traditionally, linear predictive coding (LPC) has been the signal processing method

of choice for speech recognition, as it permits signi�cant compression of the relevant

spectral information through a stable and simple algorithm. Since the procedure for

\e�cient encoding of speech" was �rst introduced by Atal in the early 1970s [1, 2],

LPC has become a standard speech processing tool with impressive performance in

several �elds. Although it can be a general waveform modeling technique (with some

constraints on the spectral properties of waveforms), much of its success in speech

processing is probably due more to its algorithmic simplicity and stability than to

its dubious vocal-tract-modeling capabilities that are derived using wildly simpli�ed

equations and solutions.
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It is known that vowel production may be characterized to a good approximation

by an all-pole model that is driven by a quasi-periodic pulse train. To a lesser

extent, some consonants may also be approximated by a similar all-pole system that

is excited by some random noise (with a at spectrum). Because the production

of most consonants involves source excitation generated not at the end of the vocal

tract but at some intermediate point, the air ow in the point of constriction is not

laminar and the LPC approximation to the vocal tract area function is often not very

satisfactory. In such cases, higher orders of LPC may be required to capture essential

characteristics of the waveform, but then the LPC coe�cients lose their physical

meaning. Nasal sounds, which are produced by two coupled resonators (oral and

nasal cavities), are among the most di�cult to handle with LPC, because the zeroes

in the correct vocal tract transfer function can never be perfectly accommodated by

any low-order all-pole model.

Using methods based on Linear Predictive Coding (LPC) coe�cients, previously

reported recognition performance of the LEMS recognizer have ranged between 80%

and 90%. In particular, Michael M. Hochberg (1992), using the discrete HMM,

achieved overall performance rates of 81.4% with gamma duration modeling, 81.9%

with Gaussian duration modeling, and 84.3% with constrained Gaussian duration

modeling [7]. The highest overall performance achieved with the continuous HMM

and LPC-based features has been 89.4% [8]. Although these results give an idea

of the levels of performance any subsequent methods should be judged against, a

more appropriate comparison can be made if all methods are measured under iden-

tical conditions. In particular, it is important to compare models that have been

trained and tested on the same speech data. For this reason, the LEMS recognizer

was trained with a discrete model based on the LPC features of type6, as they

are referred to in the processing selection setting of the feature generating program.

These features are zero-mean cepstral coe�cients derived from LPC coe�cients that

13



A-set Confusion Matrix:
a h j k 8

a 83 3 6 13 8
h 3 90 2 1 3
j . . 86 3 .
k 0 . 1 80 .
8 0 6 . . 77
~ 14 1 5 4 11

E-set Confusion Matrix:
b c d e g p t v z 3

b 50 1 5 0 1 8 . 8 1 1
c . 62 . 1 . . 1 1 6 .
d 14 3 41 1 1 2 0 6 1 .
e 7 9 6 89 15 10 1 5 2 .
g . 1 2 . 54 2 . . 1 .
p 11 . 3 0 . 65 0 . . .
t . 3 30 1 18 7 94 6 1 1
v 11 1 1 1 . 6 . 70 1 1
z . 15 . . . . . 2 88 1
3 . 1 . . . . 0 . . 95
~ 6 3 13 7 10 1 3 3 2 1

Nasal/Glide Confusion Matrix:
l m n 7 9

l 84 11 2 . .
m 3 43 13 1 2
n 1 32 69 2 1
7 . . . 96 .
9 . . . . 92
~ 11 14 16 1 4

Table 1.1: Confusion matrices for the most di�cult word subsets, with LPC type6

features used to train the discrete recognizer.

are calculated from speech frames 40 ms long (not preemphasized) using the Durbin

algorithm with mel-type frequency warping (Constantinides frequency warping tech-

nique, warp coe�cient=0.4).

The overall performance of the discrete model was 73.13%. Table 1.1 shows the

confusion matrices for the most di�cult sets. Recognition of individual words ranged

between 40.6% and 99.4%, with \d," \m," \b," and \g" being the most poorly rec-

ognized (40.6%, 43.2%, 50.0%, and 53.7%, respectively). The best recognized words

were \four," \six," \space," and \seven" (99.4%, 99.3%, 97.9%, and 96.2%, respec-

tively). Talker accuracy also varied widely, from 54.6% (male talker eew, average of

all three test �les) to 87.7% (male talker gms, average of all three test �les). Overall,

the utterances of the female talkers were recognized, on average, as well as those of

the male talkers (73.9% vs. 73.1%).

The discrepancy between these results and previously reported performance lev-
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els using LPC processing should be mainly attributed to the selection of the speech

data that are used for k-means vector clustering (to create the vector quantization

codebooks) and, to a lesser extent, to performance uctuations due to di�erent ini-

tial random weights of the HMM. To show the large e�ect of the vector clustering

training set, the recognizer was trained on type6 features using codebooks available

in the LEMS archives from previous trainings. The bottom-line recognition perfor-

mance rose to 80.67%, with individual word recognition ranging from 35.8% to 99.5%

and talker recognition ranging between 64.4% and 91.2%. To verify the dependence

on initial training weights, the discrete model was trained for a second time with

the same standard codebooks that were used throughout this thesis and bottom-line

recognition performance was 72.21%, i.e., almost 1% less than after the previous

training. It is concluded that the recognition performance statistics reported herein

are accurate to at most 1% and this conclusion is valid only when identical code-

books are used. This weakens the validity of comparisons with previous work and

it is recommended that only the results reported here are taken into account when

comparing processing techniques.

1.5.1 Performance of the continuous model

Using the best-performing discrete model obtained with the standard procedure as

a starting point, a tied-mixture full-covariance HMM was trained for 30 iterations.

Table 1.2 shows the confusion matrices for the most di�cult word sets. Note the sub-

stantial improvement in almost all cases. The bottom-line recognition performance of

the continuous model was 77.27%, with recognition performance of individual words

ranging from 58.4% to 100.0%. The most poorly recognized words were \d," \b," and

\m," (recognized at 58.4%, 60.2%, and 62.5%, respectively) and the best recognized

ones were \six," \x," \seven," and \four" (recognized at 100.0%, 99.4%, 99.4%, and

99.4%). Performance by talker ranged from 62.2% for the most di�cult talker (male
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A-set Confusion Matrix:
a h j k 8

a 86 7 2 4 9
h 1 90 1 . 2
j 1 . 95 4 .
k 0 . 1 92 .
8 0 1 1 . 84
~ 12 1 2 . 5

E-set Confusion Matrix:
b c d e g p t v z 3

b 60 3 2 1 1 7 . 7 1 1
c . 73 1 1 3 . 1 . 7 .
d 9 2 58 2 . . 0 7 . .
e . 6 4 82 6 3 0 2 1 .
g 1 3 8 1 73 7 4 4 . .
p 15 . 4 0 . 77 0 1 . .
t 1 . 17 0 7 2 88 1 . .
v 7 1 . 1 . 2 . 69 1 .
z . 11 1 0 . . . 3 91 .
3 1 . . . . . 1 1 . 99
~ 5 2 5 11 9 2 5 5 . 1

Nasal/Glide Confusion Matrix:
l m n 7 9

l 90 14 1 . 1
m 3 62 15 . .
n . 19 77 . .
7 . . . 99 .
9 . . . . 99
~ 7 5 8 1 1

Table 1.2: Confusion matrices for the most di�cult word subsets, with LPC type6

features used to train the continuous model.

talker eew, average of all three test �les) to 90.8% for the talker easiest to recognize

(male talker gms, average of all three test �les). Overall, speech from female talkers

was recognized on average somewhat better than speech from male talkers (79.8%

vs. 75.8%). In conclusion, it should be noted that the continuous model performed

better than the discrete model, as expected, but the bottom-line recognition per-

formance still lagged behind results previously reported by the LEMS group. The

reason may be that the initial tied-mixture model was based on non-optimal vector

quantization that hindered further training.

1.5.2 Sensitivity to the recording conditions

As outlined in Section 1.4, beamformed data and simultaneous recordings with the

head mounted microphone were used to assess the sensitivity of the LPC technique
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A-set Confusion Matrix:
a h j k 8

a 45 7 . . 20
h 2 64 8 . .
j . 7 75 23 .
k . . . 23 .
8 . . . . 20
~ 53 21 17 54 60

E-set Confusion Matrix:
b c d e g p t v z 3

b 67 4 7 5 . . . 47 5 .
c . 65 . . . . 3 7 62 .
d . . 21 . . . 6 7 . .
e 17 22 21 68 14 10 17 . 24 6
g . 4 29 18 50 10 26 . . .
p 8 . 7 5 7 70 . 13 . .
t . . 7 . . . 31 . . .
v . 4 . . . 10 . 20 . .
z . . . . . . . . 10 .
3 . . . 1 . . . . . 85
~ 8 . 7 3 29 . 17 7 . 9

Nasal/Glide Confusion Matrix:
l m n 7 9

l 71 15 4 4 3
m . 38 12 . 11
n 6 23 79 . 16
7 . . . 96 .
9 . . . . 38
~ 23 23 4 . 32

Table 1.3: Confusion matrices for the most di�cult word subsets, with LPC type6

features used to train the continuous model, when testing on the beamformed speech

data.

to spectral distortions not related to the speech content. Bottom-line recognition

performance of the discrete model (trained in the standard manner) on the high-

quality set was 83.5% and on the beamformed data 31.1%. This result is in agreement

with earlier reports by the LEMS group [12], where the discrete model trained on

high-quality speech was found to perform at 32.8% on the beamformed data. The

continuous model achieved a bottom-line recognition performance of 85.8% on the

high-quality set and 39.0% on the beamformed set, a small improvement over the

discrete model, but still substantially worse than performance when tested with

speech similar to that it was trained on. Table 1.3 shows the confusion matrices for

the continuous model when tested with the beamformed speech. The deterioration

of performance is evident in all words.

In conclusion, regarding recognition performance using LPC processing to derive
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the cepstral features, it may be noted that overall the results achieved were worse

than other results previously reported, and this discrepancy may be attributed to

the choice of vector sets for creating the quantization codebooks. The models' per-

formance was comparable to that previously reported when testing with the smaller

sets of simultaneously recorded beamformed and high-quality speech. These results

will be used for the evaluation of the new techniques introduced in the next chapters.
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Chapter 2

Using Perceptual Linear

Prediction

2.1 Advantages and drawbacks of PLP

PLP is a technique developed by Hynek Hermansky that approximates auditory

spectra by using \concepts from the psychophysics of hearing" [5]. In other words,

PLP is a way to get rid of a lot of spectral information that is unlikely to be useful

for speech recognition because it is not retained after human auditory processing, as

psychophysical experiments have shown. Discarding such spectral information results

in higher recognition rates because there are fewer distracting features left that can

prevent statistical generalizations of the linguistically relevant sort. Because of this,

PLP is becoming popular in the speech recognition �eld, and there are even some

freeware speech processing software products o�ering PLP processing capabilities.

In comparative studies, PLP has been designated \the method of choice" [3, 4, 6].

PLP is an all-pole model, like LPC, so its advantages and disadvantages are

similar to those of LPC. In fact, PLP is nothing more than the LPC of a sound

waveform whose spectral characteristics have been transformed to match what is
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believed to reect the characteristics of the human auditory system. As such, PLP

addresses the issues that concern the applicability of a linear frequency axis and of

uniform amplitude and frequency resolutions in speech perception, but confers no

advantage with respect to the inability of all-pole models to correctly approximate

speech sounds other than vowels and glides. Therefore, the performance of PLP

cannot be expected to be free from the aforementioned shortcomings of LPC that

result from its being an all-pole model.

An additional observation regarding PLP is the e�ect of its short-term nature on

the characterization of transient phenomena. Apart from sustained vowels, which are

in fact rare in regular speech, linguistically relevant speech events involve short-lived

acoustic phenomena, which result from the movements of the various articulators

of the vocal tract. Such events include the bursts that occur at the onsets of stop

consonants, the formant frequency transitions between phonated segments, etc. Not

only are transient phenomena, in principle, outside the scope of all-pole modeling

(which is formulated for quasi-stationary signals), but also the time scale of the

various interesting speech features is not uniform. For example, the burst of a [b]

may precede phonation of the following vowel by a few milliseconds, typically between

zero and twenty, whereas forty milliseconds or more signify the presence of a [p] in

the context of identical formant transitions. Clearly, a temporal window of 40ms

or more will inherently fail to capture the essence of such phenomena, although it

may be appropriate for the formant transitions. Since integration over some time

period is necessary for the extraction of spectral data, there is also a lower limit to

the temporal resolution of a reasonable characterization process.

2.2 Description of the PLP technique

Following the original publication by Hynek Hermansky [5], PLP can be broken

down into the following steps: First one weights the speech segment with the usual
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Hamming window,

W (n) = 0:54 + 0:46 cos
2�n

N � 1
;

for a time window N samples long. A window length of about 20 ms was suggested

in the original publication, but the LPC processing of the LEMS recognizer used 40

ms, so lengths between 10 and 35 ms were tried. The windowed samples are then

transformed into the frequency domain (the discrete Fourier transform is computed

via the Fast Fourier Transform algorithm) and the short-term power spectrum is

computed from the magnitude of the DFT:

P (!) = <[S(!)]2 + =[S(!)]2:

The frequency axis of the power spectrum is warped into the Bark scale by

Schroeder's Bark-Hertz transformation equation


(!) = 6 ln

8<
: !

1200�
+

s�
!

1200�

�2
+ 1

9=
;

and the resulting warped power spectrum is convolved with the power spectrum of

a simulated critical band masking curve 	(
) (an approximation of physiological

auditory �lters which are supposed to be of approximately constant shape on the

Bark scale). This discrete convolution

�(
i) =
2:5X


=�1:3

P (
� 
i)	(
)

reduces the spectral resolution of �(
), which is then downsampled to 1-Bark and

preemphasized by a simulated equal-loudness curve

� (
(!)) = E(!)� (
(!))

to approximate the human sensitivity curve via the function E(!).

The resulting spectrum undergoes a dynamic range compression by a cubic root

�(
) = �(
)0:33;
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approximating the power law of hearing. Hermansky's claim was that since the afore-

mentioned operations greatly reduce variation in spectral amplitude, the resulting

spectrum can be modeled with a relatively low order all-pole model. Such a model

can be computed from the �rst few autocorrelation values of the inverse DFT of the

transformed spectrum with a fast recursive algorithm. Finally, the autoregressive

coe�cients of the all-pole model can be transformed into cepstral coe�cients which

are known to give stable results in speech recognition, because they are not sensitive

to frequency shifts of the spectrum. The number of the parameters in the all-pole

model is called order of the PLP model, and is the same as the number of cepstral

coe�cients that are derived from them.

2.3 Recognition performance with the PLP fea-

tures

The C code for the PLP implementation was kindly provided by Dr. Hermansky

himself. Some code had to be written to interface it to the LEMS programs, and

now it can be run as part of the LEMS recognizer by a shell script which takes the

desired order of the PLP model and the temporal size of the processing window as

command line parameters and creates the feature �les. The creation of codebooks,

quantization of the feature vectors, training, and testing were done in the same

manner described above for the LPC processing and with the same �les.

2.3.1 Tuning of the processing parameters

In order to determine the optimal PLP model order and processing window length for

the LEMS recognizer and speech database, tests were run with many di�erent settings

of these parameters. Hermansky noted in his original paper that a 5th-order model

gave best results for across-talker recognition. However, he was using a sampling
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rate of 8 KHz, therefore those results may not apply to the LEMS setup because it

uses 16 KHZ. Having a wider spectral region to model, more poles may be necessary

to capture the essentials of the shape over the entire 8 KHz range. Because of the

e�ective reduction in spectral resolution with PLP analysis, the additional spectral

structure above 4 KHz may be small. Few speech segments contain information in

that region (mostly dental and alveolar fricatives, whose spectra have little energy at

the lower frequencies), so not many more that �ve cepstral coe�cients were expected

to be necessary. However, because of the presence of consonants that are not well

approximated by all-pole models (notably nasals), higher orders may be necessary

for good overall recognition performance.

Figure 2.1 shows the overall recognition performance of the LEMS recognizer for

di�erent parameter settings of the speech processing module. The performance met-

ric is the \bottom line recognition performance" that is calculated by the batchrec

program (see Section 1.4). Note that recognition performance appears to be rel-

atively insensitive to the two parameters over a large range of variation. A few

repeated trials showed that the accuracy of any given point is about 1.5% because of

some dependency of the HMM model on the initial values (random initial transition

probabilities). Therefore, the observed pattern should be interpreted with some tol-

erance. It should also be noted that the overall performance of the LEMS recognizer

is very much higher than that reported by Hermansky of his rudimentary recognizer

(between 50% and 60% for PLP orders between 5 and 11); this di�erence is clearly

attributable to the sophistication and the statistical power of the HMM. There is

also a substantial di�erence between recognition performance with PLP processing

and recognition performance with LPC processing. No PLP parameter combina-

tions produce results worse than those with LPC, and the best overall performance

(84.1%) is 11% better than that of type6.

From these results, we may conclude that lower orders of PLP analysis are in-
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Figure 2.1: Bottom line recognition performance for the discrete LEMS recognizer

with PLP processing of the speech signal, for several di�erent model orders and

processing window lengths.

deed a little better than higher orders, perhaps because they do not confuse the

recognizer with irrelevant variation but retain most of the (linguistically) important

spectral information. Although this di�erence is not very large, it is very important

that similar or better recognition performance can be attained with fewer than half

the parameters. LPC models previously tested with the LEMS recognizer used 12

cepstral coe�cients derived from 14th-order LPC coe�cients. While it is known that

higher-order LPC coe�cients add little to the description of the speech waveform,

it is unclear whether signi�cantly fewer cepstral coe�cients from LPC parameters

could have produced equally high percentages of correct recognition. That is, 26 LPC
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parameters (12 cepstral coe�cients, their frame-to-frame di�erences, plus energy and

energy di�erence) are outperformed by 12 PLP parameters (5 cepstral coe�cients

and their frame-to-frame di�erences, plus energy and its di�erence). This is not ex-

actly rigorous for the discrete model, where three codebooks are used in each case

(PLP and LPC), but it applies to the continuous models, and it is also important in

computational considerations, because the training and the testing �les need to be

coded into some set of parameters, either for the calculation of the codebooks, or for

the training of the model.

With respect to the size of the processing window, it is clear from these results

that longer windows give rise to higher performance, probably because the spectrum

needs some time for good de�nition of the salient features. In particular, windows

with lengths of the order of a pitch period lead to poor results because of the am-

plitude variation within each pitch period. For example, for a voice with F0 around

100 Hz (normal for an adult male talker), processing should be performed on speech

segments much longer than 10 ms. Too long processing windows, on the other hand,

will wash out critical spectral transitions. Thus it was not considered useful to test

with processing windows longer than 35 ms, because the advantage of the 35 ms win-

dow over the shorter windows already seemed to be marginal, and longer windows

were likely to miss altogether the shortest phenomena. Furthermore, the shorter

processing windows confer computational advantages, since fewer points need to be

taken into account for the computations.

2.3.2 Performance di�erences between words

It is of particular interest to examine the recognition performance for each word

in order to identify the most problematic cases and attempt to deal with them

directly, if performance on those turns out to be discrepant from overall performance.

Indeed, observation of the performance broken down by individual words reveals a
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common underlying pattern of most of the PLP models used. In particular, the

words involving voiced stops (i.e., \b," \d," and \g") or nasals (\m" and \n") are

always among the most poorly recognized, often by a wide margin. Also, \p" and

\l" are often among the most poorly recognized words, whereas the longer words

(all the numbers and \w") are those that are recognized best. Figure 2.2 shows the

recognition performance of the six most poorly recognized words, by PLP model

order and processing window length.

Overall, these graphs are not very easy to interpret because of the variability

between adjacent points: What is, for example, the drawback of 6th-order PLP on

20 ms windows that leads to such a poor performance for the word \d," but not

for any other word? And what is wrong with 5th-order processing with an (overall

superior) 35 ms processing window that diminishes performance on \g" only? Most

likely, these extreme uctuations are the result of small probability di�erences in

the recognizer that lead to di�erent biases in di�erent models, either because of the

initial (random) weights or for other processing reasons. These small biases may

lead to large recognition di�erences when di�cult words are tested, although overall

performance will not change much. An example is the tradeo� between \m" and

\n," which are di�cult to discriminate.

Although the individual word graphs are not smooth at all, there is a general

pattern indicating that words beginning with stop consonants are favored by lower

order models, whereas words ending in nasal consonants are better recognized by

higher-order models. It is not at all surprising that higher order processing improves

recognition of the nasal sounds|these are the sounds whose spectrum is the most

di�cult to match with an all-pole model spectrum, so higher order is imperative in

order to improve the approximation. It is also not surprising that non-nasal sounds,

as well as the rest of the words, are better recognized when low-order models are used,

because then only the most basic characteristics of the speech sounds are retained,
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Figure 2.2: Recognition performance of the most poorly recognized words, using the

LEMS recognizer (discrete model) with PLP processing, by PLP model order and

length of processing window (in ms, legend at the top of the page).
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A-set Confusion Matrix:
a h j k 8

a 93 1 2 6 8
h 0 90 1 . 1
j . . 97 2 .
k 0 . . 90 .
8 1 4 . 1 90
~ 5 4 1 1 1

E-set Confusion Matrix:
b c d e g p t v z 3

b 57 2 2 0 1 . . 3 . .
c . 94 5 0 4 2 3 . 11 .
d 8 . 61 0 1 1 0 1 . .
e 13 2 7 93 15 18 3 4 . 1
g . . 2 . 55 . 0 . . .
p 8 . 6 0 . 61 1 1 . .
t 1 . 15 . 13 14 91 3 1 .
v 9 . 1 3 1 . . 88 1 1
z . 2 . 0 . . . 1 87 .
3 . . . . . 1 . . . 99
~ 3 . 1 4 7 4 2 . 1 .

Nasal/Glide Confusion Matrix:
l m n 7 9

l 84 10 0 . .
m 2 41 6 . .
n 2 48 88 1 .
7 . . . 99 .
9 . . . . 98
~ 13 1 5 . 2

Table 2.1: Confusion matrices for the most di�cult word subsets, when the recognizer

is trained on 8th-order PLP features, calculated from speech frames 35 ms long.

and the details which tend to vary a lot between talkers are discarded.

Somewhat surprisingly, longer processing windows favor not only the relatively

more stationary nasal sounds, but also the words containing abrupt transitions and

short-lived phenomena, such as the stop consonants. Window sizes of 25 or 35

ms generally outperform shorter sizes for all the problematic words; this may be

attributed to variability within pitch periods, as explained above. Interestingly,

parameter combinations that lead to good recognition of \m" usually result in poor

performance on \n," and vice versa. Examination of the confusion matrices (for

example, Table 2.1) indicates that the relative discrimination of \m" and \n" remains

low for all models and, depending on the particular combination of signal processing

parameters, one will be confused for the other more often. It seems that higher PLP

order generally improves this situation, but not very much.

Examination of the confusion matrices reveals another interesting aspect of the
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di�culties associated with the E-set. In particular, a very common confusion is

for words beginning with a consonant followed by \e" to be recognized as \e," i.e.,

the consonant transitions are not given enough importance. Since the duration of

the whole word is much longer than that of the initial transient phenomena that

characterize the consonant, and most of the word length is in fact identical to an

\e," this should not come as a surprise. It seems that a di�erent weighting scheme

may be more appropriate for these words, so that the initial information is more

highly valued in these words where the �nal information is rather useless (since it is

shared by many words). Perhaps the number of states and their relative importance

need to be reevaluated for some words.

2.3.3 Performance of the continuous model

It was not possible, because of constraints on computer time and disk space, to

train and test continuous models with all these combinations of parameters. A

continuous model was chosen to be trained based on features from 8th-order PLP

computed on 35 ms speech frames, because the discrete model trained with these

features achieved one of the best recognition scores. The curve for 35 ms processing

window (see Figure 2.1) shows that for this length of speech frame, performance

does not vary much with model order, for orders between 6 and 8. The confusion

matrices for this model (Table 2.1) are similar to those of any other parameter

combination that achieved high performance. The stops \b" and \g" and the nasal

\m" were poorly recognized, as usual (see Figure 2.2). The utterances from male

talkers were recognized on average 84.7% correct, whereas those from female talkers

were recognized on average slightly less, 81.3% correct. The female talker's jls

speech was recognized most poorly, at 67.6% on average, and the male talker's gms

speech was recognized best, 92.8% on average. Moreover, a model of 8th order was

a reasonable choice given previous results with 5th-order PLP on speech sampled at
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A-set Confusion Matrix:
a h j k 8

a 95 4 3 1 4
h 0 96 . . 1
j 0 . 97 1 .
k . . . 97 .
8 1 . . 1 93
~ 4 . . 1 2

E-set Confusion Matrix:
b c d e g p t v z 3

b 63 . 4 1 . 4 0 5 . .
c 1 97 1 0 . . 1 1 14 .
d 12 . 70 0 1 1 . 3 . .
e 5 . . 93 1 4 0 1 1 .
g . 1 6 0 93 . 1 . . .
p 7 . 4 0 . 81 2 . . .
t . . 10 0 1 7 92 1 . .
v 7 1 . 1 . 1 . 89 . .
z . 2 . 0 . . . . 85 .
3 . . 1 . . 1 . . . 100
~ 4 . 4 4 3 1 3 . . .

Nasal/Glide Confusion Matrix:
l m n 7 9

l 89 7 0 . .
m 4 66 11 . .
n 0 23 82 . .
7 . . . 100 .
9 . . . . 97
~ 6 5 7 . 3

Table 2.2: Confusion matrices for the most di�cult word subsets, when the contin-

uous model is trained on 8th-order PLP features, calculated from speech frames 35

ms long.

8 Khz and the present �ndings.

After twenty additional iterations of training, the continuous-model bottom-line

performance was 89.7%. Table 2.2 shows the confusion matrices for the most di�-

cult word sets. As expected, recognition performance improved for all words. The

accuracy by word ranged between 63.3% and 100.0%, with \b," \m," and \d" being

most poorly recognized (63.6%, 65.9%, and 70.3%, respectively) and the numbers

from \three" to \seven" all recognized 100.0% of the time. Performance by talker

ranged from 79.4% (for the female talker jls) to 96.9% (for the female talker crw).

Overall, speech from the male talkers was recognized about as well as speech from

female talkers; in fact, speech from the females was recognized only slightly better

(90.3% vs. 89.3%).
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A-set Confusion Matrix
a h j k 8

a 59 43 8 23 55
h 2 43 . . .
j 6 . 75 8 .
k . . . . .
8 . . . . 20
~ 33 14 17 69 25

E-set Confusion Matrix
b c d e g p t v z 3

b . . . . . . . 7 . .
c 8 74 . . . . 9 7 33 3
d . . 21 3 . . 3 . . .
e 92 17 79 86 50 90 74 73 57 21
g . . . . 7 . . . . .
p . . . . . . . . . .
t . . . . . . 3 . . .
v . . . . 7 . . 7 . .
z . . . . . . . . 5 .
3 . . . . . . . . . 59
~ . 9 . 11 36 10 11 7 5 18

Nasal/Glide Confusion Matrix
l m n 7 9

l 71 23 21 4 8
m 23 23 21 . 8
n . 23 33 4 16
7 . . . 83 .
9 . . . . 5
~ 6 31 25 8 62

Table 2.3: Confusion matrix for the di�cult words in the beamformed data from the

microphone array using 8th-order PLP features computed on 35 ms speech segments.

2.3.4 Sensitivity to the recording conditions

In order to investigate the sensitivity of the PLP coe�cients to the recording con-

ditions, the �les described in Section 1.4 were used to test the models as they were

already trained with the usual training set. Performance of the discrete model was

88.6% on the speech recorded with the head-mounted microphone and 22.2% on the

beamformed speech from the microphone array. Table 2.3 shows the confusion ma-

trices for the di�cult words in the beamformed data. Clearly, because of the lower

amplitude of the speech signal in these utterances, most of the words in the E-set

were recognized as \e," totally ignoring the initial transition states.

The continuous model achieved 91.5% on the speech from the head-mounted

microphone and 43.1% on the beamformed data, a signi�cant improvement over

both the discrete model trained with PLP-based cepstral features and the continuous
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A-set Confusion Matrix:
a h j k 8

a 53 7 . 15 15
h 2 79 . . .
j 2 . 83 15 .
k . . . 15 .
8 4 14 . 8 65
~ 39 . 17 46 20

E-set Confusion Matrix:
b c d e g p t v z 3

b 8 . . . . . . 40 . .
c 8 74 . . 7 . 3 . 48 .
d 8 . 64 . 7 . 11 . . .
e 50 13 29 65 14 70 40 40 29 6
g . . . 5 14 10 11 . 5 .
p . . . . . . . . . .
t . . . . . . 20 . . .
v . . . . . . . . . .
z . . . . . . . . 5 .
3 . . . . . . . . . 68
~ 25 13 7 30 57 20 14 20 14 26

Nasal/Glide Confusion Matrix:
l m n 7 9

l 80 54 29 4 27
m . 31 21 . 11
n . . 12 . 3
7 . . . 83 .
9 . . . . 22
~ 20 15 38 12 38

Table 2.4: Confusion matrix for the di�cult words in the beamformed data from the

microphone array using 8th-order PLP features computed on 35 ms speech segments.

model trained with LPC-based cepstral features. The confusion matrices for this test

are shown in Table 2.4.

2.3.5 Combining parameters

Because of the di�erent advantages of high and low model orders, in particular

with respect to the most di�cult words, it is interesting to investigate the e�ects of

combining more than one PLP model order in the same feature vector. This way one

may be able to combine the advantages of both low and high PLP order processing in

a single HMM recognizer. Since window length seems to have a uniform e�ect on all

words, i.e., longer windows result in better recognition performance, combinations

involving shorter temporal windows were not investigated, although that might be

justi�able on acoustic-phonetic grounds only. Examination of the recognition results
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for the various models showed that processing of 25 ms windows with a 5th-order

PLP analysis was a particularly successful combination, because it achieved one of

the highest overall recognition performances (83.8%) as well as recognition rates

among the highest for the generally problematic stop consonants (see Figure 2.2).

This combination was not, however, as good a choice for the words involving nasal

sounds, for which a 10th-order PLP analysis with a 30 ms window gave much better

results.

The two processing parameter pairs were combined using �ve cepstral coe�cients

and their di�erences from a 25 ms window along with ten cepstral coe�cients (with-

out the di�erences) from the 30 ms window. It was not possible to include the ten

di�erenced cepstra from the 30 ms processing because the feature vectors have a

maximum size of 28 and four were already reserved for the energy features. Recog-

nition rate was expected to be at least equal to that from the 5th-order PLP alone,

since all 5th-order parameters were included, and probably somewhat better, either

at the nasals only, because their recognition was improved by higher order PLP pro-

cessing, or overall, because of the extra information given to the model. However, it

was also possible that the extraneous information given to the model would obscure

the statistical generalization and that the �nal recognition rate could be lower than

that of the 5th-order PLP processing alone.

The usual set of utterances was used to train an HMM model with the combined

PLP features. Because only three codebooks are allowed in the vector quantization

program (fastvq), both the 5th-order cepstral coe�cients and their di�erences had

to be included in the �rst codebook, and the 10th-order cepstral coe�cients in the

second codebook (so that there would still be a codebook left for the energy and its

di�erence). This may have prevented the formation of good vector clusters and may

have caused a lower-than-normal performance of the resulting model. Unfortunately,

it was not possible to get around this problem by using only the continuous model
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A-set Confusion Matrix:
a h j k 8

a 94 4 5 3 5
h 0 90 . . 1
j . . 92 1 .
k 1 . 2 95 .
8 1 3 . . 89
~ 3 3 1 2 5

E-set Confusion Matrix:
b c d e g p t v z 3

b 59 . 2 1 . . . 4 . .
c . 91 . 0 1 . 3 . 7 .
d 9 . 72 1 . . 0 6 . .
e 11 3 8 93 12 11 0 3 1 .
g . . 2 0 58 . . . . .
p 7 . 3 1 . 74 0 1 . .
t 2 . 10 0 21 8 95 3 . 1
v 6 1 1 1 1 2 . 83 1 .
z . 3 . . . . . . 91 .
3 . . . . . 1 . . . 98
~ 5 1 2 4 6 5 1 1 1 1

Nasal/Glide Confusion Matrix:
l m n 7 9

l 84 6 1 . 2
m 0 67 19 . .
n 1 24 77 1 .
7 . . . 99 .
9 . . . . 97
~ 14 3 3 . 1

Table 2.5: Recognition performance of the HMM recognizer (discrete model) using

PLP cepstral coe�cients of 5th order and their di�erences (in the �rst codebook),

cepstral coe�cients of 10th order (in the second codebook), and energy and di�er-

enced energy (in the third codebook), after 50 iterations of training with Poisson

duration modeling.

because it is necessary to begin with a discrete model. The results of the recognition

testing were 82.8% after 30 iterations and 84.9% after 50 iterations of the training

program. Overall, there does not seem to be a substantial improvement in recognition

rate. The achieved bottom-line performance of the combined processing model is

about 1% above the best single-processing model, and that is only after 20 additional

training iterations.

There was not a big improvement in the recognition rates of the most di�cult

words (see Table 2.5), which suggests that combining information from di�erent

processing orders does not provide the HMM recognizer with additional information,

at least when the discretization of the vectors prevents full utilization of this extra
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information. The recognition rates for the problematic cases were 58.2% for the \g,"

72.3% for the \d," 59.2% for the \b," 73.5% for the \p," 67.0% for the \m," and

77.4% for the \n." It is very likely that the additional parameters that might �ne-

tune recognition by re�ning the category boundaries were averaged together with

the basic ones by the k-means clustering procedure, thus decreasing the advantages

of the combination. This might be resolved with the continuous observation HMM

model, which takes into account all the parameters independently of each other.

2.3.6 Combined parameters with the continuous model

In order to test the possibility that the additional information from the combination

of di�erent PLP model orders improves recognition performance, the output model

of the discrete training after 30 iterations was converted to a continuous tied-mixture

model, and the train program was run for 20 iterations to �ne-tune the distinctions

between the di�erent observation sequences. The overall recognition performance of

the trained continuous model was 85.6%, i.e., 0.7% better than the discrete model

trained for the same number of iterations. The confusion matrices for the most poorly

recognized words (Table 2.6) show a modest improvement in most cases. Since there

was no improvement compared to the results of the single-window, single-order PLP

processing, the additional computational cost of the combined parameters disquali�es

it from further consideration. For this reason, no sensitivity tests were performed.
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A-set Confusion Matrix:
a h j k 8

a 91 . 7 1 4
h 2 97 . . 1
j 0 . 91 1 .
k 1 . . 97 .
8 3 1 . 1 92
~ 3 1 2 1 3

E-set Confusion Matrix:
b c d e g p t v z 3

b 68 . 2 1 . 2 . 8 . .
c . 87 . 0 . . 2 . 5 .
d 4 . 51 0 . . . 3 . .
e 5 3 5 91 7 5 1 3 2 .
g . 1 12 0 84 2 3 1 . .
p 7 . 9 1 . 89 4 1 . .
t 2 1 18 . 6 1 86 1 . .
v 10 2 . 2 . . 0 81 . .
z . 5 . . . . . 1 93 .
3 . . . . . 1 1 . .100
~ 3 1 3 4 3 . 2 2 . .

Nasal/Glide Confusion Matrix:
l m n 7 9

l 92 9 0 . .
m 2 69 18 . .
n 0 18 74 . 2
7 . . .100 .
9 . . . . 97
~ 5 3 7 . 1

Table 2.6: Recognition performance of the HMM recognizer (continuous model) us-

ing PLP cepstral coe�cients of 5th order and their di�erences (in the �rst codebook),

cepstral coe�cients of 10th order (in the second codebook), and energy and di�er-

enced energy (in the third codebook), after 20 iterations of additional training.
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Chapter 3

Using log-spaced Fourier spectra

The second method tried with the LEMS recognizer was based on nonlinear sampling

of DFT spectra, with an important variation: Each of four frequency regions was

taken from a DFT computed from a di�erent-sized segment of the speech signal. In

this section the relative advantages and drawbacks of speech recognition attempts

based on DFT spectra are outlined, the reasons for nonlinear sampling of the spectral

values are cited, and the intuitions behind the choice of multiple window sizes are

clari�ed. The results obtained with the recognizer are then discussed with respect

to predictions and to previous results of the LEMS speech group.

3.1 Advantages and disadvantages of log-spaced

spectra

Because of the disadvantages of all-pole modeling that were mentioned in the previous

chapter, an alternative option is now often taken, that of using cepstral coe�cients

obtained from raw DFT spectra. D. J. Mashao, Y. Gotoh, and H. F. Silverman from

the LEMS speech group have been developing some feature extraction techniques

which use nonlinear sampling of smoothed DFT spectra and convert the resulting
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warped spectral representation into the cepstral domain [9]. Their formulation of the

nonlinear sampling de�nes � regions of the linear frequency axis, the ith one being

of width A�
i�1 where i goes from 1 to �. If the total width of the frequency region

is N , the following formula must be satis�ed:

�X
i=1

A�

i�1 = N:

Each region is linearly sampled to contribute the same number of points, so the

higher frequency regions end up being sampled more sparsely than the low frequency

regions. The results so far indicate that higher values of �, i.e., less uniform and more

\log-like" sampling of the spectrum, lead to better recognition results.

Human audition is known to function on an approximately logarithmically-spaced

frequency axis, although at the cochlear level the lowest frequencies are linearly

spaced and only after about 2 KHz is the spacing logarithmic. In the cortical au-

ditory maps, it is claimed that at some level the frequency axis may be logarithmic

throughout its range. This can have very important implications for speech per-

ception, in particular with respect to talker normalization, since identical utterances

produced by talkers with di�erent vocal tract lengths would di�er only by a shift and

not by a scaling factor in log-spaced spectra. Therefore, in the cepstral representation

(a form of which is perhaps computed in human auditory cortex) such utterances

would have identical cepstral magnitude and di�er in cepstral phase, whereas in

cepstra from linearly-spaced spectra there would be no clear invariance between the

two. In other words, a cepstral transformation of a log-spaced spectrum should lead

to higher talker invariance in the representation of speech, and so perhaps to higher

overall identi�cation performance, if the relevant speech features are indeed preserved

and the irrelevant ones are not too disturbing.

It is in this last respect, i.e., preservation of irrelevant features, that speech recog-

nition from DFT spectra may su�er, because DFT spectra tend to capture a lot of

acoustic information which is not only unnecessary for speech, but in fact detrimen-
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tal to the statistical generalizations of the recognizer. Such information includes

the resonances of the recording chamber, the transfer characteristics of the record-

ing equipment, the orientation of the talker with respect to the microphone, etc.

Although the use of a head-mounted microphone minimizes variation due to most

of these sources (except for the recording equipment characteristics), one becomes

bound to using the head-mounted microphone all the time in order to maintain recog-

nition performance. If this is not a problem then signal processing methods based

on DFT spectra may outperform techniques that smooth or normalize extraneous

variation.

3.1.1 Window size and transient phenomena

As explained before (see Section 2.1), there should be an advantage for higher tem-

poral resolution in speech processing because of the many transient phenomena that

help distinguish between speech sounds. On the other hand, too short processing

windows have very low frequency resolution, and can only represent frequencies down

to the inverse of their length. In addition, they are subject to amplitude variation

within pitch periods. In order to preserve low-frequency information, which is known

to be very important for speech perception, and to highlight short-lived events in the

high frequencies at the same time, it is possible to take several Fourier transforms,

each on a speech frame of di�erent size, and to use the values from each one only

for the frequencies for which its size is optimal. In the human ear there is no �xed

temporal analysis window; each frequency is identi�ed as soon as it is possible to de-

tect it. We can approximate this behavior without too much computational overhad

with a small number of DFTs calculated on overlapping windows of di�erent sizes.

Similar considerations have led to the development of wavelet functions for use

in speech processing systems. The method proposed here bears strong resemblances

to wavelet processing, but it was not within the scope of this study to introduce
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completely novel techniques. Rather, some re�nements and modi�cations of well-

known and studied existing procedures are proposed. For this reason, the relatively

crude method of combining DFTs was preferred over an elaborate wavelet study. If

this approach proves fruitful, true wavelet processing will be an obvious extension to

the system as the subject of a future study.

3.2 Description of the method

A DFT-based method has been developed, where higher-frequency spectral infor-

mation is obtained from shorter temporal windows (speech segments). Since the

sampling frequency used in the LEMS setup is 16 KHz, the maximum frequency

that can be represented in the digitized speech is 8 KHz. The region between 0 and

8 KHz was divided into four logarithmically spaced subintervals, i.e., from 0 Hz to

1 KHz, from 1 Hz to 2 KHz, from 2 KHz to 4 KHz, and from 4 KHz to 8 KHz.

The acoustic energy present in each of these intervals was calculated from a di�erent

DFT, so four DFTs were computed for each processing frame: A 1024-point DFT

(64 ms window), a 512-point DFT (32 ms window), a 256-point DFT (16 ms win-

dow), and a 128-point DFT (8 ms window). All four windows were aligned at their

initial points, and processing advanced by 8 ms (frame step), so that each speech

segment would contribute to exactly one DFT of the shortest window length.

The resulting transforms were converted to magnitude and phase values, and

a common 512-point magnitude vector was constructed by using some components

from each DFT magnitude in its designated frequency region. Thus the 1024-point

DFT (which produced 512 complex spectral values) contributed the 64 points that

correspond to frequencies from 15.6 Hz (the �rst bin equals Nyquist frequency divided

over the number of complex points) to 1000.0 Hz, the 512-point DFT contributed 32

points, from 1031.25 Hz to 2000.0 Khz, the 256-point DFT contributed 32 points,

from 2062.5 Hz to 4000.0 Hz, and the 128-point DFT contributed 32 points, from
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4125.0 Hz to 8000.0 Hz. The intermediate points in the combined spectral magnitude

vector (whose values were still linearly spaced) were �lled with the values of the

closest preceding point that was �lled.

The reason that the spectral magnitudes were �rst combined linearly was that

it was necessary to �lter the resulting vector with an FIR cepstral �lter in order to

remove the ripple of the harmonic structure. Because of the di�erent bin sizes of the

four spectra, this meant either to use a separate cepstral �lter for each spectrum, or

to \stretch out" the spectra with the fewest points in order to bring them all to the

same frequency scale and then use a single �lter for the combined magnitude vector.

The latter option was taken for computational convenience; in an optimized version

the former option would be preferable. An optimal 41-tap cepstral smoothing �lter

(type 10 fir, in Appendix A) was kindly provided by Daniel J. Mashao of the LEMS

speech group. Subsequent to application of the FIR �lter (via direct convolution)

the combined magnitude vector was interpolated logarithmically yielding a 100-point

\log-DFT" magnitude vector. Finally, the �rst 12 cepstral coe�cients of the resulting

vector were computed using the formula

cn =
N�1X
i=0

M(i) cos
n(i+ 0:5)�

M

;

where M is the size of the log-DFT vector, i.e., M = 100, and n ranges from 1 to 12.

The resulting coe�cients were then passed to the LEMS programs for feature vector

generation. The C code for this procedure is listed in Appendix A.

3.3 Recognition performance with the DFT

features

The recognition performance of the LEMS recognizer with the multiple window spec-

tral features reached 83.1% after 30 iterations of the discrete model, and 89.9 after
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Figure 3.1: Bottom line recognition performance for the LEMS recognizer with cep-

stral features computed from multiple-window log-spaced DFT spectra, as a function

of the number of training iterations.

20 additional iterations with the continuous model. Figure 3.1 shows the bottom-

line recognition performance reported by batchrec as a function of the number of

iterations. The performance measure does not always increase monotonically, but

uctuates a little after a few iterations. Table 3.1 shows the discrete model's per-

formance on the most di�cult sets. Note that performance of the discrete model

is not better than when using PLP-based features, but is 10% better than with the

LPC-based features. The same words that were most poorly recognized with PLP

and LPC features were again the most poorly recognized here; notably, performance

on \d" was an unacceptable 24.6%. The most poorly recognized words, besides \d,"
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A-set Confusion Matrix:
a h j k 8

a 92 8 1 4 10
h 1 89 . . 3
j 0 1 94 9 1
k . . 4 84 .
8 1 . . . 83
~ 5 1 1 3 3

E-set Confusion Matrix:
b c d e g p t v z 3

b 67 . 9 1 . 12 1 4 . 1
c . 85 . 0 . . 3 . 10 1
d 3 . 25 . . . 0 . . .
e 5 2 11 94 12 11 3 6 1 .
g . 1 . . 42 . . . . .
p 10 . 10 1 3 55 1 1 . .
t 3 2 39 0 28 20 90 3 2 .
v 10 1 3 1 . 1 . 83 2 .
z . 9 . 0 3 . 0 2 85 .
3 . . . . . . . 1 . 95
~ 1 1 4 3 12 2 1 2 1 3

Nasal/Glide Confusion Matrix:
l m n 7 9

l 88 5 . 1 .
m 1 43 12 . 1
n 1 40 81 2 1
7 . . . 97 .
9 . . . . 90
~ 10 12 7 . 8

Table 3.1: Confusion matrices for the most di�cult word subsets, from the perfor-

mance test of the discrete model trained on cepstral features from multiple-window

log-spaced DFT spectra.

were \g," \m," and \p" (with scores 41.8%, 43.2%, and 54.9%, respectively) and

the best recognized words were \space," \six," \seven," and \x" (with scores 99.7%,

98.7%, 97.5%, and 97.0%, respectively). The speech of the female talkers was recog-

nized on average worse than speech from male talkers: 79.5% overall for the females

vs. 85.7% overall for the males. This may reect the predominance of male talkers

in the training set or perhaps there is more variability between females than between

males. The utterances of female talker jls were the most poorly recognized (average

of 3 �les was 62.5%) and those of male talker gms were recognized best (average of

3 �les was 91.9%).

Table 3.2 shows the confusion matrices for the most di�cult words using the

continuous model. There was a signi�cant improvement in all words, which brought

performance on the most poorly recognized word, \d," up to 54.5% (from 24.6% with
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A-set Confusion Matrix:
a h j k 8

a 95 4 1 1 3
h 1 96 . . 2
j 0 . 98 5 .
k . . 1 92 .
8 1 . . . 94
~ 3 . 1 2 1

E-set Confusion Matrix:
b c d e g p t v z 3

b 78 1 11 1 . 5 1 8 . 1
c . 93 . 0 1 . 2 . 9 .
d 7 . 54 . . . . . . .
e 4 1 2 94 3 5 3 2 1 .
g . 2 13 . 93 2 1 1 1 .
p 6 . 11 0 . 81 4 . . .
t 1 1 8 . 3 6 88 3 1 .
v 2 1 1 1 . . . 84 1 1
z . 3 . 0 . . . 1 88 .
3 . . . . . . . . . 99
~ 2 . . 2 . 1 2 1 . .

Nasal/Glide Confusion Matrix:
l m n 7 9

l 94 8 2 . 1
m 2 59 14 . .
n 0 30 81 1 .
7 . . . 99 .
9 . . . . 97
~ 4 3 3 . 3

Table 3.2: Confusion matrices for the most di�cult word subsets, from the perfor-

mance test of the continuous model trained on cepstral features frommultiple-window

log-spaced DFT spectra.

the discrete model) and performance on \g" to an impressive 92.5% (from 43.2%).

The most poorly recognized words, besides \d," were \m," and \b", recognized at

59.1% and 77.6%. The best recognized words were \zero" and \six," with a perfect

(100.0%) recognition score. Recognition performance by talker ranged from 78.1%

for the female talker jls to 95.9% for the female talker crw. The speech of the

male talkers was recognized about as well as speech from the female talkers (90.0%

vs. 89.6%, respectively), which is expected because of the independece of cepstral

magnitude from frequency scaling that results from di�erences in vocal tract length,

as discussed in Section 3.1.
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A-set Confusion Matrix
a h j k 8

a 41 36 8 8 20
h . 7 . . .
j . . 25 8 .
k 4 7 17 31 5
8 2 . . . 10
~ 53 50 50 54 65

E-set Confusion Matrix
b c d e g p t v z 3

b 17 . 14 9 14 10 6 7 14 9
c . 9 7 1 . 10 . . . .
d 8 . . 1 . . 3 . . .
e 17 17 14 34 7 . 11 7 . .
g . . . . . . . . . .
p . . . 3 7 . . 7 . .
t . 9 7 5 14 40 34 20 . 3
v 8 . . 3 . . 3 7 . .
z . 9 . . . . 6 . 19 .
3 . 9 7 . . . . . . 18
~ 50 48 50 44 57 40 37 53 67 71

Nasal/Glide Confusion Matrix
l m n 7 9

l 23 15 . 4 8
m 17 31 12 21 27
n 37 8 54 17 11
7 . . . 29 .
9 . . . . 19
~ 23 46 33 29 35

Table 3.3: Confusion matrices for the most di�cult word subsets in the beamformed

data from the microphone array, using the discrete model with features from multiple-

window log-spaced DFT spectra.

3.3.1 Sensitivity to the recording conditions

The sensitivity of this method to the recording conditions was tested in the same

manner that PLP was tested in Section 2.3.4. The performance of the discrete model

that was already trained on the training set for 30 iterations was 85.0% on the speech

from the head-mounted microphone (conditions identical to those of the training

set) and negative on the beamformed data. The negative value has no meaning of

percentage, but indicates that the substitutions, omissions and insertions brought

the total number of errors to be higher than the total number of correctly identi�ed

words. Table 3.3 shows the confusion matrices for the di�cult word sets. Note

that many of these words, and in fact many of the rest as well, were very rarely

recognized, often resulting in recognition of \silence." The low amplitude of the

45



A-set Confusion Matrix:
a h j k 8

a 18 14 . 8 .
h . 14 . . .
j 2 7 17 8 .
k . . . 15 .
8 2 . . . 5
~ 78 64 83 69 95

E-set Confusion Matrix:
b c d e g p t v z 3

b . . 7 . . . . . . .
c . 17 . 3 . . . . . .
d . . . . 7 . . . 5 .
e 17 . . 19 . 10 . . . .
g . . . . 7 10 6 7 . .
p . 4 7 5 7 . 3 7 5 .
t . . . . . . 14 . . .
v . 4 7 1 . . . 13 . .
z . 9 . . . . 9 7 14 .
3 . . . . . . . . . 15
~ 83 65 79 72 79 80 69 67 76 85

Nasal/Glide Confusion Matrix:
l m n 7 9

l 51 8 12 12 16
m 6 . . . .
n . 15 25 4 .
7 . . . 17 .
9 . . . . 14
~ 43 77 62 67 70

Table 3.4: Confusion matrices for the most di�cult word subsets in the beamformed

data from the microphone array, using the continuous model with features from

multiple-window log-spaced DFT spectra.

waveforms proved to be beyond the generalization ability of the spectral technique,

which is perhaps based too much on the particulars of the spectral shape and not

the important peaks and valleys. In the cases where the �nal segment of the words

in the E-set attained some minimum value, an \e" was recognized, since the initial

burst and transition was probably too low in amplitude to be taken into account.

Performance of the continuous model was only slightly better, overall 14.9% (com-

pared to 90.8% on the simultaneous recording with the head-mounted microphone).

The confusion matrices for the most di�cult word sets are shown in Table 3.4. The

same pattern, with most segments labeled silent, is evident. It is concluded that this

DFT-based method is very sensitive to the recording conditions, presumably because

it retains spectral information not relevant for speech, which makes it unsuitable for

applications that use telephone or other transmission lines with unpredictable vari-

ation.
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Chapter 4

Conclusion

In this thesis two new signal processing methods have been applied to the LEMS

HMM speech recognizer and the performance of the model has been compared to that

obtained with the previously used LPC-based features. Parameters computed with

the method of Perceptual Linear Prediction (PLP), as well as cepstral features from

DFT spectra with logarithmic frequency warping computed on multiple overlapping

speech segments, have improved recognition performance by 10{13% percent, when

identical training and testing conditions are used. Table 4.1 shows the bottom-line

recognition performance for the discrete model (after 30 training iterations) and

the continuous model (after 20 additional iterations). Using the continuous model

greatly improves recognition rates, allowing them to near 90%, but this comes at

a great computational cost. For practical applications, it is questionable whether

a continuous model can be used with real-time speech, as for example would be

necessary for automatic data entry via telephone. Furthermore, the best achieved

performance rate would mean that one in ten words is not identi�ed correctly. This

can be improved by using a dictionary, if the spoken utterances form real words.

Then a distance metric based on the confusion matrices of a given model can be

used to correct misidenti�ed words (i.e., letters) in order to complete a (spelled)

word with maximum probability. Such a system cannot be used with numbers, but
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Recognition performance

Testing set Speech from Speech from

Processing type (small test) same microphone microphone array

LPC type6

Discrete 73:1(a) 83:5 31:1

Continuous 77:3(b) 85:8 39:0

PLP (order 8, 35 ms)

Discrete 83:2 88:6 22:2

Continuous 89:7 91:5 43:1

Log-spaced DFT

Discrete 83:1 85:0 �16:5

Continuous 89:9 90:8 14:9

(a)With di�erent codebooks performance was 80.7%. Previous LPC results have reached 84.3%.

(b)
Best continuous-model performance with LPC reported so far from LEMS is 89.4%.

Table 4.1: Bottom-line recognition performance for the �nal models of each of the

three methods that are compared.

digits are much better recognized already, and a second repetition by the talker

would diminish the probability of error. However, if a speech recognition system

is used for clients to say their names, or for other strings that cannot be searched

in a dictionary, such solutions become obviously inadequate. Any name with ten

letters or more (not an unreasonable assumption for �rst-and-last-name utterances)

will probably be misspelled. The probability of recognition for some letters is so low,

even when using the best techniques, that an altogether di�erent set of words should

be used. Perhaps the well known distinct words used for the letters of the alphabet
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in noisy transmission lines (e.g., by DX radio amateurs), and sometimes even for

telephone transmission, would be preferable.

Table 4.1 shows the overall recognition performance for the independent set of

utterances that have been recorded with the same microphone as the utterances

in the training set and with beamformed data from simultaneous recording with

the microphone array at LEMS. These data are very important for the evaluation

of the methods if the recognizer is aimed at talker-independent and microphone-

independent speech recognition. In other words, what is the practical value of a

system that can recognize forty words with 20%-40% success? It is clear that systems

based on DFT spectra will not outperform systems based on more speech-speci�c

reduction of acoustic information. Environmental factors, such as room shape and

dimensions, and recording and transmission equipment, result in grossly distorted

speech spectra that present no di�culty to human listeners but incapacitate arti�cial

systems that have retained spectral details in their training.

A surprising result of this work was the apparent sensitivity of the recognizer to

the vector quantization codebooks. Using the same signal processing method and

the same HMM training and testing sets and procedures, overall performance lagged

7{10% behind performance results previously reported, when the standard (for this

thesis) feature vector sets were used to create the codebooks as opposed to using some

pre-existing codebooks created from an unknown set of �les. It has been assumed that

any su�ciently large random sample of feature vectors would lead approximately to

the same vector clusters and, consequently, to very similar and functionally equivalent

codebooks. Because of this, and of the prohibitive computational cost of running the

k-means clustering program on the entire training set, only a small subset of feature

vectors has been used (10{15 out of 90 feature �les) in this and other work in LEMS.

Future studies should address the issue of performance dependence on the selection

of feature vectors for k-means clustering and indicate a procedure for determining
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the optimal training set, perhaps using a few test trials of several iterations each.

Because of the dependence on codebook training, it is recommended that compar-

isons be made between processing methods only using identical sets and procedures,

as was done in this thesis. A potential problem with this approach is that there is no

guarantee that using the same speech �les for vector clustering will result in compara-

ble distortion measures when using di�erent signal processing techniques. Therefore,

using the same vectors to create the codebooks may result in \good," representative

codebooks with one processing method and \bad," distorted codebooks in another.

For this reason, recognition performance obtained previously using di�erent code-

books was also taken into account when comparing techniques. In order to make

a valid and conclusive comparison, each signal processing method should be sepa-

rately optimized (but under comparable circumstances and similar procedures) and

the �nal best results should then be brought into comparison. Clearly, the work

presented here has not yielded a �nal answer to the question of which method is

best, and comparing with results of previous work is particularly problematic be-

cause most previous results have been obtained using substantially larger training

and testing sets, which was not possible for this study because of computer time and

space constraints. Future research should be conducted on optimizing PLP for the

LEMS recognizer and on implementing wavelet processing for the reasons mentioned

in Chapter 3. The end results can then be tested against those from the currently

used DFT-based techniques.

It is well known in the engineering �eld, as well as in the disciplines concerned

with research in human speech perception, that transformation of the acoustic signal

of speech to words in the brain is a very complicated problem. It appears that su-

per�cial statistical generalizations based on the spectral properties of speech signals

may not be adequate for a unique characterization of the speech message contained

in the signal. The search for acoustic invariants in speech continues, but has not
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been particularly fruitful. In this thesis, the performance of a powerful statistical

recognizer that is based on state-of-the-art mathematical formulations was tested

with algorithms that make slight modi�cations to the speech spectra according to

known facts about human audition. From one point of view this attempt has been

very successful, because it improved recognition rates and showed that paying some

attention to auditory characteristics may yield signi�cant gains. From another point

of view, the results reported herein point at the inability of current formulations

to capture the essentials of the speech signals and indicate that we should perhaps

concern ourselves more with the only known solution to the problem, i.e., the hu-

man brain. Depending on one's needs and application requirements, either of these

conclusions may be drawn.
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A. C code for computing cepstral coe�cients from

multiple-window log-spaced DFT spectra

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <math.h>

#include "fft.h"
#include "model_dat.h"
#include "dsp_globs.h"

#define MU 0.98
#define NYQUIST 8000
#define FFT_SIZE 512
#define LOG_FFT_SIZE 100
#define LIN_FFT_PART 20
#define FILTER_SIZE 41
#define CEP_SIZE 12
#define FRAME_RATE (FFT_SIZE/4)

typedef struct {
double coeff[FILTER_SIZE]; /* coefficients */

} filter;

void get_log_axis ( double *points ) {

int i ;
double first, last, inter, lin_res ;

lin_res = (double)NYQUIST/(double)FFT_SIZE ;
first = log ( lin_res * LIN_FFT_PART ) ;
last = log ( (double)NYQUIST ) ;
inter = (last - first)/(LOG_FFT_SIZE-LIN_FFT_PART-1) ;
for ( i=0 ; i<LIN_FFT_PART ; i++ )
points[i] = lin_res * (double)i ;

for ( i=LIN_FFT_PART ; i<LOG_FFT_SIZE ; i++ )
points[i] = exp(first + (double)(i-LIN_FFT_PART) * inter) ;

}

filter type_1010_fir = {{ /* f = [ 0 0.1 0.2 1] */
-4.0335e-03, 3.8544e-03, 5.3562e-03, 7.1796e-03, 8.1562e-03,
7.2626e-03, 3.8528e-03, -2.0721e-03, -9.7257e-03, -1.7526e-02,
-2.3285e-02, -2.4590e-02, -1.9339e-02, -6.2860e-03, 1.4537e-02,
4.1617e-02, 7.2067e-02, 1.0203e-01, 1.2733e-01, 1.4423e-01,
1.5018e-01, 1.4423e-01, 1.2733e-01, 1.0203e-01, 7.2067e-02,
4.1617e-02, 1.4537e-02, -6.2860e-03, -1.9339e-02, -2.4590e-02,
-2.3285e-02, -1.7526e-02, -9.7257e-03, -2.0721e-03, 3.8528e-03,
7.2626e-03, 8.1562e-03, 7.1796e-03, 5.3562e-03, 3.8544e-03,
-4.0335e-03 }};

void filter_fft ( double *data, double *smooth ) {

int n, i, r, len=FFT_SIZE ;
filter *fir=&type_1010_fir ;
double y[FFT_SIZE+FILTER_SIZE] ;

for ( n = 0; n < len ; n++)
y[FILTER_SIZE/2+n] = data[n];

for ( n = 0; n < FILTER_SIZE/2; n++)
y[n] = data[FILTER_SIZE/2-n-1];

for ( n = 0; n < FILTER_SIZE/2; n++)
y[len+FILTER_SIZE/2+n] = data[len-n-1];

n = 0;
for ( i = FILTER_SIZE-1; i < len+2*FILTER_SIZE; i++ ) {
smooth[n] = 0.0;
for ( r = 0; r < FILTER_SIZE; r++ ) {
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if ( i >= r )
smooth[n] += y[i-r]*fir->coeff[r];

}
n++;

}
}

void window ( double *s_in, int n, double *s_out ) {

int i ;
double nn ;

nn = (double)n ;
for ( i = 0 ; i < n ; i++ ) /* Hamming window */
s_out[i] = s_in[i] * (0.54-0.46*cos(2.0*M_PI*(double)i/nn));

}

void tp_cepstra ( short *si_data, double *s_data, int pts,
double *cepstrum, sp_def *sp ) {

int n, n_data, offset, r ;
double mu=MU, max, f_val[LOG_FFT_SIZE] ;
double fft_data[2*FFT_SIZE], *partial_spectra[4], comp_fft[FFT_SIZE] ;
double smooth_fft[FFT_SIZE], log_fft[LOG_FFT_SIZE];
double left, right, bin, offs, fstep, cep_max ;
double ip, fcn ;

if ( (sp->frame_size != (2*FFT_SIZE)) || (sp->sp_type != 1010) ||
(sp->frame_step != FRAME_RATE) || (sp->num_feat != CEP_SIZE)||
(sp->feat_base != 1) || (sp->pre_emp != MU) ) {

fprintf ( stderr, "Error in sp definition! tp_cepstra aborting.\n" );
exit ( 10 ) ;

}

n_data = sp->frame_size ;
s_data[0]=(double)si_data[0] ;
for ( n=1 ; n<pts ; n++ ) s_data[n] = (double)si_data[n]

- mu * (double)si_data[n-1] ;
if ( n_data > pts ) {
s_data[pts] = - mu * (double)si_data[pts-1] ;
for ( n=pts+1 ; n<n_data ; n++ ) s_data[n] = 0.0 ;

}

for ( n=0 ; n<4 ; n++ ) partial_spectra[n] =
(double *)malloc(FFT_SIZE*sizeof(double)) ;

offset = 0 ;

window ( s_data+offset, (2*FFT_SIZE), fft_data ) ;
realft ( fft_data-1, FFT_SIZE ) ;
periodogram ( fft_data, FFT_SIZE, partial_spectra[0] ) ;
for ( n=0 ; n<(FFT_SIZE/8) ; n++ ) {
comp_fft[n] = partial_spectra[0][n] ;

}

window ( s_data+offset, FFT_SIZE, fft_data ) ;
realft ( fft_data-1, (FFT_SIZE/2) ) ;
periodogram ( fft_data, (FFT_SIZE/2), partial_spectra[1] ) ;
for ( n=0 ; n<32 ; n++ ) {
comp_fft[(FFT_SIZE/8)+2*n] = partial_spectra[1][32+n] ;
comp_fft[(FFT_SIZE/8)+2*n+1] = partial_spectra[1][32+n] ;

}
window ( s_data+offset, (FFT_SIZE/2), fft_data ) ;
realft ( fft_data-1, (FFT_SIZE/4) ) ;
periodogram ( fft_data, (FFT_SIZE/4), partial_spectra[2] ) ;
for ( n=0 ; n<32 ; n++ ) {
comp_fft[(FFT_SIZE/4)+4*n] = partial_spectra[2][32+n] ;
comp_fft[(FFT_SIZE/4)+4*n+1] = partial_spectra[2][32+n] ;
comp_fft[(FFT_SIZE/4)+4*n+2] = partial_spectra[2][32+n] ;
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comp_fft[(FFT_SIZE/4)+4*n+3] = partial_spectra[2][32+n] ;
}
window ( s_data+offset, (FFT_SIZE/4), fft_data ) ;
realft ( fft_data-1, (FFT_SIZE/8) ) ;
periodogram ( fft_data, (FFT_SIZE/8), partial_spectra[3] ) ;
for ( n=0 ; n<32 ; n++ ) {
comp_fft[(FFT_SIZE/2)+8*n] = partial_spectra[3][32+n] ;
comp_fft[(FFT_SIZE/2)+8*n+1] = partial_spectra[3][32+n] ;
comp_fft[(FFT_SIZE/2)+8*n+2] = partial_spectra[3][32+n] ;
comp_fft[(FFT_SIZE/2)+8*n+3] = partial_spectra[3][32+n] ;
comp_fft[(FFT_SIZE/2)+8*n+4] = partial_spectra[3][32+n] ;
comp_fft[(FFT_SIZE/2)+8*n+5] = partial_spectra[3][32+n] ;
comp_fft[(FFT_SIZE/2)+8*n+6] = partial_spectra[3][32+n] ;
comp_fft[(FFT_SIZE/2)+8*n+7] = partial_spectra[3][32+n] ;

}

max = 0.0 ;
for ( n=0 ; n<FFT_SIZE ; n++ ) if ( comp_fft[n] > max )

max = comp_fft[n] ;
for ( n=0 ; n<FFT_SIZE ; n++ ) comp_fft[n] -= max ;

filter_fft ( comp_fft, smooth_fft ) ;

get_log_axis ( f_val ) ;
fstep = (double)NYQUIST / (double)FFT_SIZE ;
for ( n=0 ; n<(LOG_FFT_SIZE-1) ; n++ ) {
bin = f_val[n] / fstep ;
offs = modf ( bin, &ip ) ;
left = smooth_fft[(int)floor(bin)] ;
right = smooth_fft[(int) ceil(bin)] ;
log_fft[n] = left + offs*(right-left) ;

}
log_fft[LOG_FFT_SIZE-1] = smooth_fft[FFT_SIZE-1] ;

for ( n=0 ; n<CEP_SIZE ; n++ ) {
cepstrum[n] = 0.0 ;
for ( r=0 ; r<LOG_FFT_SIZE ; r++ )

cepstrum[n] += log_fft[r] * cos( (double)(n+1)*((double)r+0.5)
* M_PI / (double)LOG_FFT_SIZE ) ;

}
cepstrum[0] /= 2.0 ;
cepstrum[1] /= 1.5 ;
cep_max = 0.0 ;
for ( n=0 ; n<CEP_SIZE ; n++ ) {
fcn = fabs(cepstrum[n]) ;
if ( fcn > cep_max ) cep_max = fcn ;

}
if ( cep_max > 1000.0 ) {
fprintf ( stderr, "tp_cepstra: Cepstrum overflow, rescaled (%7.0f)\n",

cep_max );
cep_max /= 1000.0 ;
for ( n=0 ; n<CEP_SIZE ; n++ )

cepstrum[n] /= cep_max ;
}
for ( n=0 ; n<4 ; n++ ) {
free(partial_spectra[n]) ;
partial_spectra[n] = NULL ;

}
}
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B. Shell script to generate PLP features and vector

codebooks, and train and test the recognizer

#!/usr/bin/csh
# Call this with first parameter the PLP order and second parameter
# the processing frame (in ms), e.g., plptest 10 15
clear
cd /big309/speech/tp
echo "Starting batch for PLP-$1, with $2 ms processing window"
echo -n "$HOST "
date
echo -n "$HOST " >& /big309/speech/tp/logs/$1_$2.log
date >>& /big309/speech/tp/logs/$1_$2.log
mkdir plp$1_$2
cd plp$1_$2
mkdir train
mkdir test
cd train
echo "Generating features for training set..."
nice +19 /big309/speech/tp/commands/plpfeat_train_wo $1 $2 >& /dev/null
echo "Generating codebooks:"
echo "K-means clustering for cepstral coefficients..."
nice +19 /pro/rec/v3/vq/kmeans/kmeans -n 256 -s $1 -iter 100 -o 0 \
cepstra$1_$2 all3.feat avk3.feat bwg3.feat dah3.feat dmw3.feat grg3.feat \
hfs3.feat jrd3.feat mas3.feat mit3.feat mpr3.feat pas3.feat sek3.feat \
tdc3.feat wlw3.feat >& /dev/null

echo "K-means clustering for differenced cepstral coefficients..."
nice +19 /pro/rec/v3/vq/kmeans/kmeans -n 256 -s $1 -iter 100 -o 12 \
dcepstra$1_$2 all3.feat avk3.feat bwg3.feat dah3.feat dmw3.feat grg3.feat\
hfs3.feat jrd3.feat mas3.feat mit3.feat mpr3.feat pas3.feat sek3.feat \
tdc3.feat wlw3.feat >& /dev/null

echo "K-means clustering for energy coefficients..."
nice +19 /pro/rec/v3/vq/kmeans/kmeans -n 256 -s 4 -iter 100 -o 24 \
energy$1_$2 all3.feat avk3.feat bwg3.feat dah3.feat dmw3.feat grg3.feat \
hfs3.feat jrd3.feat mas3.feat mit3.feat mpr3.feat pas3.feat sek3.feat \
tdc3.feat wlw3.feat >& /dev/null

echo "File conversion and codebook generation"
mv cepstra$1_$2.RVS.100 cepstra$1_$2.rvs.100
mv dcepstra$1_$2.RVS.100 dcepstra$1_$2.rvs.100
mv energy$1_$2.RVS.100 energy$1_$2.rvs.100
/bin/rm *RVS*
nice +19 /pro/rec/v3/vq/kmeans/converts cepstra$1_$2.rvs.100 \
cepstra_float$1_$2.rvs.100 >>& /big309/speech/tp/logs/$1_$2.log
nice +19 /pro/rec/v3/vq/kmeans/converts dcepstra$1_$2.rvs.100 \
dcepstra_float$1_$2.rvs.100 >>& /big309/speech/tp/logs/$1_$2.log
nice +19 /pro/rec/v3/vq/kmeans/converts energy$1_$2.rvs.100 \
energy_float$1_$2.rvs.100 >>& /big309/speech/tp/logs/$1_$2.log
echo "Cepstral coefficients codebook..."
nice +19 /pro/rec/v3/vq/kmeans/make_codebook cepstra_float$1_$2.rvs.100 \
codebook_cepstra$1_$2 >>& /big309/speech/tp/logs/$1_$2.log
echo "Differenced cepstral coefficients codebook..."
nice +19 /pro/rec/v3/vq/kmeans/make_codebook dcepstra_float$1_$2.rvs.100 \
codebook_dcepstra$1_$2 >>& /big309/speech/tp/logs/$1_$2.log
echo "Energy coefficients codebook..."
nice +19 /pro/rec/v3/vq/kmeans/make_codebook energy_float$1_$2.rvs.100 \
codebook_energy$1_$2 >>& /big309/speech/tp/logs/$1_$2.log
echo "Quantizing feature vectors of training files..."
foreach f ( *.feat )
nice +19 /pro/rec/bin/fastvq $f codebook_cepstra$1_$2 \

codebook_dcepstra$1_$2 codebook_energy$1_$2 \
>>& /big309/speech/tp/logs/$1_$2.log

end
echo "Training the HMM recognizer..."
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nice +19 /pro/rec/bin/train *.feat -default_model -linear -codebooks 3 \
-iter 30 -dur_type gamma >& /dev/null
echo -n "Probability after last iteration of training: "
tail -1 prob.dat
cp models.dat ../test
mv prob.dat prob$1_$2.dat
echo "Generating feature files for testing set..."
cd ../test
nice +19 /big309/speech/tp/commands/plpfeat_test_wo $1 $2 \
>>& /big309/speech/tp/logs/$1_$2.log
cp ../train/codebook_* .
echo "Quantizing feature vectors of testing files..."
foreach f ( *.feat )
nice +19 /pro/rec/bin/fastvq $f codebook_cepstra$1_$2 \

codebook_dcepstra$1_$2 codebook_energy$1_$2 \
>>& /big309/speech/tp/logs/$1_$2.log

end
echo "Running recognizer..."
nice +19 /pro/rec/bin/batchrec *.feat -model models.dat >& /dev/null
mv models.dat models$1_$2.dat
compress models$1_$2.dat
mv stats.out stats$1_$2.out
tail -177 stats$1_$2.out > stats$1_$2.summary
compress stats$1_$2.out
echo "Batch terminated."
if ( -f stats$1_$2.summary ) then
/bin/rm /big309/speech/tp/logs/$1_$2.log
echo "Overall statistics for PLP-$1, $2 ms processing window follow:"
tail -1 stats$1_$2.summary

endif
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C. Training and testing �le sets

Training set (small train), from /speechbig/time/all/

abb2.time abb3.time aks2.time aks3.time
all2.time all3.time amm2.time amm3.time
avf2.time avf3.time avk2.time avk3.time
bad2.time bad3.time boa2.time boa3.time
bwg2.time bwg3.time cdt2.time cdt3.time
cvc2.time cvc3.time dah2.time dah3.time
dhd2.time dhd3.time dlc2.time dlc3.time
dmw2.time dmw3.time dsr2.time dsr3.time
ejh2.time ejh3.time grg2.time grg3.time
gws2.time gws3.time haf2.time haf3.time
hfs2.time hfs3.time jca2.time jca3.time
jeo2.time jeo3.time jrd2.time jrd3.time
kkm2.time kkm3.time lac2.time lac3.time
mas2.time mas3.time mbl2.time mbl3.time
mck2.time mck3.time mit2.time mit3.time
mla2.time mla3.time mmc2.time mmc3.time
mpr2.time mpr3.time mrh2.time mrh3.time
nk2.time nk3.time pas2.time pas3.time

pja2.time pja3.time rmv2.time rmv3.time
sek2.time sek3.time sjw2.time sjw3.time
srm2.time srm3.time tdc2.time tdc3.time
tsj2.time tsj3.time vlf2.time vlf3.time
wlw2.time wlw3.time

Testing set (small test), from /speechbig/time/all/

adg1.time adg2.time adg3.time
ats1.time ats2.time ats3.time
bah1.time bah2.time bah3.time
bcb1.time bcb2.time bcb3.time
bsk1.time bsk2.time bsk3.time
crw1.time crw2.time crw3.time
dsc1.time dsc2.time dsc3.time
eew1.time eew2.time eew3.time
gac1.time gac2.time gac3.time
gms1.time gms2.time gms3.time
jls1.time jls2.time jls3.time
jtf1.time jtf2.time jtf3.time
kak1.time kak2.time kak3.time
lag1.time lag2.time lag3.time
mdh1.time mdh2.time mdh3.time

Beamformed data �les, from /array3/dual_data/bf/time/

jea1.time hfs1.time msb1.time
jea2.time hfs2.time msb2.time

Simultaneous recordings with head-mounted microphone,
from /array3/dual_data/dat/time/

jea1.time hfs1.time msb1.time
jea2.time hfs2.time msb2.time
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