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Abstract 

Category learning is thought to be mediated—in at least some 
category structures—by hypothesis-testing processes. Verbal 
labels for the stimuli and stimulus individuation have been 
shown to facilitate the formation, testing, and application of 
rules of category membership (Fotiadis & Protopapas, 2014). 
We sought to replicate the phenomenon of facilitation due to 
verbal names for the stimuli by training participants for two 
consecutive days to either learn new names for abstract 
shapes, or learn shape-ideogram pairings; a third group was 
unexposed to the shapes. After training, participants were 
given a Type II categorization task—thought to be mediated 
by verbal processes of rule discovery—utilizing the trained 
shapes. We hypothesized that verbal labels for the shapes and 
shape individuation would provide facilitative effects in 
learning to categorize. Results revealed no effect of training 
on categorization performance. This study suggests that 
caution should be taken when generalizing findings across 
perceptual modalities or different experimental paradigms. 

Keywords: Verbal labels; hypothesis testing; categorization; 
learning  

Introduction 

The ability to categorize spans a broad range of human 

capacities and behaviors. Researchers have examined the 

cognitive processes (Ashby & Maddox, 2005) and neural 

substrates (Poldrack et al., 2001) of category learning and 

have utilized computational modeling techniques in an 

effort to shed light on the nature of the underlying 

representations (Anderson, 1991).  

The Multiple Memory Systems (MMS) hypothesis argues 

that human category learning is mediated by distinct 

learning systems (Ashby & Maddox, 2005; Poldrack & 

Foerde, 2008). A declarative, explicit, or verbal system is 

thought to be engaged in the learning of categories that can 

be characterized by a verbal rule. Hypothesis testing 

processes are thought to be recruited, and the knowledge 

acquired is thought to be available to consciousness. On the 

other hand, the learning of categories that defy a simple 

verbal description is thought to be accomplished through a 

procedural, implicit, or non-verbal system. Pre-decisional 

perceptual processes underlie learning, and the learned 

material is thought to be unavailable to consciousness. An 

on-going debate exists between the MMS theorists and 

single-system theorists arguing that a single, general 

learning mechanism suffices to account for behavioral data 

(e.g., Newell, Dunn, & Kalish, 2011). 

In the context of this debate, growing empirical evidence 

suggests that verbal processes are important in the learning 

of rule-described categories. Ashby and colleagues (Ashby, 

Alonso-Reese, Turken, & Waldron, 1998) developed a 

computational theory suggesting that the verbal system 

mediates rule-based category learning. Verbal working 

memory interference has been found to impair the learning 

of rule-described categories (Miles & Minda, 2011), 

whereas experimental manipulations, such as using difficult-

to-name stimuli (Kurtz, Levering, Stanton, Romero, & 

Morris, 2013), or verbal rehearsal of stimulus dimensions 

prior to learning (Minda, Desroches, & Church, 2008), have 

been shown to affect category learning.  

Verbal Labels in Hypothesis Testing 

Recently, Fotiadis and Protopapas (2014) provided evidence 

in favor of the hypothesis that verbal labels for the to-be-

categorized stimuli facilitate hypothesis-testing processes 

underlying category learning. The authors utilized hard-to-

name auditory stimuli and manipulated the availability of 

stimulus names by training separate groups of participants 

for three consecutive days to associate the auditory tones 

with pseudowords (label training condition) or with hard-to-

name ideograms (ideogram training condition); or to 

associate tone intensity with colors (intensity training 

condition); a fourth group remained unexposed to the tones 

(no-training condition). On the fourth day all participants 

were administered the same auditory version of the Weather 

Prediction Task (Knowlton, Squire, & Gluck, 1994) 

utilizing the trained tones as cues. Results revealed a 

gradation in categorization performance in the order: label > 

ideogram > intensity > no-training. Thus, it was concluded 

that verbal labels, cue individuation, and exposure to the 

stimulus set each facilitated explicit hypothesis-testing 

processes underlying category learning. 

The Shepard et al. (1961) Tasks 

In their seminal paper, Shepard, Hovland and Jenkins 

(1961) revolutionized the study of category learning. They 

created six category tasks (Type I to Type VI) by 

manipulating category structure (categorization rule) while 

utilizing the same stimuli in each task and the same number 



of exemplars in each category. In the most common 

implementation of the paradigm (Minda & Miles, 2010) 

categorization stimuli are comprised of three binary valued 

dimensions: Shape (square vs. triangle), color (black vs. 

white), and size (big vs. small). 

The basic finding of the Shepard et al. (1961) study was 

that the order of difficulty of the six types (as assessed by 

participants' performance) cannot be accounted for by a 

simple stimulus-generalization theory. The key finding was 

that participants found it easier to learn Type II categories 

compared to Type IV categories, despite the reduced within-

category similarity of the former (compared to the latter) 

category structure. The authors suggested that this Type II 

over Type IV advantage necessitates considering the 

mediation of executive attention mechanisms and the 

formulation and application of rules during category 

learning.  

The Type II Task and Rule-Discovery Learning 

The Type II task has a two-dimensional rule structure. Two 

out of the three dimensions are diagnostic of category 

membership
1
, in an exclusive-or fashion. A simple verbal 

rule seems to be able to define category membership (e.g., 

“black triangles and white squares are category A”). Thus, 

the structures' processing demands are thought to be best 

met by explicit rule-learning processes (Minda & Miles, 

2010).  

This claim seems to be supported by empirical evidence. 

Minda et al. (2008) utilized the first four prototypical 

Shepard et al. (1961) category structures in an effort to 

examine rule-selection executive functions of children and 

adults. In their Experiment 2, Minda et al. assessed the 

effect of a concurrent verbal and a concurrent non-verbal 

task on categorization performance. The verbal secondary 

task—thought to occupy resources recruited by verbal 

processes of rule discovery—did impair performance in the 

Type II structure (compared to a control, no-task condition, 

and also compared to the non-verbal task condition). These 

results suggest that the Type II structure recruited the 

explicit system. Smith, Minda and Washburn (2004) studied 

category learning processes of human and non-human 

animals using the Shepard et al. tasks. Their results 

provided evidence in favor of the engagement of rule-

discovery mechanisms in learning the Type II category 

structure. The evidence (“all-or-none learning”) was only 

present for human subjects, whereas for non-human 

animals, lacking the faculty of language, there was no sign 

of rule discovery. This may be considered as evidence in 

favor of the engagement of rule-learning mechanisms in the 

Type II task. 

Thus, theoretical reasons (Minda & Miles, 2010; Shepard 

et al., 1961) as well as empirical evidence (Minda et al., 

2008; Smith et al., 2004) suggest that learning to categorize 

                                                           
1 Depending on which dimensions are diagnostic, there can be 

three Type II subtypes: Shape-irrelevant, size-irrelevant, and color-

irrelevant. See Love and Markman (2003) for evidence suggesting 

that performance varies systematically across these subtypes.   

in the Type II category task is mediated by hypothesis 

testing processes of verbal rules. 

Rationale of the Present Study 

The purpose of the present study was to further test the 

hypothesis that verbal labels for the to-be-categorized 

stimuli facilitate hypothesis testing processes recruited 

during category learning (Fotiadis & Protopapas, 2014). We 

specifically wanted to test our training manipulation in the 

visual modality, since there are reasons to suggest that 

learning across modalities is not governed by the same 

mechanisms (Conway & Christiansen, 2005). Moreover, 

given that in the Weather Prediction Task category 

membership is probabilistically defined (Knowlton et al., 

1994) we sought to examine the effect of names for the 

stimuli in a task with a deterministic structure.  

To manipulate the availability of names, separate groups 

of participants were trained for two consecutive days to 

associate abstract shapes with pseudowords (label training 

condition) or with hard-to-name ideograms (ideogram 

training). A third—control—group of participants remained 

unexposed to the shapes, and was trained to associate 

ideograms with pseudowords (mock training condition). On 

the second day, all participants were given the Type II 

categorization task. In this task, the two values in the shape 

dimension were the same shapes that were used in the 

training procedure. The category-diagnostic dimensions 

were shape and color, whereas size was non-diagnostic (see 

Fig. 1).  

We reasoned that verbal labels for the shapes would 

facilitate verbal hypothesis-testing processes of rule 

formation, testing, and application. Therefore we predicted 

that participants in the label training condition would find it 

easier to discover the categorization rule, compared to the 

ideogram training group. We also hypothesized that 

familiarity with the stimuli and learning to associate the 

shapes to visual stimuli (ideograms) would help create 

individuated perceptual representations of the shapes and 

 

Figure 1: Design of the present study. 

 



therefore facilitate categorization. We therefore predicted 

that the ideogram training group would have an advantage 

in rule discovery compared to the mock training group. 

Methods 

Participants 

Seventy-two students (16 male) of the University of Athens 

took part in the study and were randomly assigned (in 

groups of 24) to each training condition. Their mean age 

was 25.8 years (SD = 7.0). All were native speakers of 

Greek, reported normal or corrected-to-normal vision, no 

history of neurological illness, and no diagnosis of dyslexia. 

Materials 

 

Shapes. Two abstract shapes of low association value were 

selected from the collection of Vanderplas and Garvin 

(1959). The shapes have been previously used in 

experimental research and are considered to be hard to name 

(e.g., Hulme, Goetz, Gooch, Adams, & Snowling, 2007). 

The shapes were equated in size in a pilot experiment using 

the method of adjustment. Twelve participants took part in 

this psychophysical procedure, which was implemented in 

PsychoPy (Peirce, 2007), and the results provided the Points 

of Subjective Equality (P.S.E.s). For the training session, 

empty shapes with a black margin were created, with size 

corresponding to 75% of the P.S.E.s, whereas for the 

categorization session the shapes were filled with red or 

blue color. The categorization stimuli necessitated two 

levels of size for the stimuli, so for the “big” shapes the size 

corresponded to the P.S.E.s, and the “small” shapes were 

created by a 50% reduction in size. 

 

Pseudowords. Ten pseudowords were created, equated in 

number of letters, syllables, phonemes, and stress position. 

They were also roughly equated in orthographic and 

phonological typicality using Levenstein distance of the 20 

nearest neighbors (Protopapas, Tzakosta, Chalamandaris, & 

Tsiakoulis, 2012; Yarkoni, Balota, & Yap, 2008). To avoid 

name assignment biasing toward particular shapes, we 

administered an online questionnaire to 107 native speakers 

of Greek showing randomly one of the two abstract shapes 

along with the ten candidate pseudowords. Participants were 

simply asked to “choose a name” for the shape. We selected 

the two pseudowords that were selected as names for both 

shapes with roughly equal frequency, namely δέκλαμο 

(/'ðεklamo) and κίμνελο (/'kimnεlo). 

 

Ideograms. Two Chinese characters were selected. These 

ideograms have been previously used and have been shown 

to resist a simple verbal description (Fotiadis & Protopapas, 

2014): 辛 (U+8F9B), and 辰 (U+8FB0). To equate for 

number of strokes (and, thus, for perceptual complexity), a 

stroke was erased from the second character. 

Procedure 

Training comprised two sessions, administered on two 

consecutive days. On the second day, following training, the 

categorization task was administered. All following 

procedures were implemented in the DMDX display 

software (Forster & Forster, 2003). 

Training 

There were two training sessions, administered on 

consecutive days, aimed to allow overnight consolidation. 

Participants were given 160 trials in each training session, 

arranged in four blocks of 40 trials. At the beginning of a 

Label Training trial a fixation cross was presented for 500 

ms at the center of the screen. Following that, one of the two 

shapes was randomly selected and presented for 2000 ms, 

and then the two pseudowords appeared in a vertical 

configuration. Participants were asked to respond by 

clicking on one of the two alternative responses 

(pseudowords). Upon response, feedback was provided (the 

word “Correct” or “Wrong”) for 500 ms. The permutation 

of the two pseudowords was counterbalanced across trials, 

and each shape was presented equally often within a block 

of trials. On the first day of training, participants in the 

Label training condition were asked to read aloud the 

pseudoword of their choice before clicking on it, because 

we reasoned that learning a name necessitates the formation 

of an effective phonological component. This reading-aloud 

instruction was omitted on the second day, to equate task 

demands across training conditions as much as possible.  

For the Ideogram Training condition pseudowords were 

replaced with ideograms. In the Mock Training condition 

participants were asked to learn to associate ideograms to 

pseudowords, so shapes were replaced by ideograms. No 

reading aloud took place in either the Ideogram or the Mock 

training conditions. Stimulus-response pairings (e.g., shape-

pseudoword or shape-ideogram pairings) were 

counterbalanced across participants within a training 

condition. Each training session lasted approximately 20 

minutes.  

Categorization 

In the Categorization session, which followed immediately 

after the second training session, participants were told that 

they would learn to classify stimuli into two categories, 

namely X and Y. They received a maximum number of 28 

blocks of eight trials. In a categorization block each of the 

eight categorization stimuli was presented once. The 

beginning of a trial was signaled by the presentation of the 

stimulus at the center of the screen along with the category 

labels X and Y. The category labels were presented around 

the stimulus either horizontally or vertically in both 

permutations (i.e., X - Y or Y - X), providing four possible 

configurations. Participants responded by clicking on a 

category label. Following each response a smiling face was 

presented if correct or a frowning face if incorrect, for 1500 

ms. If a participant did not respond within 10000 ms the 



trial was terminated and a prompt appeared on screen. The 

training session ended upon completion of all blocks, or 

upon two consecutive errorless blocks (following Mathy, 

Haladjian, Laurent, & Goldstone, 2013). The order of trials 

was pseudorandomized with MIX (VanCasteren & Davis, 

2006) and was identical for all participants. Randomization 

constraints precluded (a) presentation of the same 

categorization stimulus on two consecutive trials, and (b) a 

lag between trials with the same configuration of category 

labels less than two. The assignment of category label (X-Y) 

to values of the diagnostic dimensions was counterbalanced 

across participants. A short break was provided every 56 

trials. The maximum duration of the categorization session 

was 25 minutes. 

Results 

Training 

Participants in all three training conditions mastered the 

training task by the third block of Day 1 and exhibited 

ceiling performance on Day 2. Across both training 

sessions, participants averaged 98.33% correct responses 

(SD = 1.16) in the label training condition, 97.33% (SD = 

2.64) in the ideogram training condition, and 97.87% (SD= 

2.29) in the mock training condition. The average 

performance per training condition and day, in blocks of 40 

trials, is shown in Fig. 2.  

The purpose of the analysis was to test if participants 

were equally successful in learning the shape-label and 

shape-ideogram pairings. Therefore, we only analyzed data 

from the label and ideogram training conditions on the 

second day of training. Participants’ responses were 

analyzed in R (R Development Core Team, 2014) with a 

linear mixed-effects model including fixed effects of trial 

and training condition, as well as their interaction, and 

random effects of participants. By-participant random slopes 

of trial were included to model participants’ individual 

learning rates (Baayen, Davidson, & Bates, 2008). In R 

notation, the model was specified as 

accuracy ~ trial*condition+(1+trial|participant). 

There was no simple effect of trial (β = .387, ɀ = 1.317, p 

= .188), a result consistent with participants' ceiling 

performance on Day 2. There was also no interaction of trial 

by condition (β = −.031, ɀ = −.113, p = .910) and—most 

importantly—no effect of condition (β = .369, ɀ = .692, p = 

.489).  

Categorization 

Out of 72 participants in all training conditions, 44 

(61.11%) managed to achieve two consecutive errorless 

blocks of trials, thus providing unequivocal evidence of 

having discovered the categorization rule. We refer to these 

participants as “learners.” There were 14 learners (58.33%) 

in the label training condition, 14 learners (58.33%) in the 

ideogram training conditions, and 16 learners (66.67%) in 

the mock training condition. A chi square test revealed that 

the percentage of learners in the categorization task did not 

differ significantly between training conditions (χ
2
 = .468, 

df = 2, N = 72, p = .792). 

However, using the percentage of participants reaching 

the learning criterion as a dependent variable has the 

disadvantage of disregarding the ease or difficulty with 

which participants in each training condition learned the 

rule. We therefore analyzed the number of blocks to reach 

criterion, for learner participants only
2
 (see Fig. 3). An one-

                                                           
2 The exclusion of “non-learner” data is common practice in the 

categorization literature when analyzing number of blocks to reach 

criterion (e.g., Mathy & Feldman, 2009). The rationale is that a 

Figure 2: Learning curves in the three training conditions in 

blocks of 40 trials 

 

Figure 3: Number of blocks to reach learning criterion in the 

categorization task, per training condition. Data from 

learner participants only. Boxes denote interquartile range; 

thick lines mark the median; error bars extend to the full 

range; N denotes sample size. 

 



way analysis of variance revealed that there was no effect of 

training condition on the number of blocks to reach the 

learning criterion, F(2, 42) = 1.777, η
2
 = .080, p = .182.  

Alternatively, categorization performance can be analyzed 

using accuracy as the dependent variable. This allows 

inclusion of all participants, under the assumption of 

errorless performance after the learning criterion is reached 

(e.g., Kurtz et al., 2013). A linear mixed-effects model with 

the same formula as above revealed an effect of trial (β = 

4.878, ɀ = 5.33, p < .001), reflecting an increase in accuracy 

as trials progressed, comparable learning rates among 

conditions (all βs < 1.35, p > .14), and—most importantly—

no effect of condition on categorization accuracy (all βs < 

.13, p > .32).  

Discussion 

In this study we trained participants for two consecutive 

days to learn new names for shapes, or learn to associate 

shapes with hard-to-name ideograms. A third group of 

participants remained unexposed to the shapes. In a 

categorization task, administered immediately after training, 

we used the trained shapes to create the categorization 

stimuli. We predicted that names and familiarity with the 

shapes would each facilitate rule discovery in the 

categorization task. Our results revealed no effect of training 

condition of categorization, in contrast to previous findings 

(Fotiadis & Protopapas, 2014). 

This discrepancy raises concerns about assuming that an 

effect manifesting itself in one modality would also be 

present in another modality. One purpose of the experiment 

was to replicate the effect of facilitation in learning to 

categorize due to names for the stimuli in the visual 

modality. The lack of an effect may be attributed to the 

change in modality per se, since there is reason to assume 

that learning processes may differ between modalities. 

Saffran (2002) showed that, for learning to take place, the 

temporal mode of presentation of stimuli in the visual and 

auditory modality should be different (concurrent vs. 

sequential respectively). Also, Conway and Christiansen 

(2005) implemented the same learning paradigm in different 

modalities and provided evidence in favor of a learning 

advantage in the auditory modality compared to the visual 

modality. Further empirical investigation is needed to assess 

whether learning to categorize in the auditory and the visual 

modality is mediated by the same processes. 

Participants’ ceiling performance during training 

complicates interpretation, insofar as potential differences 

between learning the shape-label and shape-ideogram 

pairings may be masked by the ease of the task. Thus, we 

cannot preclude the possibility that performance in the 

categorization task is affected by differences in training.  

                                                                                                  
value of 28 corresponding to a non-learner, perhaps responding at 

chance, and a value of 28 corresponding to a participant mastering 

the task at the last two blocks reflect qualitatively different 

behaviors that should not be aggregated.   

Alternatively, the lack of an effect of verbal labels in 

category learning may stem from methodological 

discrepancies between the present and our previous study, 

such as the structure of the categorization task used to reveal 

hypothesis learning processes. The Weather Prediction 

Task, previously shown to be affected by names for the 

stimuli, has a probabilistic structure, whereas the Type II 

task used in the present study has a deterministic structure. 

It remains to be investigated whether performance in a 

probabilistic category structure may be more easily affected 

by experimental manipulations, perhaps due to the 

uncertainty that is inherent in the task. 

Further concerns stemming from the results of the present 

study are related to whether changing the surface structure 

of a paradigm affects the processing demands of a task. The 

result of no difference in categorization performance 

between the label and ideogram training groups might 

suggest that names for the stimuli do not facilitate rule 

discovery. An alternative explanation, however, may be 

related to the fact that our implementation of the Type II 

task utilized two abstract shapes whereas the canonical 

version uses two geometric shapes. It may be that the Type 

II task is learned through verbal processes of rule discovery 

only when the values of the diagnostic dimensions are 

highly familiar to participants. Mathy et al. (2013), who also 

used abstract shapes in implementing the Type II task, 

provided evidence in favor of the engagement of similarity-

based processes (thought to reflect learning mediated by the 

implicit rather than the rule-based system) in learning to 

categorize. Thus, although the Type II task has been used to 

examine explicit processes (e.g., Minda & Miles, 2010), our 

version of the task may have recruited implicit processes 

that are not affected by verbal labels for the stimuli.  

A final concern may be of representational nature. The 

finding that familiarity with the stimuli also failed to affect 

performance in the categorization task seems rather 

puzzling, given previous findings and current understanding 

in the field. For example, Folstein, Gaultier, and Palmeri 

(2010) provided evidence suggesting that mere exposure to 

the stimulus configuration may facilitate subsequent 

categorization performance. Our finding of no significant 

difference in performance between the ideogram and mock 

training conditions may be taken to indicate that learning 

processes involved in learning to categorize our version of 

the Type II task did not recruit the representations of the 

shapes that were presumably acquired during training. 

Indeed, informal reports of participants' strategies in 

debriefing revealed that participants mainly paid attention to 

the corners of the shapes and not to the shape forms in their 

entirety. Therefore, a plausible explanation for our findings 

is that the participants learned names for the entire shapes 

and formed individuated representations of them but then 

only used parts of the shapes in the categorization task. The 

representational mismatch undermined the potential of the 

verbal labels and the familiarity with the shapes to facilitate 

learning in the categorization task. 

To conclude, we sought to replicate the effect of 



facilitation in learning a verbal rule of category membership 

caused by having names for the stimuli. The results suggest 

that learning processes may operate differently across 

modalities or across categorization paradigms and that task 

processing demands may be significantly altered if the 

surface structure of a categorization paradigm is modified. 
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