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Abstract Learning in a well-established paradigm of prob-
abilistic category learning, the weather prediction task, has
been assumed to be mediated by a variety of strategies
reflecting explicit learning processes, such as hypothesis
testing, when it is administered to young healthy partici-
pants. Higher categorization accuracy has been observed in
the task when explicit processes are facilitated. We hypoth-
esized that furnishing verbal labels for the cues would boost
the formation, testing, and application of verbal rules, lead-
ing to higher categorization accuracy. We manipulated the
availability of cue names by training separate groups of
participants for three consecutive days to associate hard-to-
name artificial auditory cues to pseudowords or to hard-to-
name ideograms, or to associate stimulus intensity with
colors; a fourth group remained unexposed to the cues.
Verbal labels, cue individuation, and exposure to the stimu-
lus set each had an additive effect on categorization perfor-
mance in a subsequent 200-trial session of the weather pre-
diction task using these auditory cues. This study suggests
that cue nameability, when controlled for cue individuation
and cue familiarity, has an effect on hypothesis-testing pro-
cesses underlying category learning.
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Categorization is a fundamental aspect of cognition underlying a
broad range of human behaviors and skills, such as language
acquisition, inference, concept formation, and decision making.
The cognitive neuroscience of category learning has extensively
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tried to shed light on its mechanisms, representational contents,
and neural substrates. Alternative approaches suggest that cate-
gory learning is mediated either by qualitatively distinct systems
(Ashby & Maddox, 2011; Poldrack & Foerde, 2008) or by a
single learning mechanism (Newell, Dunn, & Kalish, 2011).

Explicit hypotheses in category learning

Multiple-systems theorists have drawn a distinction between a
declarative, explicit, or verbal system or pathway, and a pro-
cedural, implicit, or nonverbal system (Ashby & Maddox,
2005, 2011; Minda & Miles, 2010; Poldrack & Foerde,
2008; Squire, 2004). The explicit system is thought to be
engaged when hypothesis-testing processes—such as the for-
mation, testing, and application of a verbalizable rule or
strategy—can lead to successful performance and the knowl-
edge acquired is accompanied by awareness. The implicit
system underlies performance when no verbalizable rules
exist or can easily be applied, in which case the integration
of information across multiple trials occurs or perceptual
learning processes are recruited. Knowledge acquired by the
implicit system is considered unavailable to conscious recol-
lection. The two systems have been suggested to compete
(Ashby, Alonso-Reese, Turken, & Waldron, 1998; Poldrack
et al., 2001) or to operate in parallel (Dickerson, Li, &
Delgado, 2011; Minda & Miles, 2010; Shohamy, Myers,
Kalanithi, & Gluck, 2008).

Single-system theorists, on the other hand, have questioned
the parsimony of multiple categorization systems (Newell et al.,
2011) and the validity of the methodologies (e.g., double dis-
sociations) utilized in the past (Newell & Dunn, 2008; Newell,
Dunn, & Kalish, 2010). Instead, they have suggested that
human categorization is achieved through a single, general
learning mechanism (Newell, Lagnado, & Shanks, 2007) and
is accompanied by high levels of awareness for the learned
material (Lagnado, Newell, Kahan, & Shanks, 2006). The
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hypothesis of multiple memory systems or pathways remains a
matter of current debate in the study of categorization (e.g.,
Ashby & Maddox, 2011; Newell et al., 2011).

Regardless of the existence and functional independence of
discrete categorization systems, few would argue against the
notion that category learning employs—in at least some task
structures—hypothesis-testing processes (Ashby & Maddox,
2005), inner rehearsal (Lupyan, Rakison, & McClelland,
2007), or verbalizable strategies (Gluck, Shohamy, & Myers,
2002). Executive functioning mechanisms have been argued
to contribute to category learning by means of the formulation,
testing, and application of verbal rules of category member-
ship (Price, 2009). In particular, human category learning has
been argued to be influenced by verbal processes (Minda &
Miles, 2010), since “humans have the potential benefit of
[verbal] labels” (Lupyan et al., 2007, p.1077).

Although language in general seems to play an important
role in category learning, researchers have mainly manipulat-
ed the category structure (i.e., the availability of an easily
verbalizable rule) to examine the effect of verbal processes
on categorization (Ashby & Maddox, 2005; Miles & Minda,
2011). Previously, Lupyan (2006; Lupyan et al., 2007) studied
the influence of category labels. He showed that verbal
labels—as opposed to location cues—facilitated the categori-
zation of artificial stimuli when paired with category classes.
However, not much attention has been drawn to the existence
of'labels for the items to be categorized. It stands to reason that
if the stimuli are accompanied by verbal labels, then
hypothesis-testing or inner-rehearsal processes will be facili-
tated, because participants would find it easier to form, test,
and apply rules such as “respond ‘rain’ whenever the triangle
card is present” (Gluck et al., 2002, p.416). In contrast, in the
case of nonnameable stimuli, it would not be so easy to
explicitly state and apply rules concerning them.

In the present study, we sought to test this idea by using
hard-to-name cues in the context of a prototypical probabi-
listic category-learning task. Participants were first trained to
learn novel nonsense verbal labels or other hard-to-name
pairings for the cues. They were subsequently administered
the category-learning task using these cues, in order to ex-
plore the effects of cue nameability on learning to categorize.

The weather prediction task

The prototypical weather prediction task (WPT; Knowlton,
Squire, & Gluck, 1994) is a perceptual categorization task
based on a paradigm developed by Gluck and Bower (1988).
Participants are asked to classify combinations (patterns) of
four cards with geometric shapes (cues) into one of two
possible outcomes, namely “sun” and “rain.” The task has
aprobabilistic structure, in that each cue is associated with an
outcome with a fixed probability. Two of the cues are highly

predictive, and the other two are less predictive of a specific
outcome. Overall, throughout training a combination of cues
may predict one outcome on some trials, whereas on other
trials the same combination may predict the alternative out-
come (see the Method section). Corrective feedback is pro-
vided after every trial. It is now well-established that both
healthy and brain-damaged participants gradually improve in
categorization accuracy in a variety of versions (i.e., visual
stimuli serving as cues, and category classes) of this task
(e.g., Hopkins, Myers, Shohamy, Grossman, & Gluck, 2004;
Knowlton et al., 1994).

The WPT has been widely used by multiple-systems theo-
rists to assess the relative contribution of explicit (declarative)
and implicit (procedural)’ learning processes to the acquisi-
tion of knowledge (Poldrack & Rodriguez, 2004). Early neu-
ropsychological studies suggested that the task mainly taps
procedural learning processes (Knowlton, Mangels, & Squire,
1996; Knowlton et al., 1994; Reber, Knowlton, & Squire,
1996). However, neuroimaging studies (Poldrack et al.,
2001), mathematical modeling of healthy participants’ behav-
ior (Gluck et al., 2002), and reexamination of clinical popula-
tions’ behavior (Hopkins et al., 2004; Shohamy, Myers,
Onlaor, & Gluck, 2004) have indicated an engagement of both
declarative and procedural processes, presumably at different
periods in training.

The mathematical modeling of young healthy participants’
behavior has suggested that, early in the task, participants use
suboptimal verbalizable strategies (Gluck et al., 2002; Meeter,
Myers, Shohamy, Hopkins, & Gluck, 2006; Meeter, Radics,
Myers, Gluck, & Hopkins, 2008) that can be said to be declar-
ative (Shohamy et al., 2008). Later in training, participants shift
to optimal multicue strategies. These later strategies have also
been suggested to be accompanied by high levels of self-insight
(Lagnado et al., 2006) or awareness (Price, 2009), and thus can
be said to reflect explicit processes as well. Newell et al. (2007)
suggested that the task is mediated by a single, explicit learning
mechanism. Similarly, Poldrack and Foerde (2008) suggested
that normal young adults may use declarative learning strate-
gies to solve the task. Thus, although the WPT is a legacy of the
multiple-systems field, recent research has suggested that
young healthy participants’ behavior is mediated by explicit
learning processes entailing hypothesis testing of verbal rules
(Price, 2009).

Researchers have experimentally manipulated the engage-
ment of explicit processes during the WPT. Gluck et al. (2002)
tested young healthy participants in two versions of the WPT.

" The terms declarative and procedural have been used to denote
memory systems (e.g., Squire, 2004), whereas the terms explicit and
implicit learning denote processes assessed by direct or indirect exper-
imental tests of knowledge (e.g., Reber & Johnson, 1994). Some re-
searchers use declarative and explicit, as well as procedural and im-
plicit, interchangeably (Price, 2009), in an effort to reconcile the
memory-systems and learning-processes approaches.
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When the cue—outcome contingencies were less probabilistic (in
their Exp.2)—a manipulation thought to encourage declarative
mediation (Foerde, Knolwton, & Poldrack, 2006 )—performance
measures increased throughout training, relative to a more prob-
abilistic version (in their Exp.1). Secondary task demands were
introduced during WPT training in order to hamper explicit
processes, resulting in the impairment of WPT categorization
performance throughout (Foerde, Poldrack, & Knowlton, 2007)
or during the second half of training (Foerde et al., 2006; Newell
etal., 2007), as compared to single-task conditions. More recent-
ly, Price (2009, Exp.2) reduced the time available for feedback
processing, in order to impair explicit processes. Participants’
performance was consistently greater in the long-feedback than
in the short-feedback version. Thus, empirical data suggest that
experimental manipulations favoring explicit processes result in
higher categorization accuracy. Consistent with this interpreta-
tion, a reduction in WPT performance is also observed in special
populations thought to be less efficient or impaired in their
declarative encoding, and thus less able to form, test, and apply
verbal rules, such as older healthy participants (Abu-Shaba,
Myers, Shohamy, & Gluck, 2001) or hypoxic patients with
medial temporal lobe lesions (Hopkins et al., 2004), respectively.

Design and rationale of the present study

In the present study, we employed a cue—response trial-and-error
training paradigm modeled on the WPT. We used computer-
generated auditory tones as cues because the majority of people
do not possess preestablished labels for tones (Galizio & Baron,
1976). Prior to the WPT procedure, two groups of participants
received extensive training to associate four novel auditory cues
to pseudowords (label-training condition) or to hard-to-name
ideograms (ideogram-training condition). A third group of par-
ticipants were exposed to the same stimuli over the same number
of trials, but learned to associate sound intensity to hard-to-name
colors (intensity-training condition), disregarding cue identity. A
fourth group remained unexposed to the auditory cues (no-train-
ing condition). All groups were subsequently administered an
auditory version of the WPT (Fotiadis, Protopapas, & Vatakis,
2011) utilizing these cues.

The main hypothesis and motivation underlying our study
were as follows: If verbal labels facilitate the formation, testing,
and application of verbalizable rule-based strategies, and if facil-
itating explicit learning processes is accompanied by higher
categorization accuracy (Price, 2009), then the label-training
group should outperform the ideogram-training group in the
WPT. However, the availability of verbal labels is not the sole
potential facilitator of category learning, as it presupposes both
familiarization and individuation, which may be partially respon-
sible for any observed learning benefits. Cue—response training
requires the formation of individuated representations for the
cues, potentially causing participants to develop perceptual
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anchors (Ahissar, 2007). Such individuated representations
may help stabilize representations in working memory and
facilitate executive functions such as hypothesis testing. If this
is the case, participants in the ideogram-training condition
ought to have an advantage in WPT categorization accuracy
relative to the intensity-training group, in which cue identity
was instructed to be unattended and varied orthogonally to the
intensity task. Finally, mere exposure to the stimulus features
has been shown to affect subsequent categorization perfor-
mance (Folstein, Palmeri, & Gauthier, 2010). We thus predict-
ed that participants in the intensity-training group would
outperform the no-training group.

Method
Participants

A group of 85 undergraduate and graduate students (19 male, 66
female; Mg = 25.8, SD =4.05) of the Philosophy and History of
Science Department, University of Athens, Greece, were ran-
domly assigned to one of the three training conditions, receiving
course credit for participation, or volunteered. Due to technical
failures in collecting the training data or to participants’ errors in
following instructions, ten of the participants were excluded from
the analysis. Thus, the data included 23 participants (seven male,
16 female; Moo = 27.7, SD = 4.47) in the label-training condition,
22 participants (six male, 16 female; M, =24.3,SD =2.55) in the
ideogram-training condition, and 30 participants (five male, 25
female; Mo = 25.6, SD = 4.35) in the intensity-training condition.
In addition, 20 graduate students (two male, 18 female; M,y =
20.3, SD = 3.5) from the Psychology Department, Panteion
University, Athens, Greece, were administered only the WPT
(no-training group). All of the participants reported normal hearing
and normal or corrected-to-normal vision, no history of neurolog-
ical illness, and no dyslexia diagnosis.

Materials

Cues Four 300-ms-long frequency-modulated tones, similar
to those used by Holt and Lotto (2006), served as cues. The
tones were created in Carnegie Mellon University using
parameters listed in Table 1. A pilot study employing a
two-alternative forced choice intensity discrimination task
indicated that high-pitched tones were perceived as being
louder than low-pitched tones. Because of the need for them
to be used in intensity training, the four tones were

% Dyslexia was a concern because it has been linked with impaired
learning of audio—visual pairing (Hulme, Goetz, Gooch, Adams, &
Snowling, 2007).
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Table 1 Carrier and modulation frequencies of the four tones that
served as cues

Tone Carrier frequency (Hz) Modulation frequency (Hz)
1 790 360
2 1,060 360
3 790 198
4 1,060 198

perceptually equated in intensity. This perceptual equating of
the tones (outlined in the online supplement) resulted in the
tones’ adjusted intensity levels, which were used subse-
quently in the training procedure.

Four intensity levels were additionally created for each
tone: The highest intensity corresponded to the tones’ ad-
justed levels, whereas the high, low, and lowest levels were
created by decrements of 3, 6, and 9 dB down from the
adjusted level, respectively. The 3-dB step was determined
in pilot experiments that aimed to equate—to the extent
possible—training performance in the three conditions.

In the WPT, the original (unadjusted) tones were used in
all four groups.

Pseudowords Four Greek pseudowords were created to
serve as new names for the tones: namely, o6,3nc (/'savis/),
Alung (/limis/), ptng (/'ritis/), and 60ng (/'d00is/). They
were equal in their numbers of letters, syllables, and pho-
nemes, in stress position, and in orthographic typicality (the
mean orthographic Levenshtein distance of the 20 nearest
neighbors—OLD20—was 2.00 for all of the cues, taking
stress into account, and between 2.15 and 2.85, ignoring
stress; Protopapas, Tzakosta, Chalamandaris, & Tsiakoulis,
2012; Yarkoni, Balota, & Yap, 2008).

Ideograms Four Chinese characters were selected, on the
basis of (a) number of strokes and (b) structure (a single
component; Yan, Qiu, Zhu, & Tong, 2010): Z (U+8C78), &
(U+8D64), ¥ (U+8F9B), and J& (U+8FBO0). To equate per-
ceptual salience, the first character was rotated to the right by
20 deg. A stroke was erased from the fourth character,
resulting in seven strokes for each of the final stimuli, which
are shown in Fig. la.

Colors Three “hard-to-name” colors (RGB: 0x649EA7,
0x583232, 0xBFBCSF) were sampled from the online ver-
sion of a study used to assess the involvement of language-
processing brain regions in a perceptual decision task (Tan
et al., 2008; this does not imply that our stimuli were iden-
tical to those used in the previous study, due to lack of
chromatic calibration). A fourth color (OXFEADSC) was
selected that was also subjectively judged to be hard to name.
All of the color stimuli are shown in Fig. 1b.
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Fig.1 Training procedure and stimuli. (a)Symbols used as response
cues for the ideogram-training condition. (b)Colors used in the inten-
sity-training condition. (¢)Sequence of events in a training trial. Re-
sponses 1, 2, 3, and 4 are used here to depict the four available response
options and were replaced with pseudowords, the stimuli depicted in
panel A, and the stimuli depicted in panel B in the label-, ideogram-,
and intensity-training conditions, respectively. The &' symbol represents
the tone cue and was never presented

Procedure

Participants in the training conditions received instructions, a
set of headphones, and a questionnaire (in the ideogram- and
intensity-training conditions) on or before the first day of
training. Moreover, each participants’ computer volume was
calibrated (see the online supplement for details). Training
took place unsupervised at home for three consecutive days.
Compliance was monitored daily by e-mail or phone and by
inspection of the data. On the fourth day, the WPT was
administered at the university lab. Participants used head-
phones during the tasks.

Training
The training tasks and all following procedures were
programmed in DMDX display software (Forster & Forster,

2003). Trial randomization was done with Mix (Van Casteren
& Davis, 2006).
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Verbal label training In all, 192 trials were presented in each
training session. Each cue was presented 12 times in each of four
intensity levels. Participants heard one tone in each trial. They
were instructed to guess at first, gradually learning the correct
response for each tone through corrective feedback. They were
explicitly told that the purpose of the task was to learn “a name
for each tone” and not just to make the correct response. On the
first day of training, they were asked to read aloud the word
before responding. The correspondence between sounds and
pseudowords was randomly selected for each participant.

The trial structure is shown in Fig. 1c. A cross appeared at the
center of the screen for 500 ms. A tone lasting 300 ms followed,
simultaneous with the four response options (pseudowords) be-
ing presented on the screen in a vertical configuration. On the
first day of training, an additional latency period of 500 ms was
included after presentation of the tone, during which participants
were to pronounce the word. The pseudowords remained on
screen for up to 5 s, until a mouse click on one of them.
Response feedback was provided for 500 ms (“correct,”
“wrong,” or “no response”). The intertrial interval was 1 s.

The trial order was pseudorandom and fixed for all par-
ticipants, but different for each day of training. The random-
ization constraints precluded (a)the same configuration of
response cues on two consecutive trials, (b)a lag between
trials with the same tone (regardless of intensity) less than 2,
and (c)a lag between trials with the same intensity less than
1. A short break occurred halfway through the procedure.
Training lasted on average 18 min on the first day, and
15 min on the second and third days. The training tasks were
conducted online using the DMDX remote testing mode.

Ideogram training ldeogram training was identical to the
verbal-label training, except that (a)four ideograms (randomly
paired with tones for each participant) replaced the four
pseudowords, (b)participants were instructed to learn the ideo-
gram that corresponded to each of the tones, and (c)no delay to
pronounce the labels occurred on the first training day.
Participants were instructed to fill in the sealed questionnaire
received at the initial meeting on completion of the third day’s
training. In this questionnaire the four ideograms were printed,
and participants were asked to name them using only one word.

Intensity training Participants in intensity training heard the
same stimuli as in the other training conditions, but were
asked to learn the color that matched each intensity level.
They were explicitly instructed to ignore the identity of the
tones and only pay attention to intensity. The intensity—color
correspondences were randomized across participants. All
other aspects of the procedure were the same as in the
ideogram-training condition. Following the third day’s train-
ing, participants were asked to fill in a questionnaire asking
for the names of the four colors using one word (as in Sturges
& Whitfield, 1995).
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WPT

Participants were told that they would take part in a learning
experiment and would be asked questions about it at the end.
They were not informed of the probabilistic nature of the
task. For those in the training conditions, we noted that this
was neither a continuation nor a test of their training. Written
instructions were presented on the screen (adopted from
those of Lagnado et al., 20006). Five practice trials were given
before the actual experiment, for familiarization and sound
volume adjustment, using animal sounds as cues.

The probabilistic structure of this auditory version of the
WPT followed that of Gluck et al. (2002, Exp.2). As we already
noted, each cue was independently associated with an outcome
with a fixed probability. This probability can be calculated from
Table 2 (as described by Shohamy et al., 2004). For example,
Cue 1 is present in patterns H to N, which appeared in 100 out
of the 200 trials of the experiment. In these 100 trials, the
outcome of “‘sun” occurred 20 times, and the outcome of “rain”
occurred 80 times. Thus, Cue 1 is associated with sun with a
probability of 20 + 100= .2, and with rain with a probability of
.8. Likewise, it can be calculated that Cues 2, 3, and 4 predicted
sun with probabilities of .4, .6, and .8, respectively. Cues 1 and
2 are therefore predictive of sun, Cues 3 and 4 are predictive of
rain, and the highly predictive cues of the task are Cues 1 and 4
for sun and rain, respectively. The assignment of tones (Tone 1,
Tone 2, etc.) to associative strengths (Cue 1, Cue 2, etc.) was
counterbalanced across participants, and the relative position of
a tone within a pattern was held constant for a given pattern and
a given participant.

In each trial, a series of tones forming a cue pattern were
delivered through the headphones sequentially, with an
intercue interval of 1 s. Hence, the duration of each pattern
ranged from 0.3 s (one-cue pattern) to 2.9 s (three-cue
pattern). Following an additional interval of 1 s, two icons
representing the outcomes (a sun and a raining cloud)
appeared on the screen, for the participant to respond to by
pressing the corresponding key on the keyboard. At regis-
tration of a response, the correct outcome was presented on
screen for 2 s along with feedback: a happy smiley and a high
tone (frequency 1000 Hz, duration 0.1 s) for correct selec-
tion, or a frowning smiley and a low tone (frequency 500 Hz,
duration 0.1 s) when incorrect. If the participant did not
respond within 2 s, a “Please respond now” prompt appeared
at the bottom of the screen. The trial was terminated if no
response was registered within a total of 5 s, counting as
“incorrect” for the purpose of analysis. Following Knowlton
et al. (1994), a yellow bar on the right side of the screen
provided a rough estimate of performance. The intertrial
interval was 500 ms. Short breaks were given every 50 trials.
The complete sequence of events in a two-cue auditory
pattern trial is shown in Fig. 2. The duration of the catego-
rization task was 35 min on average.
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Cue naming

Immediately after the WPT, participants were asked to write
down which single cue they considered most likely for each
outcome (the precise formulation of the questions was based
on that of Reber et al., 1996). Participants in the three
training conditions were also presented with the four tones
again and were asked to denote which tone corresponded to
their two previous responses.

Data analysis

The analyses reported below (except for cue naming)
employed generalized mixed-effects logistic regression
models for binomial distributions (Dixon, 2008) via a logit
transformation (Jaeger, 2008), with participants and stimuli
(or patterns of auditory stimuli for WPT) as random factors
(Baayen, Davidson, & Bates, 2008), fitted with restricted
maximum-likelihood estimation using the lme4 package
(Bates & Sarkar, 2007) in R (R Development Core Team,
2011). Effect sizes () were estimated as log-odds regression
coefficients, with zero corresponding to no effect.

Training

The training data were analyzed in terms of correct or erro-
neous responses.

WPT

Following standard procedure, participants’ categorization
performance was measured in terms of optimal responding

Table 2 Pattern and outcome frequencies in the weather prediction task

(Knowlton et al., 1994). A response was marked correct if it
corresponded to the most likely outcome given the task con-
tingencies, regardless of the actual feedback presented to the
participant on that particular trial. For example, throughout the
task, trials incorporating Pattern A were marked as correct if
and only if the response was “sun.” As can be seen in Table 2,
Patterns F and I were equally associated with both outcomes;
hence, no optimal response could be defined for them.
Responses to these patterns (12 trials overall for each partic-
ipant) were not included in the analysis.

Cue naming

Answers were scored with 1 if participants responded with the
tone that was highly predictive of the stated outcome, with .75 for
the less predictive tone, .50 and .25 for the tones predictive of the
opposite outcome (weakly or strongly, respectively), and 0 for no
answering. The cue selection performance was the sum of the
two outcomes, ranging from 0 to 2.

Results
Training

Performance increased throughout and across the three days of
training, but not all participants exhibited high performance at the
end of the third day. To ensure that subsequent categorization
performance (on the WPT) would be subject to the trained cue
associations, we excluded participants exhibiting low perfor-
mance (45% or less) in the second half of the third day of
training. This included two “nonlearners” in label, two in

Cue Present

Pattern 1 2 3 4 Sun Rain Total
A 0 0 0 1 17 2 19
B 0 0 1 0 7 2 9

C 0 0 1 1 24 2 26
D 0 1 0 0 2 7 9

E 0 1 0 1 10 2 12
F 0 1 1 0 3 3 6

G 0 1 1 1 17 2 19
H 1 0 0 0 2 17 19
1 1 0 0 1 3 3 6

J 1 0 1 0 2 10 12
K 1 0 1 1 5 4 9

L 1 1 0 0 2 24 26
M 1 1 0 1 4 5 9

N 1 1 1 0 2 17 19
Total 100 100 200

1= cue present, 0= cue absent
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Fig.2 Sequence of events in a two-cue auditory pattern trial of the
weather prediction task (WPT), yielding the “rain” outcome, along with
the two possible types of feedback. A “Please respond now!” prompt
appeared on screen if the participant did not respond within 2 s of the
presentation of the possible outcomes. The J* icon represents the tone
cue and was never presented

ideogram, and seven in intensity training. Moreover, to equate the
sample sizes across conditions, we randomly excluded one par-
ticipant from the label and three from the intensity condition (see
Fig.S1 in the online supplement). The data shown and analyzed
henceforth will correspond to the following sample: 20 partici-
pants (six male, 14 female; M, = 26.8, SD = 3.47) in the label-
training condition, 20 participants (six male, 14 female; M,,. =
24.4, SD = 2.62) in ideogram training, and 20 participants (four
male, 16 female; M,q. = 25.7, SD = 3.92) in intensity training.

The mean performance in training per condition and day
is shown in Fig. 3. Participants’ responses were analyzed
with a model including fixed effects of trial, training condi-
tion, and day of training, as well as their interactions, and
random effects of participants and stimuli (4 tones x 4
intensity levels; i.e., 16 distinct stimuli). In R notation, one
such model was specified as

accuracy ~ trial * condition* day+ (1+trial]
participant) + (1|stimulus),

with two levels of accuracy (“correct” and “wrong”) being
regressed onto 192 trials, three levels of condition (intensity,
ideogram, and label), and three levels of day. By-participant
random slopes of trials were included in order to model
participants’ individual learning rates (Baayen, 2008); by-
stimulus random slopes of trials did not improve the model
fit and were excluded. Quadratic effects of trial were not
significant and were therefore excluded from the models.

The main purpose of the analysis was to assess whether
training resulted in comparable knowledge—by the end of
the third day of training—of the cue-response pairings
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Fig.3 Mean accuracy of 60 participants (20 in each training condition)
in cue-response training. Error bars show between-subjects standard
errors of the means

across the three groups. Therefore, the model’s intercept
was set at the end of training (i.e., the levels of the day predictor
were ordered as Day 3, Day 2, and Day 1, and trial was
specified numerically as —191, —190, ..., —1, 0). The simple
effect of condition indicated that the odds of correct responding
at the end of Day 3 of training were comparable between the
label- and ideogram-training conditions, whereas both of these
groups outperformed the intensity-training group (label vs.
ideogram, 3=-0.180,2=—0.700, p = .484; label vs. intensity,
8= 0.667, 7= 2.633, p = .009; ideogram vs. intensity, 3 =
0.847, 7= 3.332, p < .001; the last two estimates survived
Bonferroni correction for three pairwise comparisons). We
found a marginal interaction of trial and condition, indicating
that changes in correct responding as trials progressed in
Day 3 were marginally different between the label and ideo-
gram conditions, but comparable between the other conditions
(label vs. intensity, 3 =—0.001 , z=—1.241, p = .215; ideogram
vs. intensity, 5= 0.001,2=1.086, p = 278; label vs. ideogram,
8 = -0.002, z= —2.185, p = .029, none of which sur-
vived Bonferroni correction for three comparisons). No
three-way interaction survived Bonferroni correction for
multiple comparisons.®

Written responses on the posttraining questionnaire assessing
the ideograms’ names confirmed that the symbols used were

3 Analysis of the data at the end of Day 1 indicated increased accuracy
of the ideogram-training condition relative to the intensity condition,
but comparable accuracy among the other conditions. An analysis of the
data at the end of Day 2 indicated higher accuracy of the label-training
condition relative to the intensity condition, but comparable accuracy
among the other conditions. All of the analyses are available from the
authors upon request.



Mem Cogn (2014) 42:112-125

119

hard to name and did not invoke common associations. The
names given were mainly idiosyncratic (such as “air” or “sun-
set”). A few (six out of 20) of the participants named the ideo-
grams after the sounds that they had been paired with (i.e., they
gave names such as “bass” or “shrill”).

In contrast, the questionnaire responses regarding colors
revealed participants’ tendency to give common names to
Color 1 (“light blue”—a single word in Greek—by ten
participants, “blue” by seven), Color 2 (“brown” by ten),
Color 3 (“beige” by eight, “gray” by seven), and Color 4
(“orange” by 15).

WPT

Participants’ performance is shown in Fig. 4 in blocks of 10
trials. Participants averaged 74.9% (SD = 8.7) optimal re-
sponses over all 200 trials in the label-training condition, 71.7%
(8D = 8.8) in the ideogram condition, 68.5% (SD = 12.0) in the
intensity condition, and 63.6% (SD = 9.0) in the no-
training condition.

Responses were analyzed with a model including fixed
effects of target (optimal) response, trial, and training condi-
tion, as well as their interactions, and random effects of
participants and of patterns of auditory cues. In R notation,
the model was specified as

response ~ target * trial * condition+ (1+
trial |participant) + (1l|pattern),

with two types of response (“sun” and “rain”) regressed
onto two types of targets (“sun” and “rain”), 188 trials
(centered, thus specified numerically as —99.5, -98.5,...,
98.5, 99.5, excluding trials presenting Patterns F and I),
and four types of condition (no training, intensity, ideogram,
and label); there were also 12 types of pattern (A... N,
excluding patterns F and I). By-participant random slopes
of trials were included in order to model participants’ individual
learning rates.

In this model, learning effects would be evident as a
significant interaction of trial and target, insofar as in-
creases in trial would increase the probability of
responding correctly. This interaction was significant
(B = 0.010, z= 7.830, p < .001). A triple interaction
including condition would indicate differential learning
effects across training conditions; however, this interac-
tion was not significant for any pair of conditions (all
Os < 0.002, p > .3).

We observed significant interactions of condition with
target, indicating significant performance differences be-
tween conditions, in the following order: label>
ideogram> intensity> no training. Successive pairwise
differences survived Bonferroni correction for three
comparisons and were all highly significant (label vs.
ideogram, 5 = 0.351, z= 3.205, p = .001; ideogram vs.

intensity, 0 = 0.341, z= 3.247, p = .001; intensity vs. no
training, 3= 0.451, 2= 4.441, p < .001).*

Cue naming

In response to the postcategorization questionnaire, most
participants provided verbal descriptions of the tones
related to their acoustical features, such as “the high-
pitched one” or “the bass sound.” In the label condition,
11 out of 20 participants used the trained pseudowords.
In the ideogram condition, four participants gave de-
scriptions related to the visual features of the ideograms,
such as “the F” or “antenna.” None of the participants
in the intensity-training condition used a color name to
describe the tones.

The mean cue selection scores were 1.79 (SD = 0.26) in
the label condition, 1.76 (SD = 0.25) in the ideogram condi-
tion, and 1.58 (SD = 0.47) in the intensity condition. A one-
way ANOVA revealed no effect of condition, F(2, 57) =
2328, p = .107, i = .076, suggesting that participants’
explicit knowledge of the highly predictive cues did not
differ among training conditions.

To assess whether WPT accuracy was affected by explicit
knowledge of the newly trained names for the cues as
inspected through the postcategorization questionnaire, we
analyzed the categorization data from the label-training
group only. A modified version of the mixed-effects model
included a categorical fixed effect (with two levels, “no” and
“yes”), reflecting whether participants used the trained ver-
bal labels in responding to the postcategorization question-
naire. This factor was not significant (5= —0.012, z= —.086,
p = .932) and did not interact with the other predictors (all
|8ls < 0.003, p > .130).

Correlation between training and categorization performance

Inspection of the individual data revealed participants with
high performance during training but low performance in the
WPT, and vice versa. To investigate the possibility that cue
training was predictive of subsequent categorization, we
regressed WPT performance onto the average performance

4 An analysis of all of the learner participants’ data (N= 84) revealed
qualitatively the same results—namely, significant performance differ-
ences, in the order label> ideogram> intensity> no training (all three
pairwise comparisons survived Bonferroni correction). An analysis of
both the learner and nonlearner data (N= 95) revealed a similar—but
not identical—gradation in performance across the conditions: label>
ideogram= intensity> no training (significant differences survived
Bonferroni correction for three comparisons). This discrepancy may
be attributed to the possibility that some of the seven nonlearner
participants in the intensity-training condition were unable to disregard
tone identity (as suggested by their informal reports). Thus, including
nonlearner data failed to test for the effect of cue individuation when
exposure to the stimuli was controlled.
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Weather Prediction Task
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Fig.4 Posttraining categorization performance of the four training conditions in blocks of ten trials. The dotted line denotes chance performance (50%).

Error bars show between-subjects standard errors of the means

in the second half of Day 3 of training, potentially interacting
with training condition. No significant effect emerged of
either condition or training performance, and no significant
interaction (all ps > .4). Figure 5 shows the scatterplot and
the regression lines for the three training conditions, as well
as the regression line for data pooled from all three condi-
tions. To explore the possibility that training performance
was predictive of WPT performance depending on the num-
ber of cues forming a pattern, we separately calculated aver-
age WPT performance on the one-cue, two-cue, and three-
cue trials. We regressed each performance measure onto
average training performance in the second half of Day 3,
possibly interacting with training condition, and again found
no effects or interactions in any of these analyses (all ps > .2).

Discussion

In this study, participants performed the WPT, a probabilistic
category-learning task, using hard-to-name auditory cues. In
a training phase preceding the WPT, groups of participants
learned to associate the cues to verbal labels or hard-to-name
ideograms, or were exposed to the cues in an intensity task
orthogonal to cue identity; another group of participants
received no training. Categorization performance in the
WPT was significantly affected: The label-training group
outperformed the ideogram group, the ideogram-training
group outperformed the intensity-training group, and the
intensity-training group outperformed the no-training group.
Since all groups were administered the same auditory ver-
sion of the WPT, the differences in performance can only be
attributed to training. Therefore, (a)the availability of verbal
labels, (b)cue individuation, and (c)exposure to the stimuli
conferred independent benefits in the category-learning task.

@ Springer

Verbal labels

We assumed that the availability of the cue names would favor
the formation, testing, and application of verbalizable strategies
by participants in the label-training condition because these
participants would have easily accessible names for the cues
of the categorization task. To ensure that the availability of
names was not confounded with categorical training, verbal
label training was contrasted with ideogram training, which
differed through the nonverbal nature of its associations. The
advantage of the label-training group suggests that cue names
specifically enhanced explicit processes mediating WPT per-
formance. The lack of significant differences in learning slopes
between conditions further suggests that the naming advantage
was not limited to early stages in WPT learning, perhaps
serving simply as initial anchors, but extended throughout
training. Also, participants’ identifications of the highly predic-
tive cues, although they were a poor measure of awareness (see
Lagnado et al., 2006, for a trial-by-trial assessment of task
knowledge and self insight), suggest that awareness for the
learned material was comparable among the training condi-
tions, and thus precludes a potential explanation of the present
results on the grounds of differential mediation of distinct
memory systems in each condition.

Participants in the ideogram-training group might have devel-
oped labels for the cues due to the extended exposure (cf. Galizio
& Baron, 1976; Lupyan et al., 2007). Care was taken so that the
ideograms would be hard-to-name and that potential labels for
the cues would not originate in them. Indeed, the posttraining
questionnaire confirmed the unavailability of easily accessible
names for the ideograms, and the postcategorization question-
naire showed that very few participants in the ideogram-training
condition (four out of 20) gave descriptions of the tones corre-
sponding to the ideograms’ features. In contrast, in the label-
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Fig.5 Scatterplot of weather prediction task (WPT) categorization
performance versus training performance on the second half of Day 3.
The lines correspond to linear regression parameter estimates for the
respective groups

training condition, 11 out of 20 participants used the trained
pseudowords to describe the tones, a significantly larger propor-
tion (x” = 3.84, df = 1, p = .05). Even if labels were developed
under ideogram training, the finding that the label group
outperformed the ideogram group in the WPT—given equal
performance at the end of training—suggests that these pur-
ported labels were largely idiosyncratic and ineffective.

It is conceivable that the advantage in categorization of the
label relative to the ideogram group might have been due to
more efficient encoding of the tones under label training. The
difference in encoding efficiency might have resulted in a
memory benefit (easier retrieval) when categorizing the tones.
The identification of auditory warning sounds has shown
more robust learning using verbal than “graphic” labels
(Edworthy & Hards, 1999, though with some of their sounds,
graphic labels did work better, and further confounds were
present in that study). However, there is little reason to assume
that auditory—verbal pairings resulted in an encoding advan-
tage in our study, given our finding of equal training perfor-
mance between the label- and ideogram-training groups at the
end of training.

Another possible interpretation of the categorization
advantage under label training would be increased per-
ceptual discrimination of the cues (the hypothesis of an
“acquired distinctiveness of cues”; Miller & Dollard,
1941, as cited by Galizio & Baron, 1976). However, the equal
performance at the end of training in the label and ideogram
conditions again argues against such an interpretation. Galizio
and Baron suggested that acquired distinctiveness might be
manifested with label training only when the task conditions
make cues difficult to discriminate. We have no reason to

assume that the sequential presentation of the tones—with
an interstimulus interval of 1 s—during the WPT imposes
perceptual difficulty. Therefore, the acquisition of perceptual
features under label training does not seem to offer a strong
explanation for our results.

It could be argued that the label and ideogram group
trainings differed in ways other than the verbal labels. For
example, the Chinese characters might be characterized by
greater visual complexity than the printed pseudowords.
This difference might not affect training, but only manifest
itself in a demanding task such as the WPT. The present
design cannot preclude this possibility, which must be ex-
plored in further research.

To explore the mechanisms that contributed to the difference
in performance between the label- and ideogram-training
groups, we considered the possibility that WPT performance
was driven by partial cue knowledge.” Given the differences in
training performance across the participants and tones (e.g., not
all participants were equally successful in learning the cue—
response pairings for each of the four tones), we calculated each
participant’s individual cue knowledge—that is, the average
performance for each of the four tones in the second half of
the third day of training. Subsequently, we constructed a mea-
sure of “partial cue knowledge” for each pattern and each
participant in the WPT by averaging the participant’s cue
knowledge for the tones appearing in the pattern. This was only
possible for participants in the label- and ideogram-training
groups (because participants in intensity training did not clas-
sify tones by their identity). The data from the two conditions
were reanalyzed with a modified mixed-effects model includ-
ing partial cue knowledge (centered) as a fixed effect, along
with its interactions. We observed a four-way interaction
involving target, trial, condition, and partial cue knowledge
(8 =-0.034, z= —3.124, p = .002); hence, the data from the
two conditions were analyzed separately. For the label-
training group, a positive effect emerged of partial cue knowl-
edge on optimal responding (interaction of partial cue knowl-
edge with target: 5=1.722,2=3.313, p <.001), which did not
interact with trial (interaction of partial cue knowledge with
trial and target: 5 =—0.004, z=—-0.511, p = .609), consistent
with a constant influence throughout the WPT. For the
ideogram-training group, an interaction of partial cue knowl-
edge with trial and target (3 = 0.030, z= 4.480, p < .001)
suggested a variable effect of partial cue knowledge. Models
with an alternative trial centering revealed that partial cue
knowledge had a negative effect during the first half of the
procedure (e.g., at Trial 50, 5 =—2.365,7=-3.124, p = .002;
at Trial 100, 8 =—0.851,7=-2.191, p = .029), no effect later
on (at Trial 150, 3= 0.633, p =.229), and a positive effect at
the end (8 = 2.144,7=2.709, p = .007).

> We thank an anonymous reviewer for suggesting this analysis.
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This post-hoc analysis suggests that participants’ categori-
zation accuracy in the label-training group was driven through-
out the procedure by partial knowledge of the tone—label
pairings. Participants performed better on those WPT trials that
employed cues for which labels were learned better during
training. This is consistent with the hypothesis that explicit
hypothesis-testing processes, mediated by the availability of
verbal labels, are recruited during the WPT. Having names for
the cues may have facilitated the verbal working memory
processes that contribute to category leaming (Miles &
Minda, 2011). In contrast, knowledge of the tone-ideogram
pairings seems to have interfered with WPT performance in the
first half of the procedure. Perhaps the visual complexity of the
ideograms distracted participants in the demanding WPT, im-
peding the formation of explicit verbal rules. Further empirical
investigation will be needed to study this issue with planned
comparisons in an appropriate design.

Cue individuation

The advantage in WPT performance of the ideogram-
training relative to the intensity group may be attributed to
the individuated representations formed for the tones during
ideogram training. These representations, possibly akin to
“perceptual anchors” (Ahissar, 2007), may have rendered the
tones less abstract in working memory, thus facilitating the
use of strategies when solving the WPT. In contrast, the
participants in intensity training could perform successfully
disregarding tone identity, so the task demands may not have
caused the formation of individuated, concrete representa-
tions of the tones.

However, the ideogram- and intensity-training groups also
differed in training performance, prior to WPT, leaving the
WPT difference open to alternative interpretations that cannot
be confidently rejected. For example, participants in the
intensity-training group may have recruited fewer or less efficient
cognitive resources during training. The lower rate of successful
performance produced diminished reinforcement—through pos-
itive feedback—and may have led to less efficient processing of
the auditory tones. Further research with an easier training task
will be required to empirically assess this possibility.

The finding that cue individuation alone, in the absence of
verbal labels, was beneficial to category learning in the WPT
is important to the extent that the latter is primarily mediated
by explicit processes, as it highlights the potential of indi-
viduated representations to participate flexibly in novel
learning tasks. Previous research has suggested that cue
characteristics are immaterial to WPT performance, as long
as an isomorphic probabilistic structure is present (Hopkins
et al., 2004; Knowlton et al., 1994). In contrast, cue individ-
uation seems to affect categorization performance, necessi-
tating an explanation from memory-systems approaches.
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Prior exposure

Participants trained to associate sound intensity to colors
exhibited greater categorization performance in the WPT than
did participants who received no training at all. Notably, the
intensity group was able to benefit from training that explicitly
required that the relevant dimension for later categorization
(cue identity) be disregarded. The critical manipulation in this
condition required participants to form intensity “categories’”
orthogonal to cue identity. Our pilot experiments showed that cue
identity interfered with intensity judgments, so there is reason to
hypothesize that cue identity and cue intensity are “integral”
dimensions (Goldstone, 1994). According to that account, it is
possible that sensitization occurred along both dimensions during
training, and thus that intensity training enhanced discriminabil-
ity among the cues (Goldstone). That this manipulation led to
increased WPT performance relative to no training therefore
suggests that (a)discriminability of the cues may be crucial for
their effectiveness in probabilistic category learning and (b)the
exposure to stimuli is in itself beneficial for subsequent process-
ing of these stimuli.

The beneficial effect of intensity training was especially
apparent early in the WPT, since participants in the no-
training condition exhibited near-chance performance in
the first two blocks of ten trials (see Fig. 4), perhaps
reflecting an initial difficulty with identifying the four tones.
Generally, familiarity with the stimulus set is known to affect
subsequent performance (e.g., Goldstone & Steyvers, 2001).
More specifically, Folstein et al. (2010) exposed participants
to artificial stimuli prior to a categorization task utilizing
categorizing stimuli that were novel but had a configuration
similar to the exposure stimuli. Even when the dimensions of
the exposure stimuli were uncorrelated, and thus provided no
diagnostic value for later categorization, these participants
displayed a clear advantage in categorization performance
relative to a group that remained unexposed to the stimuli.
Perhaps participants were able to learn the structure of the
stimuli, and thus had an advantage in hypothesis testing or
resource allocation. In our experiment, participants received
feedback for associating sound intensity to colors. However,
the relevant dimension for training was absent in later cate-
gorization, as in Folstein et al.’s study, allowing an explana-
tion of the beneficial effect of exposure to stimuli in later
categorization performance along the same lines.

Concerns and limitations

It is notable that average performance on the second half of
Day 3 of training was not correlated with average WPT
categorization performance for any of the training condi-
tions. This may be interpreted as supporting the existence
of discrete learning systems: Training required a gradual
acquisition of cue-response pairings, whereas the WPT
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presumably required explicit hypothesis testing. At the mo-
ment, the differences in task demands between the training
and categorization tasks in our study do not allow us to draw
firm conclusions in this matter (cf. Dunn & Kirsner, 2003).
On the other hand, a more refined, by-cue measure of train-
ing performance was found to be predictive of between-trials
differences in WPT performance. Partial knowledge of the
cue—label pairings acquired during training was found to
facilitate posttraining categorization, whereas partial knowl-
edge of the cue—ideogram pairings initially interfered with,
and later facilitated, categorization. This connection between
training and categorization provides no evidence in favor of
a multiple-systems account.

The observed differences in training performance be-
tween the groups may cause some concern regarding the
interpretations. Verbal-label- and ideogram-training per-
formance did not differ at the end of training, yet participants
in the label-training group probably achieved plateau perfor-
mance (as evidenced by the lack of an effect of trial on Day 3)
earlier than did the ideogram-training group (which kept on
learning the cue—response pairings during Day 3, as evidenced
by an effect of trial). We believe that this discrepancy between
the two conditions does not pose a significant limitation on the
interpretation of our results, insofar as both groups’ knowl-
edge of the cue—response pairings was comparable at the end
of the training procedure.

Another concern stems from the fact that the ideogram
group outperformed the intensity group in training perfor-
mance. Although similar performance in all three training
conditions was desirable, the intensity-training condition
was primarily designed to equate exposure to the stimulus
set and recruitment of attentional resources. The design
constraint that tone identity be disregarded led to a signifi-
cant difference in training performance at the end of training,
leaving our results regarding individuation open to alterna-
tive interpretations.

Finally, we acknowledge that care should taken when
interpreting the difference in WPT performance between
the intensity and no-training groups. Participants in these
conditions were—due to recruiting difficulties—sampled
from different pools, and hence no strong inferences can be
made. This confound does not undermine the comparison of
prime interest in our study—that is, between label and ideo-
gram training.

Implications and conclusion

This has been the first detailed report of gradual learning in
an auditory version of the WPT. Two procedural discrepancies
between this version and the prototypical task (Knowlton
et al., 1994) were imposed by the auditory nature of the cues:
First, the cues were presented sequentially, and second, feed-
back was delivered in the absence of the cues. There is

evidence that both of these factors modulate the involvement
of distinct memory systems during visual category learning
(Foerde & Shohamy, 2011; Maddox, Ashby, & Bohil, 2003;
Maddox & Ing, 2005; Worthy, Markman, & Maddox, 2013;
but see Dunn, Newell, & Kalish, 2012, for an alternative
interpretation). However, it has been demonstrated that, for
learning to take place, the appropriate mode of presentation
for auditory stimuli is sequential and not concurrent, as in the
visual modality (Conway & Christiansen, 2009; Saffran,
2002). Further research will be required in order to examine
whether sequential presentation resulted in different
memory-system involvement relative to the prototypical
WPT. Importantly, all our participants were administered the
exact same version of the WPT. Therefore, the procedural
discrepancies between this auditory version and the prototyp-
ical WPT do not undermine the between-groups comparison
that supports the idea that verbal labels facilitate explicit
hypothesis testing.

The WPT has been used extensively as a tool by
multiple-systems (e.g., Knowlton et al., 1996; Poldrack
& Foerde, 2008) and single-system theorists (e.g., Newell
et al., 2011) to assess the existence and relative contributions
of discrete memory systems during categorization learning. It
has been suggested that the majority of young, healthy partic-
ipants (Gluck et al., 2002; Poldrack & Foerde, 2008) initially
approach the task via suboptimal strategies that can be said to
be declarative (Shohamy et al., 2008), but later on engage
multiple-cue (or integrative) strategies. These later strategies
may be mediated by the procedural system (Shohamy et al.,
2008), or they may be supported by declarative learning
processes, since they are accompanied by high levels of
awareness (Price, 2009) or self-insight (Lagnado et al.,
2006; Newell et al., 2007). Our results are consistent with
the latter assumption. If the WPT is mediated by a procedural
system and not by explicit hypothesis testing later in training,
then having names for the cues should not affect later catego-
rization performance. The fact that the label-training group
outperformed the ideogram-training group throughout the task
suggests that the declarative—procedural distinction does not
explain healthy participants’ behavior in the WPT. Instead, a
general learning mechanism may support performance through-
out the task (Newell et al., 2007).

To conclude, we have shown that newly trained verbal
labels for the cues provide an advantage in probabilistic
category-learning performance. We based our hypothesis
on the assumption that explicit hypothesis testing of verbal
rules would be facilitated when participants had names
for the cues, as opposed to associating the cues to difficult-to-
name ideograms. The present results extend previous studies
that have suggested that language is not just for talking
(Lupyan, 2008; Lupyan et al., 2007) and that verbal processes
are important for categorization (Ashby & Maddox, 2005;
Miles & Minda, 2011). Future research should examine in
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more detail the intuitive (but perhaps simplistic; see Newell
et al., 2011) notion that humans may benefit from linguistic
faculties during categorization, with a new focus on verbal
labels for categorizing items.
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