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Abstract 

Multisyllabic word reading has received little attention in ex-
isting computational models, which are designed for English. 
The Greek language uses mainly multisyllabic words, while 
its orthography is feedforward consistent and includes a stress 
diacritic. We present here a computational model of reading 
aloud Greek words and nonwords, based on the connectionist 
“triangle” model, adapted to the Greek orthography, using a 
novel input representation. The network displays several ef-
fects from the word reading literature and successfully assigns 
stress. Further investigations are underway. 

Keywords: Multisyllabic words; stress assignment; triangle 
model; reading aloud; nonword reading; connectionist; Greek. 

Introduction 

Computational Models of Reading Aloud 

It has been 20 year since Seidenberg & McClleland (1989) 

presented the first “triangle” connectionist model of reading 

aloud. Since then, a variety of computational models have 

been presented, single-route (Plaut, McClelland, Seidenberg 

& Patterson, 1996; Harm & Seidenberg, 2001, 2004) or 

dual-route (DRC: Coltheart, Rastle, Perry, Langdon & 

Ziegler, 2001; CDP+: Perry, Ziegler, & Zorzi, 2007; Zorzi, 

Houghton, & Butterworth, 1998). These models differ in 

many respects, such as the existence of pre-defined grapho-

phonemic decoding rules versus learning procedures, and 

the localist or distributed nature of lexical representations. 

The triangle family of models has the advantage of dis-

covering, during a training phase, regularities in the rela-

tions between orthographic and phonological representa-

tions in a set of words. The regularities are then generalized 

to novel stimuli, such as nonwords. Three implementations 

of this approach have been reported (Seidenberg & McClle-

land, 1989, Plaut et al., 1996; Harm & Seidenberg, 2001, 

2004), using different representations, leading to differences 

in reading performance (Seidenberg & Plaut, 2006). 

Most existing models have focused on reading English 

monosyllabic words. Problems associated with multisyllabic 

words, such as syllabification and stress assignment, have 

led to their exclusion. Likewise, most available data on hu-

man reading concern monosyllable English words, facilitat-

ing comparative model assessment. To present monosyl-

labic words on a connectionist input layer, Harm & Seiden-

berg (2001, 2004) used slots corresponding to single letters 

separated into subsyllabic units. Onset and coda consonants 

were placed around the central vowel nucleus. This repre-

sentation aimed to minimize the dispersion problem (Plaut 

et al., 1996), while allowing the model to “capture the fact 

that phonemes in different positions sometimes differ pho-

netically” (Harm & Seidenberg, 1999, p. 493). 

Exclusive attention to monosyllables, and corresponding 

syllable-based representations, pose severe constraints to 

extension towards multisyllabic words. Specifically, to re-

tain the existing structure, words must be pre-syllabified 

before being presented to the model. However, this limits 

the applicability of this approach to situations in which or-

thographic syllabification is possible. 

The Greek Orthography 

The Greek orthography is feedforward consistent and 

predictable to a large extent (about 95%; Protopapas & Vla-

hou, in press). Most graphemes can be mapped unambigu-

ously to single phonemes when context is taken into ac-

count. The only substantial source of inconsistency concerns 

words containing the CiV pattern, that is, an unstressed 

grapheme normally mapping to /i/ when it follows a conso-

nant and precedes a vowel (Protopapas & Vlahou, in press). 

In such cases there are two possible pronunciations, one of 

which contains an /i/ and another which contains a palatal 

consonant. The correct pronunciation is lexically deter-

mined. In rare cases, this situation leads to homographs. For 

example, the Greek words for “permission” and “empty” are 

both written as άδεια. However, “permission” is the three-

syllable word /'a.ði.a/ with an [i] forming the nucleus of the 

second syllable, whereas “empty” is the two-syllable word 

/'a.ðʝa/ with the palatal consonant [ʝ]. Therefore, the CiV 

phenomenon affects not only graphophonemic consistency 

but also orthographic syllabification as well.  

In Greek, lexical stress always falls on one of the last 

three syllables and is affected by morphology (Revithiadou, 

1999). Stress is orthographically marked with a special dia-

critic on every word with two or more syllables (Petrounias, 

2002). This diacritic also disambiguates certain vowel di-

graphs, therefore it is necessary to include in orthographic 

representations, along with diaeresis. 

These characteristics make the vowel-centered syllabic 

slot representation unsuitable for Greek multisyllable words, 



at least for the orthographic input layer. The CiV phenome-

non creates a major challenge because it precludes pre-

syllabification. Therefore, it is not possible to simply add 

more syllabic templates to existing input representations. 

In this paper we present a model of reading aloud Greek 

multisyllabic words and nonwords based on the triangle 

model, taking into account the special properties of Greek 

orthography. We report preliminary results showing that the 

model is successful in accounting for the Greek situation. 

The Model 

Our model is a modified version of the Harm and Seiden-

berg (1999, 2004) network (see also Zevin & Seidenberg, 

2006). Modifications (besides the number of nodes at each 

layer) concern mainly the input and output representations. 

The network was designed to read words with 2–5 syllables 

written with 4–10 letters. These limits were imposed to re-

duce demands on computational resources and training time. 

Design and Implementation 

The model has 449 orthographic input units, 500 hidden 

units, 630 phonological output units, and 400 cleanup units 

(Figure 1). Units in the phonological layer were connected 

to every phonological and cleanup unit, including them-

selves. Each cleanup unit was also connected to all phono-

logical units, turning the phonological-cleanup layers into a 

recurrent network, capable of creating attractors based on 

regularities discovered at the phonological output. These 

attractors aim to improve reading performance (especially 

for nonwords) by allowing the phonological output to settle 

into globally coherent states (Harm & Seidenberg, 1999). 

Model implementation was based on “MikeNet” (version 

8), as modified by Zevin and Seidenberg (2006), with addi-

tional changes to handle stress marking.  

Representations 

We considered a number of alternative approaches to the 

problem of presenting orthographic input without first syl-

labifying, keeping with the spirit of the preceding imple-

mentations and restrictions imposed by the available code. 

Simply presenting a (left-aligned) letter string to the net-

work, without any positional constraints, led to poor per-

formance. Therefore, we imposed grouping of successive 

consonant or vowel letters, without regard to syllabification. 

Analysis of consonant and vowel alternation in the entire 

training corpus indicated that this 40-slot template can hold 

every word with the sole restriction that adjacent consonants 

and adjacent vowels remain grouped: 

 
 CCCVVVVVCCCCCVVVVVVCCCCVVVVVCCCVVVVCCVVC 

 

To present a word to the network, each group of consecu-

tive consonant or vowel slots is filled with letters, in a left-

to-right direction. Shorter words leave the rightmost groups 

empty. All words fill at least one slot of the first two groups. 

To reduce the total number of connection weights, each slot 

was constrained to contain letters that appear in this position 

in the training corpus. Thus, the input layer consists in one 

binary vector for every slot with length depending on the 

number of letters that may appear in it. Presence of a letter 

is indicated by setting its corresponding unit to 1. In addi-

tion to the 40-slot letter template, a set of 22 slots made up 

the stress marking template. These correspond to 5 vowel 

groups of the letter representation, encoding position and 

identity of the vowel letter marked with the stress diacritic.  

For example, the orthographic representation of άδεια is: 

Letters: 

_ _ _ α _ _ _ _ δ _ _ _ _ ε ι α _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

CCCVVVVVCCCCCVVVVVVCCCCVVVVVCCCVVVVCCVVC 

Stress:  

         α _ _ _ _                _ _ _ _ _ _            _ _ _ _ _          _ _ _ _       _ _ 
 

The phonological output representation is not affected by 

the CiV pattern. Therefore, the English implementation was 

simply augmented with additional syllable slots of the ap-

propriate structure. There were 5 groups of 6 slots each, 

representing 5 syllables with up to 3 onset consonants and 

up to 2 coda consonants, making up a CCCVCC syllabic 

template. Each slot encodes 18 phonetic features, in corre-

sponding units, as an 18-bit binary vector. A phoneme is 

present in a slot when its corresponding feature units are 

given an activation value of 1. Five additional slots repre-

sented the vowel of the stressed syllable. Each contained the 

same 18-bit vector as the corresponding vowel phoneme 

slot. This somewhat redundant representation of stress was 

as simple as possible given the constraints of the code.  

Here is the phonological representation of the word 

/'a.ði.a/ (vertical lines indicate syllable boundaries): 

Phonological: 

_ _ _ a _ _| _ _ ð i _ _ | _ _ _ a _ _|_ _ _ _ _ _ |_ _ _ _ _ _  

CCCVCC|CCCVCC|CCCVCC|CCCVCC|CCCVCC 

Stress:  

         a                 _                 _                 _                _  

Figure 1. Model architecture. 



Whereas the homograph /ɑa. ðʝa / is represented as 

Phonological: 

_ _ _ a _ _| _ ð  ʝ a _ _|_ _ _ _ _ _ |_ _ _ _ _ _|_ _ _ _ _ _  

CCCVCC|CCCVCC|CCCVCC|CCCVCC|CCCVCC 

Stress:  

         a                 _                 _                 _                _  

Training the *etwork 

The training corpus was a list of 120,745 word types with 

2–5 syllables, 4–10 letters long, from an online written text 

corpus of about 30 million words (Hellenic National Cor-

pus; hnc.ilsp.gr). The corresponding pronunciations were 

derived using a grapheme-to-phoneme transcription model 

developed for text-to-speech applications (Chalamandaris, 

Raptis, & Tsiakoulis, 2005). Words were presented to the 

model proportionally to their frequency of appearance in 

that corpus after logarithmic compression and conversion to 

relative probability, following Harm & Seidenberg (1999, 

Equation 1, p. 495), to allow low frequency words to appear 

during training. The relative probability of all words with 

less than .3 occurrences per million was set to 0.2.  

Beginning with random initial weights, 9,000,000 training 

trials were given. On each trial, a word was randomly cho-

sen from the training list and was presented to the model if a 

random number from a flat [0,1] distribution did not exceed 

its transformed frequency. The orthographic representation 

of the word was fixed on the input layer for 10 “ticks” (i.e., 

activation update cycles through the network). The phono-

logical output after 12 ticks was compared to the target out-

put. Connection weights were adjusted using continuous 

recurrent backpropagation, with a learning rate equal to 0.1. 

A subset (about 10%) of the training corpus (12,017 

words) was retained and used to track performance during 

training every 50,000 trials (plotted in Figure 2). Each word 

was presented to the network for 18 ticks. A response was 

considered correct if produced within that time. More ticks 

were allowed in testing than in training, because longer 

words might require longer times for the network to settle to 

the correct pronunciation. Pilot trials showed significant 

improvement using 18 ticks for testing, compared to 12 

ticks. Further increases (up to 45 ticks) did not improve per-

formance significantly. Only 12 ticks were used during 

training, because this led to faster training, presumably due 

to increased pressure for the network to learn.  

Post-training Tests 

To study the effects of the most important variables known 

to affect word reading times in human participants (Balota, 

Yap, & Cortese, 2006), a set of 150 words were selected to 

span a range of length, frequency, neighbourhood size, and 

bigram probability. The words were chosen so that the in-

tercorrelations between these basic variables were minimal 

(Spearman’s ρ<0.2) and not statistically significant, in order 

to isolate individual effects. A corresponding set of 150 

nonwords were constructed, based on these words, with 

similar properties and variable ranges, taking care to avoid 

resemblance of nonwords to specific words. Human reading 

performance data for these stimuli are currently being col-

lected, for future comparison with model performance. 

After training, these words and nonwords were presented 

to the model with and without a stress diacritic, to assess its 

performance on segmental pronunciation and on stress as-

signment. Response time was measured, for correct re-

sponses only, by the number of ticks it took the model to 

achieve a representation of the correct response. The ortho-

graphic input was presented to the input layer for 18 ticks. 

The variables onto which response time were regressed 

included: probability of appearance in training, as a measure 

of frequency (words only); length (in letters); number of 

syllables, number of orthographic neighbours (words only), 

cumulative bigram (letter) probability, mean orthographic 

syllable frequency, and orthographic transparency measured 

as minimum non-directional grapheme-phoneme type prob-

ability (least transparent sonograph; Spencer, 2007). Of 

these, only syllabic frequency differed significantly between 

words and nonwords (t(298) = 2.007, p = .01). 

Results 

Overall, 96.14% of words were read correctly after 9m tri-

als. Performance may increase with further training, as no 

asymptote is apparently reached (Figure 2). 2.37% of the 

errors were stress assignment errors, that is, stress produced 

on a vowel other than the one marked with the diacritic 

(e.g., /ði.i.'li.ze/ instead of /ði.'i.li.ze/). 4.53% were both 

segmental and stress assignment errors in that stress was 

erroneously produced on an incorrect vowel. The rest were 

segmental errors, that is, incorrect phonemes. When a 

stressed vowel was produced incorrectly, it was nevertheless 

stressed, showing that stress diacritic position was inter-

preted correctly (e.g., /ðʝa.vo.'lis/ instead of /ðʝa.vo.'lεs/). 

18.97% of the errors concerned stress assignment combined 

with a segment displacement, usually resulting from incor-

rect parsing of a CiV. In such cases, the stress diacritic was 

placed on the correct vowel at its new position, showing that 

Figure 2. Word reading accuracy during training (%). 



the model can properly combine letter and diacritic informa-

tion (/fi.'ε.stes/ instead of /'fçε.stes/). 

To examine the effects of the aforementioned predictor 

variables, simple regressions were employed. This allows 

reliable detection of the most important effects, because the 

main variables were specifically uncorrelated in the test sets. 

Multiple regressions will be used once the critical variables 

are identified in the analysis of human data.  

Of the 150 test words, presented with a stress diacritic, 

98% were read correctly, with an average response time 

(RT) of 4.44 ticks. Linear regression, separately for each 

predictor, showed that number of letters accounted for 4.4% 

of RT variance (R
2 

= .044, standardized β = .084, p = .011), 

and bigram probability for 4.5% (β = −.028, p = .010). 

Of the 150 nonwords presented with a stress diacritic, 

92% were read correctly, at a mean RT of 4.54 ticks. Num-

ber of letters accounted for 5.6% of RT variance (β = .116, p 

= .005), number of syllables for 3.2% (β = .179, p = .035), 

and bigram probability for 7.5% (β = -.046, p = .001). 

These results are summarized in the following table. 

 

Table 1: Summary of simple regression results for items 

presented with a stress diacritic. Significant predictors are 

presented in order of variance proportion accounted for. 

 

Predictors Words Nonwords 

Significant Bigram prob. 

N Letters 

 

Bigram prob. 

N Letters  

N Syllables 

Not significant N Syllables 

Frequency 

Syllable frequency 

N Neighbors 

Transparency 

Syllable frequency 

Transparency 

 

 

The RT difference between correct readings of words and 

nonwords was not significant (t(283) = -1.457, p = .148). 

Of the 150 words presented without a stress diacritic, 

53.33% were read correctly with a mean RT of 5.11 ticks, 

significantly slower than when presented with a stress dia-

critic (t(80) = -3.267, p = .002). Sixty errors were segmen-

tally correct but incorrectly stressed words, including 6 re-

sponses with no stressed letter and 54 stressed at a different 

position. For the words produced correctly, the model as-

signed stress 27.5% on the final syllable, 42.5% on the pe-

nult, and 30% on the antepenult, a uniform distribution of 

stress (χ
2
(2) = 3.100, p = .212). Taking into account all 

words, stress assignment to the final, penult, and antepenult 

was 30.7%, 44.5%, and 24.8%, respectively  (significantly 

nonuniform, χ
2
(2) = 8.423, p = .015). The correct stress po-

sitions for all words in the testing set were 30.7% on the 

final, 40% on the penult, and 29.3% on the antepenult; and 

for words stressed incorrectly by the model, 35.1%, 47.4%, 

and 17.5%, respectively. The corresponding proportions for 

the entire corpus, considering multisyllabic words only, are 

30%, 44.9%, and 25%, respectively (Protopapas, 2006). 

Two words, which formed a CiV pattern when the stress 

diacritic was removed, were read by the model with the al-

ternate pronunciation of the CiV and were stressed appro-

priately considering the segment pattern produced. 

Of the 150 nonwords presented without a stress diacritic, 

42.67% were read correctly, with a mean RT of 5.3 ticks, 

significantly slower than when presented with a stress dia-

critic (t(63) = -2.019, p = .048). The model stressed non-

words 28.7% on the final syllable, 44.1% on the penult and 

27.2% on the antepenult, a nonuniform distribution (χ
2
(2) = 

7.162,  p = .028). 

Discussion 

This is a first attempt toward a computational model of 

reading aloud Greek words and nonwords. The number of 

monosyllables in Greek is very small: fewer than 500 types 

were reported by Protopapas & Vlahou (in press), most of 

which were unrepresentative of the language in being either 

function words or recent loans. Therefore extension of exist-

ing approaches to multisyllabic representations was neces-

sary in order to capture the major characteristics of this lan-

guage. The Greek orthography is highly consistent for read-

ing, with the exception of the CiV pattern. On the one hand, 

the high consistency makes the task of mapping letter se-

quences to phoneme sequences easier. On the other hand, 

the presence of the CiV phenomenon dictated a substantial 

change to the design of the model’s representations, because 

pre-syllabification is not possible. The new design has the 

additional benefit that the number of syllables is not limited, 

as long as computational resources can handle the training. 

The concomitant drawback is susceptibility to the dispersion 

problem, because the same graphophonemic mappings must 

be learned repeatedly in different input-output slot positions.  

Our novel orthographic representation bears some inter-

esting features. The lack of pre-syllabification forces the 

model to learn mappings that might otherwise be distin-

guished by their subsyllabic position. The model must learn 

to map the letter sequences at the input layer to the syllabi-

fied output at the phonological output layer. This is not triv-

ial, because letter positions are not fixed at the input, as they 

depend on word length and morphology. It is especially 

complex for successive vowel letters (up to 6 slots for single 

graphemes or digraphs) mapping to multiple syllables. 

However, even though the model is forced to learn the same 

mappings at several different slots, this does not seem to 

pose a serious problem for word reading performance or 

generalization to nonwords. This may be due to the rela-

tively simple grapheme-phoneme mappings of the Greek 

orthography. It remains to be investigated whether the 

model learns to read in the same way as Greek readers do. 

Figure 2 shows that early in training (100,000 trials) the 

model can already read correctly a considerable proportion 

of words (about 76%). The number of word types presented 

to the model (120,745), relative to the number of training 

trials (9 million), is huge, compared to the 3,123 words and 

1 million trials in Harm & Seidenberg (1999), 6,103 words 

and 1.5 million trials in Harm & Seidenberg (2004), 5,870 

words and 1 million trials in Zevin & Seidenberg (2006), 



and 9,911 words and 1.2 million trials in Pagliuca & Mona-

ghan (in press). Despite the low ratio of tokens to types, the 

lack of syllabification, and the dispersion over slots, the 

model can read correctly more than 96% of the training cor-

pus. This may be due to high orthographic transparency. 

Due to the frequency-modulated random selection proce-

dure, many words that are read correctly were never pre-

sented to the model during training, so they must by read by 

grapheme-to-phoneme conversion, as nonwords. It is in-

structive to examine the model’s response to various letter 

strings containing the CiV pattern, because there is no rule 

for the CiV, either in terms of a statistical preponderance 

(Protopapas & Vlahou, in press) or in human participants’ 

reading behavior (Protopapas & Nomikou, 2009). The re-

sults of the training test show instances of words read with 

the incorrect alternative pronunciation (but not with unre-

lated phonological outputs). These cases concerned low-

frequency words that were never or little presented to the 

model during the training, so they are functional nonwords. 

Further tests, with controlled sets of words, are underway. 

Another novel feature of this model is stress marking in 

the orthographic representation, corresponding to the dia-

critic of Greek orthography. Although this is not the first 

attempt to model stress assignment in reading (e.g., Mona-

ghan, Arciuli & Seva, 2008; Rastle & Coltheart, 2000) or to 

include an orthographic representation of stress (Pagliuca & 

Monaghan, 2009, in press), it is probably the first attempt to 

consider a distinct orthographic representation for the stress 

diacritic itself while retaining vowel letter identity. The 

model seems to have learned the constraints on stressed 

syllables. No stress assignment error was observed on a syl-

lable earlier than the antepenultimate even though syllable 

positions were not fixed or right-aligned. Analysis of incor-

rectly stressed words showed that the model has a stress 

“preference” for the penultimate syllable, like humans, in 

both words and nonwords. There was no significant distor-

tion of stress assignment toward any syllable, indicating that 

the model does not assign stress randomly but follows the 

distribution of stress positions seen on Greek words. 

The network seems to have learned to make a connection 

between stressed vowels and the stress diacritic, even when 

the stressed vowel was incorrectly produced or placed in the 

wrong syllable. In such cases, stress followed the vowel, 

either by changing vowel or by changing position. Only 

0.1% of the total training corpus was read with the correct 

segmental pronunciation and incorrect stress. This means 

that the model has learned to use the stress diacritic. On the 

other hand, the model’s stress assignment performance dete-

riorated very substantially when the diacritic was not pre-

sented, indicating an excessive reliance on the diacritic. Al-

though this outcome is justifiable on the basis of the reliabil-

ity and validity of the stress diacritic, it stands in contrast to 

behavioral data showing that Greek readers are not affected 

by the lack of a stress diacritic (Protopapas, Gerakaki, & 

Alexandri, 2007; Protopapas & Gerakaki,  in press). Pre-

training the phonological layer might produce in improved 

fit to human performance by reinforcing stress vowel con-

nections in word representations. A connection from the 

orthographic directly to the phonological layer (Zorzi et al., 

1998) might also improve performance on unstressed words.  

In this preliminary investigation, two sublexical proper-

ties were found to affect reading times: word length (meas-

ured in letters or, for nonwords, in syllables) and bigram 

probability. In a review of factors affecting visual word rec-

ognition, Balota et al. (2006) reported significant effects of 

word length for low frequency words and nonwords. The 

effect on both words and nonwords in our results may be 

due to the relatively few repetitions of each word during 

training. This renders words effectively low-frequency, be-

cause they did not have many opportunities to affect the 

connection weights. An alternative or complementary ex-

planation may relate to a fine grain of graphophonemic rep-

resentation, which is expected for a language with high 

feedforward consistency. Reliance on a fine grain can lead 

to stronger length effects as more graphemic units must be 

individually mapped. As a reviewer pointed out, this might 

also explain the lack of frequency and lexicality effects. It 

remains to be investigated whether evidence for larger units 

of graphophonemic mapping may accumulate with higher 

ratios of trials to word types in the training procedure. 

Nevertheless, the significant word length effect seems to 

run counter to common expectations regarding connectionist 

models. According to Rastle & Coltheart (2006), word 

length effects should not be exhibited by single-route con-

nectionist models, because entire words are read in parallel 

and not serially, grapheme-by-grapheme, as in some dual-

route models. Our results, although preliminary, are incon-

sistent with this prediction, showing that word length effects 

are possible in parallel distributed processing models, even 

for the highly consistent mappings of the Greek orthogra-

phy. This finding may depend on a large range of word 

lengths, as imposed by the multisyllabic input and by the 

stimulation of more phonological attractors when more let-

ters appear at the input, in part due to dispersion. Thus, our 

model sheds light on a long-standing issue in modeling 

reading aloud, which was not possible to address with pre-

vious models dealing only with monosyllabic words. 

Word frequency is one of the most important variables af-

fecting word reading performance in English (Balota et al., 

2006). Our model was not affected by word or syllable fre-

quency in this preliminary investigation, which may be at-

tributed to the low token-to-type ratio that renders trained 

words effectively low frequency. Balota et al. noted that low 

frequency words exhibit larger effects of sublexical regular-

ity, such as bigram frequency, compared to high frequency 

words. This was borne out in our model and may be related 

to the dispersion necessitated by our input representation. 

Specifically, as the same letters appear at different positions, 

the model is exposed to input bigrams more consistently 

than to words with larger common parts.  

On the other hand, the absence of expected transparency 

(mapping consistency) effects warrants further investiga-

tion. Orthographic neighbors were also expected to affect 

reading performance, however the situation with neighbors 



may differ substantially from English because most Greek 

words have few or no neighbors, (mean neighborhood size 

was 1.69), perhaps due to their overall greater length.  

In conclusion, this paper presents a computational model 

of reading aloud that can read Greek multisyllabic words 

and nonwords, using a novel orthographic input representa-

tion that includes stress marking. Critically, orthographic 

input was not pre-syllabified, whereas phonological output 

was. Preliminary tests indicate that the model reads words 

and nonwords with reasonably high accuracy, assigns stress 

correctly based on diacritic information, and produces ef-

fects of word length, previously thought incompatible with 

parallel processing, but no effects of frequency, which are 

large and robust in human data and other models. Further 

tests and elaboration will take place as comparable human 

data for Greek become available. 
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