Reading Aloud Multisyllabic Words: 
A Single-Route Connectionist Model for Greek

Konstantinos D. Outos, Athanassios Protopapas

1Graduate Program in Cognitive Science, Athens University, Greece, 2Institute for Language & Speech Processing, “Athena” Research Center, Greece

1. Goal

We aim to create a connectionist model of Greek multisyllabic word reading. Most existing models used mono-syllabic English words aligned on the nucleus. Greek orthography is relatively transparent but there are exceptions affecting syllabification. A stress diacritic marks the stressed vowel in the orthography, therefore stress assignment must be considered.

2. The Model

Based on Harm’s (1999) implementation modified by Zevin (2006). Extended for words with 2–5 syllables, 4-10 letters long. The input was not syllabically aligned because CiV letter groups are ambiguous (Protopapas & Nomikou, 2009). The output layer was simply extended by adding more syllable groups to the original English implementation.

3. Testing & Results

Measured reading and stressing accuracy and response time (in ticks) for 150 words and 150 matched nonwords with minimal intercorrelations among basic variables.

4. Discussion

Novel representation successfully mapped arbitrary (non-aligned) orthography to syllabified phonology. The model learned to use stress mark information for stress assignment even though stress mark positions did not map to fixed vowels or phonological syllables.

Acknowledgments

We thank Jason D. Zevin for the source code and Efthymia C. Kapnoula for the word and nonword stimuli.

References


Performance was 97.3% correct for words and 91.3% for nonwords. The response time difference between words and nonwords was not significant: (f(247)=1.870, p=.063; Mann-Whitney U=9159.5, p=.154. (All analyses include correct responses only, excluding one word and one nonword outlier RT; “Transparency” is Spencer’s (2009) minimum sonograph probability, a bidirectional index).

When the same items were presented without stress mark information, only 53.3% of the words and 42.7% of the nonwords were stressed correctly. However, stress assignment was not random but matched stress distribution in the corpus.