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Regular ellipsoids and a Blaschke-Santaló-type

inequality for projections of non-symmetric convex

bodies

Beatrice-Helen Vritsiou

Abstract

It is shown that every not-necessarily symmetric convex body K in R
n has an affine

image K̃ of K such that the covering numbers of K̃ by growing dilates of the unit Euclidean
ball, as well as those of the unit Euclidean ball by growing dilates of K̃, decrease in a regular
way. This extends to the non-symmetric case a famous theorem by Pisier, albeit with worse
estimates on the rate of decrease of the covering numbers. The affine image K̃ can be chosen
to have either barycentre or Santaló point at the origin.

In the proof we use Pisier’s theorem as a black box, as well as a suggested approach
by Klartag and V. Milman. A key new ingredient is Blaschke-Santaló-type inequalities for
projections of a body K̃ with Santaló point at the origin, which could be of independent
interest. Unlike the application to covering, these (as well as the analogous inequalities for
centred convex bodies that were already considered by Klartag and Milman [27]) can be
shown to be optimal up to absolute constants.

We also present an application to results around the mean norm of isotropic (not-
necessarily symmetric) convex bodies.

1 Introduction

Given convex bodies K,L in R
n, the covering number N(K,L) of K by L is the least number

of translates of L whose union covers K. Let us initially assume that K is origin-symmetric
(that is, K = −K), and that L is the unit Euclidean ball Bn

2 in R
n. A celebrated theorem of

V. Milman [34] states that any such K has a linear image K̃ = T (K), T ∈ GL(n), such that

max{N(K̃,Bn
2 ), N(K̃◦, Bn

2 ), N(Bn
2 , K̃), N(Bn

2 , K̃
◦)} 6 exp(Cn) (1)

for some constant C > 0 independent of n or K. Here L◦ denotes the polar set of a convex
body L which contains 0 in its interior:

L◦ := {y ∈ R
n : 〈x, y〉 6 1 for all x ∈ L}.

Pisier [39] refined this theorem by acquiring additional information on how the covering
numbers may decrease if we consider larger and larger dilates of the covering bodies.

Theorem 1. (Pisier, 1989) For every α ∈ (0, 2) there exists a constant Cα > 1 such that the
following holds: for every symmetric convex body K in R

n we can find an ellipsoid E = E(K,α)

in R
n with the property that, for every t > C

1/α
α ,

max {N(K, tE), N(K◦, tE◦), N(E , tK), N(E◦, tK◦)} 6 exp
(
Cα n/t

α
)
. (2)

Equivalently, we can find T ∈ GL(n) such that, setting K̃ = T (K), we will have

max{N(K̃, tBn
2 ), N(K̃◦, tBn

2 ), N(Bn
2 , tK̃), N(Bn

2 , tK̃
◦)} 6 exp

(
Cα n/t

α
)

(3)
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for every t > C
1/α
α .

The constants Cα satisfy Cα = O
(
(2− α)−α/2

)
as α → 2−.

We say that a body K̃ that satisfies (1) is inM -position, or that K̃ = T (K) is theM -position
of K. Similarly, we say that a body K̃ that satisfies (3) for some α ∈ (0, 2) is in α-regular M -
position, while the ellipsoid E(K,α) appearing in (2) is called an α-regular M -ellipsoid of K.

In the case of Milman’s theorem, it was observed shortly thereafter that, with the use of
other central results in Convex Geometry, it can be extended to non-necessarily-symmetric
convex bodies K: the most usual choices for positioning K are to assume its barycentre or its
Santaló point is at the origin, and then some linear transformation brings it to M -position (we
briefly go over the details for this in Section 2).

In the case of Pisier’s theorem though, the reduction of the non-symmetric case to the
already known symmetric case was much more delicate. This was the main motivation of this
paper:

Theorem 2. For every β ∈
(
0, 25

)
there exists a constant Dβ > 1 such that the following

holds: for every convex body K in R
n we can find an affine image K̃ of K (namely a linear

transformation of a translate of K) which satisfies

max{N(K̃, tBn
2 ), N(K̃◦, tBn

2 ), N(Bn
2 , tK̃), N(Bn

2 , tK̃
◦)} 6 exp

(
Dβ n/t

β
)

(4)

for every t > D
1/β
β .

Moreover, if K has barycentre or Santaló point at the origin, then only a linear transforma-
tion suffices for finding K̃.

The constants Dβ satisfy Dβ ≃
(
C 4β

2−3β

)(2−3β)/2
= O

(
(2− 5β)−β

)
as β → 2

5

−
, where Cα

with α = 4β
2−3β are the constants appearing in Theorem 1.

As is clear from the statement, the quantitative estimates here are worse than in the sym-
metric case. Moreover, as will be clear from the proofs, we do not analyse and try to adapt
Pisier’s proof of Theorem 1, but rather we use it as a black box, and, just as in the case of
Milman’s theorem, we resort to other tools that allow us to compare covering numbers of a
non-symmetric convex body with covering numbers of associated symmetric bodies. Thus we
expect that the estimates are far from optimal, and that a more direct approach would be
needed in order to obtain estimates considerably closer to those in Pisier’s theorem.

We should also observe that Pisier obtains Theorem 1 by proving the following stronger
statement first: for every α ∈ (0, 2) and every symmetric convex body K in R

n we can find a
linear image K̃ of K such that, for every 1 6 l 6 n,

max{cl(K̃,Bn
2 ), cl(K̃

◦, Bn
2 )} 6 C0C

1/α
α

(n
l

)1/α
, (5)

where cl(K,L) is called the Gelfand number of the convex body K with respect to the convex
body L and is defined as follows:

cl(K,L) := inf{r : ∃F ∈ Gn,n−l+1 such that K ∩ F ⊆ r(L ∩ F )}

(in (5), Cα is the same constant as in the statement of Theorem 1). Once this is established, one
can invoke a theorem by Carl [13] (see Section 2 for its statement), which connects the Gelfand
numbers with the covering numbers, to derive Theorem 1 as a corollary. We can recover the
analogue of this stronger statement too.
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Proposition 3. For every β ∈
(
0, 25

)
, and every convex body K in R

n which has either

barycentre or Santaló point at the origin, we can find a linear image K̃ of K such that,
for all 1 6 l 6 n,

max{cl(K̃,Bn
2 ), cl(K̃

◦, Bn
2 )} 6 C0D

1/β
β

(n
l

)1/β
,

where Dβ is the same constant as in Theorem 2 and C0 is an absolute constant.

One of the tools needed for reducing the non-symmetric case to the symmetric one is a
Blaschke-Santaló-type inequality for projections of convex bodies which have Santaló point at
the origin. Recall that given a convex body L, the function z ∈ int(L) 7→ |L||(L−z)◦| is strictly
convex and has a unique point of minimum, called the Santaló point sL of L (here | · |, or
sometimes | · |n, will denote n-dimensional Lebesgue volume). The celebrated Blashke-Santaló
inequality (first proved by Blaschke [7] in R

2 and R
3, and then by Santaló [46] in all dimensions;

see also [37], [45], [31] and [6] for further proofs of the inequality and/or its equality cases) states
that, over convex bodies L for which sL = 0, the volume product |L||L◦| is uniquely maximised
at ellipsoids.

Moreover, by the facts that (i) (L◦)◦ = L and (ii) if L has barycentre at the origin, then
sL◦ = 0 (another characterisation for the Santaló point of L◦), we can also conclude that
|L||L◦| 6 |Bn

2 |2 for all bodies L with barycentre at the origin.
We give similar approximate results for projections of such convex bodies.

Theorem 4. Let K be a convex body in R
n which has either barycentre or Santaló point at the

origin. For every 1 6 l < n, and for every subspace F ∈ Gn,l, we have

(
|ProjF (K)|l · |K◦ ∩ F |l

)1/l
6 C0

n

l
|Bl

2|2/l (6)

for some absolute constant C0.
Furthermore, up to the value of the constant C0, the conclusion is optimal: one example is

given by projections of the n-dimensional simplex.

2 Preliminaries

In the inequalities that we consider or establish in this paper, we will use the symbols C, C̃, c, c̃,
and so on, to denote absolute constants which do not depend on any of the parameters (and
certainly not on the dimension of the ambient space) unless specified otherwise by using a
subscript. The value of these unspecified constants may be different in different occurrences of
the symbol. We will sometimes also write a . b or b & a if there is an absolute constant such
that a 6 Cb. Finally, a ≃ b means that both a . b and b . a hold.

A convex body K in R
n is a convex, compact subset of Rn with non-empty interior. We

write 〈·, ·〉 for the standard dot product in R
n, while |A| (or sometimes |A|n) stands for the

n-dimensional Lebesgue volume. If l ∈ {1, 2, . . . , n − 1}, by Gn,l we denote the Grassmannian
space of all l-dimensional (linear) subspaces of Rn. If F ∈ Gn,l, then ProjF (K) is the orthogonal
projection of K onto F , and K ∩ F is its section by F (assuming that K ∩ F 6= ∅). Unless
specified otherwise, when we write

|ProjF (K)| or |K ∩ F |,

we mean the l-dimensional Lebesgue volume of these sets (volume within the subspace F ).
Recall that, if 0 ∈ int(K), then the polar set (K ∩F )◦ = (K ∩F )◦,F of the section K ∩F within
the subspace F is well-defined and equal to the projection ProjF (K

◦).
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We write Bn
2 for the unit Euclidean ball in R

n, and Sn−1 for the unit Euclidean sphere,
which is endowed with a (unique) rotationally invariant probablity measure σ (the Haar prob-
ability measure). Given a convex body K with 0 ∈ int(K), we define the inradius r(K) and
circumradius R(K) of K by

r(K) := sup{r > 0 : rBn
2 ⊆ K} and R(K) := inf{R > 0 : K ⊆ RBn

2 }.

Since K ⊆ L ⇒ L◦ ⊆ K◦, we have that r(K) = 1
R(K◦) and R(K) = 1

r(K◦) . The barycentre

b(K) of K is defined as follows:

b(K) :=
1

|K|

∫

K
x dx.

We define the support function hK of K by

x ∈ R
n 7→ hK(x) := max{〈y, x〉 : y ∈ K},

and if we also have 0 ∈ int(K), we define its Minkowski functional by

x ∈ R
n 7→ ‖x‖K := inf{t > 0 : x ∈ tK}

(if K is origin-symmetric, then ‖ · ‖K is a norm on R
n). We can check that ‖x‖K = hK◦(x) and

hK(x) = ‖x‖K◦ . The mean width of K is defined by

M∗(K) :=

∫

Sn−1

hK(θ) dσ(θ),

and its mean norm by

M(K) :=

∫

Sn−1

‖θ‖K dσ(θ).

Given what we just said, we have M∗(K) = M(K◦) and M(K) = M∗(K◦).

For the covering numbers, the following volumetric bounds hold:

|K|
|L| 6 N(K,L) 6

|K + 1
2(L ∩ (−L))|

|12 (L ∩ (−L))| =
|2K + (L ∩ (−L))|

|L ∩ (−L)| (7)

(we can even assume that L has been translated first so that L ∩ (−L) has ‘large’ volume, or
even that |L ∩ (−L)| = sup

x∈int(L)
|(L− x) ∩ (x− L)|).

2.1 “Local theory”: results about projections and sections

Given a convex body K in R
n, its volume radius is defined by vrad(K) :=

(
|K|
|Bn

2
|

)1/n
(observe

that it is ≃ √
n |K|1/n). If F ∈ Gn,l, then vrad(ProjF (K)) is understood to mean the volume

radius of ProjF (K) within the subspace F , thus
(
|ProjF (K)|

|Bl
2
|

)1/l
; similarly for vrad(K ∩ F ).

For any 1 6 l < n, we set

vl(K) := sup
F∈Gn,l

vrad(ProjF (K)) and v−l (K) := inf
F∈Gn,l

vrad(ProjF (K)),

and if 0 ∈ int(K), we also set

wl(K) := sup
F∈Gn,l

vrad(K ∩ F ) and w−
l (K) := inf

F∈Gn,l

vrad(K ∩ F ).
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For any k > 1, we define the entropy number ek(K,L) of K by L as follows:

ek(K,L) := inf{R : N(K,RL) 6 2k−1}.

Recall also the Gelfand number ck(K,L) that was already mentioned in the introduction: for
any k ∈ {1, 2, . . . , n}:

ck(K,L) := inf{r : ∃F ∈ Gn,n−k+1 such that K ∩ F ⊆ r(L ∩ F )}

(for convenience in what follows, we can also set ck(K,L) = 0 if k > n). The following theorem
is what we referred to as Carl’s theorem in the introduction, and it shows that the entropy
numbers are dominated in a certain sense by the Gelfand numbers (that is, in terms of any
‘reasonable’ Lorentz norm).

Theorem 5. (Carl, [13], 1981) Suppose K,L are origin-symmetric convex bodies in R
n. For

any α > 0 there exist constants ρα, ρ
′
α > 0 such that, for every integer k > 1, we will have

sup
m=1,2,...,k

mαem(K,L) 6 ρα sup
m=1,2,...,k

mαcm(K,L)

and
k∑

m=1

m−1+αem(K,L) 6 ρ′α

k∑

m=1

m−1+αcm(K,L) .

2.2 Volume comparison results

1. The Bourgain-Milman inequality. In their seminal work [10], Bourgain and Milman es-
tablished an ‘asymptotic inverse’ to the Blaschke-Santaló inequality: there exists an absolute
constant c0 > 0 (independent of n) such that, for all convex bodies K in R

n with 0 ∈ int(K),

|K||K◦| > |K||(K − s(K))◦| > cn0 |Bn
2 |2. (8)

Combining this with the Blaschke-Santaló inequality, we can conclude that

(
|K||K◦|

)1/n ≃ |Bn
2 |2/n ≃ 1

n

if K is origin-symmetric, or if it has barycentre or Santaló point at the origin.
Moreover, if K is origin-symmetric, we have that

vrad(ProjF (K)) ≃ 1

vrad(K◦ ∩ F )

for any F ∈ Gn,l, and hence also that vl(K) ≃ 1/w−
l (K

◦) and v−l (K) ≃ 1/wl(K
◦). (We will see

that, if L is not origin-symmetric, these equivalences may no longer hold.)

2. Volume of the difference body and of the symmetric convex hull. In [41] Rogers and Shephard
show that, for any convex body K in R

n,

|K −K| 6
(
2n

n

)
|K|

with equality if and only if K is an n-dimensional simplex (here K −K := {x − y : x, y ∈ K}
is the difference body of K). Moreover, in [42] they also prove that, if 0 ∈ K, then

|conv(K,−K)| 6 2n|K|. (9)

5



It follows that vrad(K) ≃ vrad(K −K) ≃ vrad(conv(K,−K)).

3. The Milman-Pajor inequality: volume of the symmetric intersection. In [35] Milman and
Pajor prove that, if K is a centred convex body in R

n (b(K) = 0), then

|K ∩ (−K)| > 1

2n
|K|. (10)

Note that the base of the exponential may not be optimal (see e.g. [21] and [12]), but also that
for the arguments here an exact value is not needed, and instead all we require is an inequality
of the form:

|K ∩ (−K)| > cn|K| (11)

for some absolute constant c > 0.
As e.g. Rudelson has remarked in [44], for this it suffices to combine the Blaschke-Santaló

and Bourgain-Milman inequalities, as well as the relation
(
conv(K,−K)

)◦
= K◦∩(−K◦), which

is valid for any convex body K with 0 ∈ int(K). Rudelson applies this reasoning to obtain (11)
in the case when s(K) = 0.

Remark 6. We can now quickly explain how Milman’s theorem about the existence of an
M -position can be extended to non-symmetric convex bodies. Assume that K has barycentre
or Santaló point at the origin, and that K := conv(K,−K) is in M -position. In other words,
assume that we know

max
{
N(K,Bn

2 ), N(Bn
2 ,K), N(K◦ ∩ (−K◦), Bn

2 ), N(Bn
2 ,K

◦ ∩ (−K◦))
}
6 exp(Cn).

Then the covering numbers N(K,Bn
2 ) and N(Bn

2 ,K
◦) are already controlled. For the cover-

ing number N(Bn
2 ,K), we instead use that it is 6 N(Bn

2 ,K ∩ (−K)). By the Milman-Pajor
inequality (or Rudelson’s variation), by the Rogers-Shephard inequality, and by the volumetric
bounds (7) for the covering numbers, we can check that

N(Bn
2 ,K ∩ (−K)) 6 exp(C ′n)N(Bn

2 ,K) 6 exp(C ′′n),

where we also crucially use the fact that N(K,Bn
2 ) 6 exp(Cn) (and thus the Brunn-Minkowski

inequality can be essentially reversed). Similarly we bound the covering numbers N(K◦, Bn
2 )

and N(K◦, Bn
2 ) by comparing them to the number N(K◦ ∩ (−K◦), Bn

2 ).

4. Rudelson’s result about sections of the difference body. Note that, given F ∈ Gn,l, we have

ProjF (K −K) = ProjF (K)− ProjF (K)

and ProjF (conv(K,−K)) = conv(ProjF (K),−ProjF (K)),

thus the volumes of the projections of the difference body and of the symmetric convex hull of
K can be controlled well by the volume of the corresponding projection of K. In [43] Rudelson
suggests an analogue of these results for the sections of the difference body: he shows that

|(K −K) ∩ F |1/l 6 Cmin
{√

l ,
n

l

}
max
x∈Rn

|K ∩ (x+ F )|1/l. (12)

Note that we will only make use of the bound with the n
l factor.

5. Fradelizi’s result about the maximal-volume section. In [18] Fradelizi proves that, for any
convex body K in R

n, any 1 6 l < n and any F ∈ Gn,l,

max
x∈Rn

|K ∩ (x+ F )| 6
(
n+ 1

l + 1

)l

|K ∩ (b(K) + F )|. (13)

6



He also settles the equality cases.

6. Volume product of a projection and its orthogonal section. Rogers and Shephard [42] (see
also [14]) proved that, for any origin-symmetric convex body K in R

n, any 1 6 l < n and any
F ∈ Gn,l,

|K| 6 |ProjF (K)| · |K ∩ F⊥| 6
(
n

l

)
|K| (14)

(in fact the upper bound is shown to hold even when 0 ∈ int(K)). Spingarn [48] extended the
lower bound to centred convex bodies too.

2.3 Isotropic convex bodies

A convex body K in R
n is called isotropic if |K| = 1, the barycentre of K is at the origin, and

its covariance matrix is a multiple of the identity, or equivalently, for every θ ∈ Sn−1 we have
∫

K
〈x, θ〉2 dx = L2

K .

The constant LK is called the isotropic constant of K. Note that every convex body K̃ in R
n

has an affine image which is in isotropic position; this affine image is unique up to orthogonal
transformations.

It has been a central question in Asymptotic Convex Geometry, first asked by Bourgain [8],
whether all isotropic constants can be uniformly bounded from above (at the time Bourgain
needed uniform lower bounds instead, which he showed hold true as LK > LBn

2
= 1√

n+2 |Bn
2
|1/n ≃

1 for all K ⊂ R
n). The first non-trivial bounds were by Bourgain [9] (LK . 4

√
n log(n) for all

K ⊂ R
n) and by Klartag [24] (LK . 4

√
n). Very crucial reductions of the question to other

central problems in Asymptotic Convex Geometry, and recent huge breakthroughs in those
directions by Yuansi Chen [15], Klartag and Lehec [26], Jambulapati, Lee and Vempala [22],
and even more recently by Klartag [25], have led to logarithmic bounds in the dimension n for
LK (the second to last paper, from 2022, gave LK . log2.2226(n) for every K ⊂ R

n, while the
most recent one gives LK .

√
log(n) ).

Standard properties of the isotropic position that we will need in the sequel are the following:

• if K is an origin-symmetric isotropic convex body in R
n, then K ⊃ LKBn

2 . If K is not
symmetric but only centred, then this inclusion may no longer hold, but there still is an
absolute constant c0 < 1 such that K ⊃ c0LKBn

2 (see e.g. [11, Subsection 3.2.1]). In other
words, r(K) = 1

R(K◦) > c0LK in the isotropic position.

• For every 1 6 l 6 n− 1, and for every F ∈ Gn,l we have (see e.g. [11, Proposition 5.1.15])
that

|K ∩ F⊥|1/l ≃ LπF (1K)

LK
,

where πF (1K) stands for the marginal distribution of the uniform distribution on K with
respect to the subspace F , and LπF (1K) is its isotropic constant (refer to [11] for the
history and details of how one extends the definition of the isotropic constant to log-
concave distributions, and how the general upper and lower bounds can be shown to be
the same).

As a consequence, by (14) we have that, for F ∈ Gn,l,

|ProjF (K)|1/l > 1

|K ∩ F⊥|1/l &
LK

LπF (1K)
&

LK

supM⊂Rl LM
. (15)

7



2.4 A suggested approach towards Theorem 2 by Klartag and Milman

Just as in the case of Milman’s theorem about the M -position, and the reasoning in Remark
6, Klartag and Milman [27, 28] suggest sandwiching a convex body K that contains the origin
in its interior by the symmetric convex bodies K := conv(K,−K) and K := K ∩ (−K) (for
which we can apply Pisier’s theorem). As we will see, the key question their approach leads
and reduces to is how well we can compare

|ProjF (K)|1/l and |ProjF (K)|1/l

for arbitrary subspaces F in all admissible dimensions l.
Indeed, one could assume (without loss of generality) that K is in α-regular M -position for

some α ∈ (0, 2). If it happens that K is in α-regular M -position as well, then we are done
because all the covering numbers

N(K, tBn
2 ), N(K◦, tBn

2 ), N(Bn
2 , tK), N(Bn

2 , tK
◦)

can be upper-bounded by corresponding covering numbers involving K or K. However what is
more likely is that the α-regular M -ellipsoid E = E(K,α) of K is not going to be Bn

2 but some
other ellipsoid. In this case, we should first control the covering numbers

N(E , tBn
2 ) and N(Bn

2 , tE) = N(E◦, tBn
2 ), t > 1. (16)

(In fact, estimating the covering numbers N(E◦, tBn
2 ) is not needed for the application to the

covering numbers of K, but we sketch below this case as well in order to clarify the subtleties
that make the other case more difficult.) By the following lemma this reduces to controlling
the volume of arbitrary orthogonal projections of E and E◦.

Lemma 7. (see e.g. [40, Remark 5.15]) Let Q = T (Bn
2 ) be an ellipsoid in R

n with T positive
definite, and let λ1 > λ2 > · · · > λn be the eigenvalues of T . For every k > 1 set

φk(T ) := sup
16l6n

{
2−k/l ·

[ ∏

16j6l

λj

]1/l}
.

Then for every k > 1 we have φk(T ) 6 ek+1(Q, Bn
2 ) 6 6φk(T ).

Remark 8. (i) Since λ1, λ2, . . . , λn is a decreasing sequence, for any l < n we will have that

[ ∏

16j6l+1

λj

]1/(l+1)
6

[ ∏

16j6l

λj

]1/l
.

Also 2−k/l ≃ 1 for any l > k. We thus see that φK(T ) ≃ supl6k

{
2−k/l ·

[∏
16j6l λj

]1/l}
.

(ii) If we know that there exist some positive constants γ and C(γ) > 1 such that, for all
1 6 l 6 n, [ ∏

16j6l

λj

]1/l
6 C(γ) ·

(n
l

)γ
, (17)

then the numbers φk(T ), and hence also the entropy numbers ek+1(Q, Bn
2 ), can be estimated

from above as follows:

φk(T ) ≃ ek+1(Q, Bn
2 ) .





C(γ)
(

γ
e log(2)

)γ (
n
k

)γ
if k ∈

[ γ
log(2) ,

γ
log(2) n

]

C(γ)nγ

2k
if k < γ

log(2)

C(γ)

2k/n
if k > γ

log(2) n

.
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Then by the definition of the entropy numbers we get

N(Q, tBn
2 ) 6 exp

(
γ[6C(γ)]1/γ

n

t1/γ

)
for every t > 6C(γ)/eγ .

(iii) It can be shown using the Cauchy-Binet formula (see e.g. [28, Lemma 4.1]) that, for
any 1 6 l < n,

∏

16j6l

λj =
1

|Bl
2|

· max
F∈Gn,l

|ProjF (Q)| = 1

|Bl
2|

· max
F∈Gn,l

|Q ∩ F |,

and similarly

∏

n−l+16j6n

λj =
1

|Bl
2|

· min
F∈Gn,l

|Q ∩ F | = |Bl
2| ·

1

max
F∈Gn,l

|ProjF (Q◦)| .

Lemma 7 and Remark 8(iii) show that, to upper-bound the covering numbers in (16), we
need to upper-bound the volume of projections of E and E◦ in different dimensions. Klartag
and Milman use the assumptions made above: if for simplicity we assume we have considered
a 1-regular M -position for K and a 1-regular M -ellipsoid for K, then we have

max
{
N
(
K, tBn

2

)
, N

(
(K)◦, tBn

2

)
, N

(
Bn

2 , tK
)
, N

(
Bn

2 , t(K)◦
)}

6 exp
(
C1 n/t

)

and max
{
N
(
K, tE

)
, N

(
(K)◦, tE◦), N

(
E , tK

)
, N

(
E◦, t(K)◦

)}
6 exp

(
C1 n/t

)

for every t > C1.
It follows immediately that, for any 1 6 l < n and any F ∈ Gn,l,

N
(
ProjF (E◦), tProjF ((K)◦)

)
6 N

(
E◦, t(K)◦

)
6 exp

(
C1 n/t

)

for every t > C1, and if we set tl = C1n/l we see that

N
(
ProjF (E◦), tl ProjF ((K)◦)

)
6 el.

Therefore

|ProjF (E◦)|1/l 6
[
N
(
ProjF (E◦), tl ProjF ((K)◦)

)]1/l · |tl ProjF ((K)◦)|1/l

6 e tl |ProjF ((K)◦)|1/l = eC1
n

l
|ProjF ((K)◦)|1/l.

Similarly we can show that

|ProjF ((K)◦)|1/l 6 eC1
n

l
|BF |1/l = eC1

n

l
|Bl

2|1/l.

We conclude that

max
F∈Gn,l

|ProjF (E◦)|1/l 6 eC1
n

l
max

F∈Gn,l

|ProjF ((K)◦)|1/l

6 eC1
n

l
max

F∈Gn,l

|ProjF ((K)◦)|1/l 6 (eC1)
2
(n
l

)2
|Bl

2|1/l

given that K ⊆ K ⇒ (K)◦ ⊆ (K)◦, which gives an upper bound of the form discussed in
Remark 8(ii). Observe that the same upper bound holds even when l = n, that is, we have
|E◦|1/n 6 (eC1)

2 |Bn
2 |1/n by the same reasoning.

Obtaining a similar upper bound for the volume of projections of E is trickier since the
inclusion K ⊆ K does not work in our favour anymore. Let us describe how Klartag and
Milman deal with this.

9



Remark 9. Note that so far we have only prescribed that K contain the origin in its interior
(so that we can consider K◦). We could choose a more specific position for K: what is assumed
in [27, 28], which is no longer without loss of generality, is that K has both its barycentre and
its Santaló point at the origin, or equivalently that both K and K◦ are centred.

Of course not every convex body in R
n has this property. In fact, as has been examined by

Meyer, Schütt and Werner [32], there are convex bodies in all dimensions whose barycentre and
Santaló point are far apart.

Recall that, if K is centred, then, by the Rogers-Shephard and Milman-Pajor inequalities,

|K|1/n 6 2|K|1/n 6 4|K|1/n. (18)

For lower-dimensional projections Klartag and Milman argue as follows:

To upper-bound |ProjF (K)|1/l By the Rogers-Shephard inequality again,

|ProjF (K)|1/l =
∣∣ProjF (K)

∣∣1/l 6 2|ProjF (K)|1/l.

Next we would like to compare |ProjF (K)|1/l to |K◦∩F |1/l, but this is not immediate from
the classical Blaschke-Santaló inequality given that ProjF (K) may have neither barycentre
nor Santaló point at the origin even though K is centred.

Instead Klartag and Milman establish an approximate Blaschke-Santaló-type inequality
for ProjF (K) as follows: ProjF (K) is the support of the marginal πF (1K) ≡ πF (K) of
1K on F , which has a 1/(n − l)-concave density given by

y ∈ F 7→ gπF (K)(y) := |K ∩ (y + F⊥)| =
∫

F⊥

1K(y + z) dz.

It is also not difficult to see that πF (K) has barycentre at the origin. It is then known that
we can find an associated convex body T ∈ F that will be centred and not too different
from the support of πF (K) in the following sense:

1

e
T ⊆ ProjF (K) ⊆ e

n+ 1

l + 1
T (19)

(this is done by picking the right candidate from the family of sets

Kp(g) :=
{
y ∈ F :

∫ ∞

0
g(sy)sp−1 ds > g(0)/p

}
, p > 0,

linked to a log-concave density g with g(0) > 0; these were shown by Ball [3] to be convex
bodies for all p > 1 (see also [5], where it’s verified that the proof extends, with only
minor changes, to the not-necessarily-even-density case too, as well as to p ∈ (0, 1)); the
right candidate here is T = Kl+1(gπF (K)), which is centred if the l-dimensional density
g = gπF (K) is centred; the inclusions (19) can be shown via a straightforward adaptation
of [23, Lemma 2.2] combined with Fradelizi’s result (13)).

Once we have (19) with some centred body T ∈ F , we can write

|ProjF (K)|1/l · |K◦ ∩ F |1/l 6
∣∣∣en+ 1

l + 1
T
∣∣∣
1/l

· |eT ◦|1/l

= e2
n+ 1

l + 1

(
|T ||T ◦|

)1/l
6 e2

n+ 1

l + 1
|Bl

2|2/l,

10



which gives

|ProjF (K)|1/l
|Bl

2|1/l
6 e2

n+ 1

l + 1

|Bl
2|1/l

|K◦ ∩ F |1/l . (20)

In the next section we are going to describe a somewhat different way to obtain (20), which
takes advantage of more recent results (which however still rely on the 1/(n− l)-concavity
of the functions y ∈ F 7→ |K ∩ (y + F⊥)|).

To lower-bound |ProjF (K)|1/l The goal here is again to relate |ProjF (K)|1/l to |K◦∩F |1/l,
and Klartag and Milman do so by assuming that K◦ is centred too.

By the Bourgain-Milman inequality and by Rudelson’s result, we have that

|ProjF (K)|1/l
|Bl

2|1/l
> c0

|Bl
2|1/l∣∣(K◦) ∩ F

∣∣1/l > c′0
l

n

|Bl
2|1/l

max
y∈F⊥

|K◦ ∩ (y + F )|1/l

for some absolute constants c0, c
′
0 > 0.

Now, since K◦ has been assumed centred, by Fradelizi’s result we also have

1

max
y∈F⊥

|K◦ ∩ (y + F )|1/l >
l + 1

n+ 1

1

|K◦ ∩ F |1/l .

We therefore conclude that

|ProjF (K)|1/l
|Bl

2|1/l
> c

( l

n

)2 |Bl
2|1/l

|K◦ ∩ F
∣∣1/l (21)

for some absolute constant c > 0, which combined with (20) finally gives

|ProjF (K)|1/l 6 2|ProjF (K)|1/l 6 C
(n
l

)3
|ProjF (K)|1/l.

One can now check that the above reasoning establishes the existence of α-regular ellipsoids
in the sense of Theorem 1 for all non-symmetric convex bodies K with the property that their
barycentre and Santaló point coincide (with α up to 2/9 non-inclusive, or even up to 2/5 non-
inclusive with an additional trick, as we will see via more careful computations below).

For example, this establishes the existence of regular ellipsoids for the simplex, although
the regularity of the covering numbers in this instance can in fact be chosen much stronger;
the latter may be seen by a more direct, and more specific to the simplex, argument which we
detail in the concluding remarks of this paper.

In the next section we slightly modify the above approach to also handle bodies which do
not have the property b(K) = s(K). Clearly it is the last two steps of the argument we need to
be careful about: as we will see, we will keep the second one as is, and only concern ourselves
with the first one. In other words, we will assume that K◦ is centred, or equivalently that K has
Santaló point at the origin, and will establish approximate Blaschke-Santaló-type inequalities
for the projections of K in this positioning too.

11



3 Blaschke-Santaló-type inequalities for projections: proof of

Theorem 4

We apply crucially the key theorem of [31], where Meyer and Pajor reprove the classical
Blaschke-Santaló inequality for all (not-necessarily symmetric) convex bodies via Steiner sym-
metrisation. We will use their terminology and say that, given a convex body K in R

n, an affine
hyperplane H = {x ∈ R

n : 〈x, uH〉 = aH} and λ ∈ (0, 1), H is λ-separating for K if

|K ∩H+| := |{x ∈ K : 〈x, uH〉 > aH}| = λ|K|.

Note that, no matter what λ ∈ (0, 1) is, if H is λ-separating for K, then int(K) ∩H 6= ∅.

Theorem 10. (Meyer-Pajor, [31]) Let K be a convex body in R
n, and H an affine hyperplane

that is λ-separating for K for some λ ∈ (0, 1). Then there exists z ∈ int(K) ∩H such that

|K| |(K − z)◦| 6 |Bn
2 |2

4λ(1 − λ)
. (22)

More precisely (see [31, Lemma 2]), the optimal choice of z above (which minimises the
volume product on the left-hand side) is the unique point z0 ∈ int(K)∩H with the property that
the barycentre of (K − z0)

◦ lies in H⊥ ≡ RuH .

Proof of Theorem 4. The desired inequality when b(K) = 0 has already been established by
Klartag and Milman, in the way that we sketched in the previous section. However we can give
one more argument which is along very similar lines to the second part of the proof (concerning
the Santaló point), and which hopefully will help elucidate the key idea.

Stephen and Zhang [49] have shown that, for every 1 6 l < n, for every F ∈ Gn,l and for
every ξ ∈ F \ {0}, if we set ξ+F := {y ∈ F : 〈y, ξ〉 > 0}, we have

|ProjF (K) ∩ ξ+F |l = |{y ∈ ProjF (K) : 〈y, ξ〉 > 0}|l >
( l

n+ 1

)l
|ProjF (K)|l (23)

(recall that we are comparing l-dimensional volumes, thus the subscript l, which we will suppress
from here on). Applying this result with −ξ as well, we also see that

|ProjF (K) ∩ ξ+F | 6
(
1−

( l

n+ 1

)l
)

|ProjF (K)|.

Let us rewrite this result as follows: for every ξ ∈ F \ {0} the subspace ξ⊥F := F ∩ ξ⊥, which is
an affine hyperplane of F passing through the origin, is λ-separating for ProjF (K) for some λ
satisfying

λ ∈
[( l

n+ 1

)l
, 1−

( l

n+ 1

)l
]
.

The idea is to apply Theorem 10 with the right hyperplane chosen from the above (that is,
with the right ξ0 ∈ F ) in order to conclude that

|ProjF (K)| |K◦ ∩ F | 6 |Bl
2|2

4λξ0(1− λξ0)
6

1

2

(n+ 1

l

)l
|Bl

2|2. (24)

To see that there is a suitable choice of ξ0 ∈ F leading to this conclusion, note the following:

• if the barycentre of K◦ ∩F is at the origin, then the classical Blaschke-Santaló inequality
applies immediately and we have |ProjF (K)| |K◦ ∩ F | 6 |Bl

2|2.
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• If instead b
(
K◦ ∩ F

)
6= 0, denote it by ξ0; clearly ξ0 ∈ F \ {0} in this case. Applying

Theorem 10, we see that there exists z0 ∈ int(ProjF (K)) ∩ ξ⊥0 such that

|ProjF (K)| ·
∣∣(ProjF (K)− z0)

◦∣∣ 6 |Bl
2|2

4λξ0(1− λξ0)
,

where the polar set here is taken within F . In fact, the optimal z0 is the unique point

∈ int(ProjF (K))∩ ξ⊥0 such that (ProjF (K)− z0)
◦ has barycentre ∈ Rξ0. By the fact that

(ProjF (K) − 0)◦ = K◦ ∩ F has this property already, we conclude that 0 is this unique
point and that (24) holds.

We now assume that K has Santaló point at the origin, or in other words that K◦ has
barycentre at the origin. Fix 1 6 l < n and F ∈ Gn,l. Again, if we manage to say that, for
every ξ ∈ F \ {0}, the hyperplane ξ⊥F is λ-separating for K◦ ∩ F for some λ satisfying

λ ∈ [cn,l, 1− cn,l]

with cn,l very similar to the previous lower bound, we can then argue completely analogously to
above (with K◦ ∩F taking on the role of ProjF (K) in the proof, and vice versa), and conclude
that

|ProjF (K)| |K◦ ∩ F | 6 |Bl
2|2

4λξ0(1− λξ0)
6

1

2cn,l
|Bl

2|2. (25)

We can do this because of an analogous result by Myroshnychenko, Stephen and Zhang [36],
which states that, for L ⊂ R

n centred,

|L ∩ ξ+F |l = |{y ∈ L ∩ F : 〈y, ξ〉 > 0}|l >
( l

n+ 1

)l
|L ∩ F |l (26)

(just as in [49], this is also shown to be optimal). We apply this with L = K◦ (this also shows
why we focused on K◦ ∩ F here, and not on ProjF (K)).

Side Remark. It should be noted that our desired inequality is rather crude compared to these
results, since in the end we aim to bound volume radii, and therefore additional constant factors raised
to the power l in an inequality such as (26) would essentially not affect this application of it. Thus, even
an earlier result towards the same goal as in [36] would work here: in [19, Corollary 9] Fradelizi, Meyer
and Yaskin show that

cn,l > c
( n+ 1

n− l + 1

)2 1

l2

( l

n+ 1

)l

>
c

l2

( l

n+ 1

)l

for some absolute constant c > 0, which is >
(
c′ l

n+1

)l
.

We now discuss the optimality of Theorem 4. Let Sn be a regular simplex of edge-length√
2 which has barycentre at the origin. Note that, if we consider l of its vertices as well as the

average of the remaining n+1− l, the affine hull of these points coincides with an l-dimensional
(linear) subspace Fl (which thus contains the barycentre of Sn). Moreover, by either embedding
Sn in R

n+1 in the standard way:

Sn = conv
{
ei −

1

n+ 1
1 : 1 6 i 6 n+ 1

}

(where 1 = e1+e2+ . . .+en+1), or by explicitly writing down its vertices in R
n (starting with n

of its vertices being the vectors ei, and then translating properly so that the barycentre becomes
the origin), we can directly calculate that

|Sn ∩ Fl| =
√
n+ 1

l!
√
n+ 1− l

.
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At the same time, S◦
n = −(n+ 1)Sn, and thus

ProjFl
(S◦

n) = −(n+ 1)ProjFl
(Sn).

We can thus write

(
|ProjFl

(S◦
n)| · |Sn ∩ Fl|

)1/l
= (n+ 1)

(
|ProjFl

(Sn)| · |Sn ∩ Fl|
)1/l

> (n+ 1)|Sn ∩ Fl|2/l ≃
n+ 1

l2
≃ n+ 1

l
|Bl

2|2/l,

which shows optimality of the Blaschke-Santaló-type inequalities we got, both in the case of a
convex body with Santaló point at the origin, and in the case of a centred convex body.

In [16] Dirksen states the conjecture that, out of all sections of the regular simplex that
pass through its barycentre, the volume of the section that we considered is maximum. He also
establishes an upper bound for the volume of such sections which is asymptotically equivalent:
if E ∈ Gn,l, then

|Sn ∩ E| 6 (
√
l + 1)

l+1

n+1

l!
.

A less precise but similar bound follows from the above result and reasoning: indeed,

1

2

(
n+ 1

l

)l

|Bl
2|2 > |ProjE(S◦

n)| · |Sn ∩ E| > (n+ 1)l |Sn ∩ E|2.

In the case of the subspace Fl that we considered above, we could even estimate the volume
product |ProjFl

(S◦
n)| · |Sn∩Fl| directly and more accurately (and only later compare it with the

given upper bound). Indeed, by the Rogers-Shephard inequality

|ProjFl
(Sn)|1/l >

1

2
|ProjFl

(Sn)|

and we can recall that Sn can be viewed as a projection of the ℓ1-unit ball B
n+1
1 :

Sn = conv
{
±
(
ei − 1

n+11
)
: 1 6 i 6 n+ 1

}
= ProjH1

(
Bn+1

1

)

with H1 the hyperplane orthogonal to the vector 1. But if we suppose that Fl is the subspace
spanned by the first l vertices of Sn, the vectors ej − 1

n+11, 1 6 j 6 l, then it can be checked
that

ProjFl
(Sn) = ProjFl

(
Bn+1

1

)
= conv

{
±
(
ej − 1

n+11
)
: 1 6 j 6 l

}
.

At the same time, we have that the average of the other vertices of Sn is in the convex hull of
the vectors −

(
ej − 1

n+11
)
, 1 6 j 6 l, and the origin, and thus

conv(Sn ∩ Fl,−(Sn ∩ Fl)) = conv
{
±
(
ej − 1

n+11
)
: 1 6 j 6 l

}
= ProjFl

(Sn).

This implies that

(n+ 1)l|Sn ∩ Fl|2 6 |ProjFl
(S◦

n)| · |Sn ∩ Fl| 6 (2(n + 1))l|Sn ∩ Fl|2.

This also shows that the ‘extreme’ case that we used to show optimality of Theorem 4 is very
far from any extreme cases in Fradelizi’s result (an instance of the latter is when the considered
l-dimensional subspace is parallel to the affine hull of an l-dimensional face of the simplex). It
is unclear to us whether there is a way to better combine the two results.
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4 Proving Theorem 2 and Proposition 3

We begin with the

Proof of the theorem. Most of the steps we need have been discussed or hinted at in Subsection
2.4. We quickly go over the necessary adjustments to prove the result in the general case and
for all β ∈

(
0, 25

)
(note also that a direct adjustment of the proof scheme already discussed

would lead to a range of
(
0, 29

)
for β; instead we also insert a ‘balancing’ step in the middle or

the proof which will allow us to slightly improve the final estimates; we thank Alexander Litvak
for suggesting this trick).

Fix β ∈
(
0, 25

)
and set α = 4β

2−3β ; note that α ∈ (0, 2). Let also K ⊂ R
n be a convex body.

Step 1. This time we start by assuming that K has Santaló point at the origin, and that
K := K ∩ (−K) is in α-regular M -position, that is,

max
{
N
(
K, tBn

2

)
, N

(
(K)◦, tBn

2

)
, N

(
Bn

2 , tK
)
, N

(
Bn

2 , t(K)◦
)}

6 exp
(
Cα n/t

α
)

for every t > C
1/α
α . We also find an α-regular M -ellipsoid E for K := conv(K,−K):

max
{
N
(
K, tE

)
, N

(
(K)◦, tE◦), N

(
E , tK

)
, N

(
E◦, t(K)◦

)}
6 exp

(
Cα n/t

α
)

for every t > C
1/α
α .

Finally, along with the above assumptions we can make one more, which will help make
Step 2 easier to read: by applying an orthogonal transformation to K (and hence to K and K
too) if needed, we can assume that E = ∆λB

n
2 with ∆λ a diagonal matrix with diagonal entries

λ1 > λ2 > · · · > λn > 0.

We first observe that, by the Rogers-Shephard, Blaschke-Santaló and Bourgain-Milman
inequalities,

|(K)◦| = |conv(K◦,−K◦)| 6 2n|K◦|

=⇒ |K| 6 2n|K| 6 4n
|K| · |K◦|
|(K)◦| · |K| |K| 6 Cn

0 |K|

=⇒ |E|1/n 6 e2C0 C
2/α
α |Bn

2 |1/n

for some absolute constant C0 (depending on the constant in the Bourgain-Milman inequality).
Moreover, obtaining (20) by Theorem 4 (which we apply in the case that the Santaló point

is at the origin), and combining this with (21) (which is true when K◦ is centred, as is the case
here), we can write, for every 1 6 l < n and every F ∈ Gn,l,

|ProjF (K)|1/l 6 2|ProjF (K)|1/l 6 C
(n
l

)3
|ProjF (K)|1/l. (27)

We also have

|ProjF (E)|1/l 6 eC1/α
α

(n
l

)1/α
|ProjF (K)|1/l and |ProjF (K)|1/l 6 eC1/α

α

(n
l

)1/α
|Bl

2|1/l.

Therefore,

vl(E) = max
F∈Gn,l

|ProjF (E)|1/l
|Bl

2|1/l
6 C̃ C2/α

α

(n
l

)(2+3α)/α
.

Step 2. Set ∆√
λ to be the diagonal matrix with diagonal entries

√
λ1 >

√
λ2 > · · ·

√
λn,

and QE to be the ellipsoid ∆√
λB

n
2 = ∆−1√

λ
E . We have that

max
{
N
(
∆−1√

λ
K, tQ◦

E
)
, N

(
(∆−1√

λ
K)◦, tQE

)
, N

(
Q◦

E , t∆
−1√
λ
K
)
, N

(
QE , t(∆

−1√
λ
K)◦

)}
6 exp

(
Cα n/t

α
)
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and

max
{
N
(
∆−1√

λ
K, tQE

)
, N

(
(∆−1√

λ
K)◦, tQ◦

E
)
, N

(
QE , t∆

−1√
λ
K
)
, N

(
Q◦

E , t(∆
−1√
λ
K)◦

)}
6 exp

(
Cα n/t

α
)

Furthermore, for all 1 6 l 6 n,

vl(QE ) =
√

vl(E) 6 C̃ C1/α
α

(n
l

) 1

α
+ 3

2

.

Now, applying Lemma 7 (as in Remark 8(ii)), we see that

N(QE , tB
n
2 ) = N(Bn

2 , tQ◦
E ) 6 exp

(
α−1C̃0 C

2/(2+3α)
α

n

t
2α

2+3α

)

for every t > C̃0 C
1/α
α for some absolute constant C̃0 > 2.

Step 3. Using the above, we can write

N
(
∆−1√

λ
K, tBn

2

)
6 N

(
∆−1√

λ
K, sQE

)
N(sQE , tB

n
2 ) 6 exp

(
Cα n/s

α
)
· exp

(
α−1C̃0 C

2

2+3α
α n

(s
t

) 2α
2+3α

)

as long as s > C
1/α
α and

t

s
> C̃0 C

1/α
α .

Optimising in s, we see that

Cα

sα
=

α−1C̃0 C
2

2+3α
α s

2α
2+3α

t
2α

2+3α

=⇒ s =
C

3

4+3α
α t

2

4+3α

(α−1C̃0)
2+3α

4α+3α2

,

which is > C
1/α
α if t > (α−1C̃0)

2+3α
2α C

2/α
α . Moreover, t

s > C̃0 C
1/α
α for the same t. Therefore

N
(
∆−1√

λ
K, tBn

2

)
6 exp

(
2Cα n/s

α
)
= exp

(
2(α−1C̃0)

2+3α
4+3α C

4

4+3α
α

n

t
2α

4+3α

)

for every t > (α−1C̃0)
2+3α
2α C

2/α
α .

Analogously,

N
(
Bn

2 , t∆
−1√
λ
K
)
6 N

(
Bn

2 ,
t

s
Q◦

E
)
N
( t

s
Q◦

E , t∆
−1√
λ
K
)

= N
(
QE ,

t

s
Bn

2 ,
)
N
(
Q◦

E , s∆
−1√
λ
K
)

6 exp

(
α−1C̃0 C

2

2+3α
α n

(s
t

) 2α
2+3α

)
· exp

(
Cα n/s

α
)

= exp
(
2(α−1C̃0)

2+3α
4+3α C

4

4+3α
α

n

t
2α

4+3α

)

with s as before and t > (α−1C̃0)
2+3α
2α C

2/α
α .

Finally, in the same way we can bound the covering numbers

N
(
Bn

2 , t(∆
−1√
λ
K)◦

)
6 N

(
Bn

2 ,
t

s
Q◦

E
)
N
( t

s
Q◦

E , t(∆
−1√
λ
K)◦

)

and N
(
(∆−1√

λ
K)◦, tBn

2

)
6 N

(
(∆−1√

λ
K)◦, sQE

)
N(sQE , tB

n
2 )

for all t > (α−1C0)
2+3α
2α C

2/α
α (and the auxiliary parameter s chosen as before).
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Step 4. Note that

max
{
N
(
∆−1√

λ
K, tBn

2

)
, N

(
(∆−1√

λ
K)◦, tBn

2

)
, N

(
Bn

2 , t∆
−1√
λ
K
)
, N

(
Bn

2 , t(∆
−1√
λ
K)◦

)}

6 max
{
N
(
∆−1√

λ
K, tBn

2

)
, N

(
(∆−1√

λ
K)◦, tBn

2

)
, N

(
Bn

2 , t∆
−1√
λ
K
)
, N

(
Bn

2 , t(∆
−1√
λ
K)◦

)}
.

Given our choice of α, we have that 2α
4+3α = β. We set

Dβ := 2(α−1C̃0)
2+3α
4+3α C

4

4+3α
α ,

and we can then write

max
{
N
(
∆−1√

λ
K, tBn

2

)
, N

(
(∆−1√

λ
K)◦, tBn

2

)
, N

(
Bn

2 , t∆
−1√
λ
K
)
, N

(
Bn

2 , t(∆
−1√
λ
K)◦

)}
6 exp

(
Dβ n/t

β
)

(28)

for all t > D
1/β
β . Having started with the assumptions that K is in α-regular M -position, while

∆λB
n
2 is an α-regular M -ellipsoid for K, we conclude that the linear image ∆−1√

λ
K of K is in

β-regular M -position.

This completes the proof of the theorem in the case that K has Santaló point at the origin.
Note however that (28) is symmetric in K and K◦ (in the sense that N

(
(∆−1√

λ
K)◦, tBn

2

)
=

N
(
∆√

λ(K
◦), tBn

2

)
and N

(
∆−1√

λ
K, tBn

2

)
= N

(
(∆√

λ(K)◦)◦, tBn
2

)
for instance), and recall that

K◦ runs over all centred convex bodies as K runs over all convex bodies with Santaló point at
the origin. Thus we are done in the case of a centred convex body too.

Proof of Proposition 3. Again we start with the assumptions that K has Santaló point at the
origin, and that K is in α-regular M -position, where α = 4β

2−3β . We now understand this to
mean that Pisier’s stronger statement holds true: for all 1 6 l 6 n,

max
{
cl
(
K,Bn

2

)
, cl

(
(K)◦, Bn

2

)}
6 C0C

1/α
α

(n
l

)1/α
.

Recall that this also implies the bounds for the covering numbers of K and (K)◦ by dilates of
Bn

2 that we stated before.

We also find an α-regular M -ellipsoid E for K “in the strong sense”, that is, satisfying
regularity for the Gelfand numbers:

max
{
cl
(
K, E

)
, cl

(
(K)◦, E◦)} 6 C0C

1/α
α

(n
l

)1/α

(we can find this by first considering an α-regular M -position of K “in the strong sense”, which
we know exists, and then by transforming back to the current position of K; note that the
bounds will remain unchanged since cl(TK1, TL1) = cl(K1, L1) for any linear transformation
T ). Again the bounds for the covering numbers involving K that we stated before also hold, so

we can conclude that vl(E) 6 C̃ C
2/α
α

(
n/l

)(2+3α)/α
for all 1 6 l 6 n.

Finally, for convenience again, we can also assume that E = ∆λB
n
2 with ∆λ the diagonal

matrix from the proof of Theorem 2. As before, we set QE = ∆√
λB

n
2 = ∆−1√

λ
E , and we have

vl(QE ) =
√

vl(E) 6 C̃ C1/α
α

(n
l

) 2+3α
2α

. (29)

17



Moreover,

max
{
cl
(
∆−1√

λ
K,QE

)
, cl

(
(∆−1√

λ
K)◦,Q◦

E
)
, cl

(
∆−1√

λ
K,Q◦

E
)
, cl

(
(∆−1√

λ
K)◦,QE

)}
6 C0C

1/α
α

(n
l

)1/α

for all 1 6 l 6 n.
We start with l = 1: by the bound for c1

(
∆−1√

λ
K,QE

)
and by (29), we can write

∆−1√
λ
K ⊆ ∆−1√

λ
K ⊆ C0(Cαn)

1/αQE

⊆ C0(Cαn)
1/α ·

√
λ1B

n
2 ⊆ C̃0(Cαn)

1/α · C1/α
α n

2+3α
2α Bn

2 ⊆ ˜̃C0D
1/β
β n1/β Bn

2 .

Analogously, we have

∆√
λK

◦ = (∆−1√
λ
K)◦ ⊆ (∆−1√

λ
K)◦ ⊆ C0(Cαn)

1/αQE ⊆ C̃0D
1/β
β n1/β Bn

2 .

Consider now an even l ∈ {2, . . . , n}. By the bound for cl/2
(
∆−1√

λ
K,QE

)
, we can find a

subspace F0 ∈ Gn,n− l
2
+1 such that

(∆−1√
λ
K) ∩ F0 ⊆ C0C

1/α
α

(
2n

l

)1/α (
QE ∩ F0

)
.

Let µ1 > µ2 > · · · > µn− l
2
+1 be the lengths of the semiaxes of the ellipsoid QE ∩ F0, and

let F1 6 F0 be the subspace spanned by the n − l + 1 shortest of those (thus the orthogonal
complement F⊥

1 ∩ F0 of F1 within F0 is the subspace spanned by the l/2 longest semiaxes of
QE ∩ F0). Then QE ∩ F1 ⊆ µ l

2
+1BF1

and

µ l
2
+1 6

( l/2∏

i=1

µi

)2/l

= vrad(QE ∩ F⊥
1 ∩ F0) 6 wl/2(QE ) = vl/2(QE ).

Thus, by (29) we obtain

(∆−1√
λ
K)∩F1 ⊆ (∆−1√

λ
K)∩F1 ⊆ C0C

1/α
α

(
2n

l

)1/α (
QE ∩F1

)
⊆ C0C

1/α
α

(
2n

l

)1/α

· vl/2(QE )BF1

⊆ C̃0C
1/α
α

(
2n

l

)1/α

· C1/α
α

(
2n

l

) 2+3α
2α

BF1
⊆ ˜̃C0D

1/β
β

(n
l

)1/β
BF1

.

This shows that cl
(
∆−1√

λ
K,Bn

2

)
6

˜̃C0D
1/β
β (n/l)1/β .

Similarly we bound cl
(
∆√

λK
◦, Bn

2

)
by using the bound for cl/2

(
(∆−1√

λ
K)◦,QE

)
and (29).

Finally, we observe that the sequences l ∈ {1, 2, . . . , n} 7→ cl
(
K1, B

n
2 ), where K1 = ∆−1√

λ
K or

= ∆√
λK

◦, are decreasing, so by slightly adjusting the absolute constant C0, we can also bound
the remaining terms of those sequences.

As before, if K has barycentre at the origin instead, then we work along the same lines, but
with K◦ taking on the role of K. This completes the proof.

Recall that to prove Theorem 2, we relied on (27), which gives a comparison of the volumes
of corresponding projections of K and of K when s(K) = 0 (with estimates which depend on
the dimensions of the projections in a regular way). Using Theorem 2 now, we can establish a
similar comparison for volumes of such projections when K is centred.

Corollary 11. Let K be a centred convex body in R
n, and let 1 6 l 6 n. For every F ∈ Gn,l

we have

|ProjF (K)|1/l 6 C
(n
l

)5(
log(en/l)

)2 |ProjF (K)|1/l.
We defer the proof of the corollary to the next section.
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5 Remarks and applications

1. The proof of Theorem 2 shows that, if K ⊂ R
n has Santaló point at the origin, then a β-

regular position of K can be found if we apply to K the linear transformation T ∈ GL(n) that

takes K to α-regular M -position and then adjust a little so that K̃ and
(
K̃

)◦
are covered in

a regular way by the same ellipsoid. Similarly, if K has barycentre at the origin, then we start
by placing K in α-regular M -position, where α = 4β

2−3β .
It seems very likely that the regularity of the covering numbers given by this method is

not optimal, and one could even conjecture that there exists a 1-regular M -position for any
not-necessarily symmetric convex body. That said, if we were to keep the core principle of this
method, which is to rely on an inequality for volumes of projections in the spirit of (27), then
most probably we wouldn’t be able to achieve this. This is because the example of the simplex
shows that the exponent of n

l in any inequality of similar form to (27) should be at least 1
2

(which plugged into the rest of our argument would give at best 6
11 -regularity).

Indeed, assume l 6 n
2 . As we have already seen, the regular simplex Ŝn with edge-length

n+1√
2

has l-dimensional sections through its barycentre with volume

(n+ 1

2

)l
√
n+ 1

l!
√
n+ 1− l

Again we recall that this simplex can be embedded in R
n+1 so that its barycentre is at the

origin, and so that the hyperplane containing it is the hyperplane H1 orthogonal to the vector
1 = e1 + e2 + . . .+ en+1. Then

Ŝn ∩ (−Ŝn) =
1
2B

n+1
∞ ∩H1

where 1
2B

n+1
∞ =

[
−1

2 ,
1
2

]n+1
is the (origin-symmetric) cube of volume 1 in R

n+1 (see e.g. [50]
where the idea for this normalisation is taken from).

Consider now any l-dimensional subspace F of the hyperplane H1; then

(
Ŝn ∩ (−Ŝn)

)
∩ F =

(
1
2B

n+1
∞ ∩H1

)
∩ F = 1

2B
n+1
∞ ∩ F.

It remains to recall a result by K. Ball [4] (optimal in many cases) which gives that, for any
such subspace F ,

|12Bn+1
∞ ∩ F |l 6

(√
n+ 1

l

)l

.

It follows that we cannot have

∣∣(Ŝn − Ŝn

)
∩ F

∣∣1/l 6 C
(n
l

)γ ∣∣(Ŝn ∩ (−Ŝn)
)
∩ F

∣∣1/l

with γ < 1
2 (note also that by polarity and the Blaschke-Santaló and Bourgain-Milman inequal-

ities, this last inequality is equivalent to an inequality of the form of (27)).

2. Our first remark notwithstanding, in the case of the simplex there does exist an α-regular
M -position for any α ∈ (0, 2). Still it should be said that it also seems likely this would not be
true in full generality.

To verify this, we now consider the regular simplex Sn of edge-length
√
2 and barycentre at

the origin, embedded in R
n+1:

Sn = conv
{
ei −

1

n+ 1
1 : 1 6 i 6 n+ 1

}
.
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Again recall that Sn = conv{Sn,−Sn} can be viewed as a projection of the ℓ1-unit ball B
n+1
1 :

conv{Sn,−Sn} = ProjH1

(
Bn+1

1

)
.

Recall also that Sn satisfies S◦
n = −(n+1)Sn (where the polar set is considered within H1),

therefore

Sn = Sn ∩ (−Sn) =
1

n+ 1

(
S◦
n ∩ (−S◦

n)
)
=

1

n+ 1

(
conv{Sn,−Sn}

)◦

=
1

n+ 1

(
ProjH1

(
Bn+1

1

))◦
=

1

n+ 1

(
Bn+1

∞ ∩H1

)
.

Schütt [47] has shown that

ek+1

(
Bn+1

1 ,
1√
n
Bn+1

2

)
≃





√
n if k 6 log(n+ 1)√

n

k

√
log(en/k) if log(n + 1) 6 k 6 n+ 1

2−k/nn if k > n+ 1

.

We combine this with the fact that, for every p > 1
2 and any 1 6 k 6 n+ 1,

exp

((
p− 1

2

)
log(en/k)

)
>

√
exp

((
p− 1

2

)
log(en/k)

)
>

√(
p− 1

2

)
log(en/k)

=⇒ ek+1

(
Bn+1

1 ,
1√
n
Bn+1

2

)
.

√
en

k

√
log(en/k) 6

1√
p− 1

2

(en
k

)p

to obtain that

N
(
Bn+1

1 ,
t√
n
Bn+1

2

)
6 exp

(
C
(
p− 1

2

)− 1

2p n/t1/p
)

for any t > ep
(
p− 1

2

)−1/2
, with C an absolute constant.

At the same time, by the dual Sudakov inequality (see e.g. [2, Theorem 4.2.2])

N
( 1√

n
Bn+1

2 , tBn+1
1

)
6 exp(Cn/t2)

for every t > 0.

As a consequence,

max
{
N
(
ProjH1

(
Bn+1

1

)
,

t√
n
Bn

2

)
, N

( 1√
n
Bn

2 , tProjH1

(
Bn+1

1

))}
6 exp

(
C ′(p− 1

2

)− 1

2p n/t1/p
)

for every t > ep
(
p − 1

2

)−1/2
, and by the duality of covering numbers [1] the same bound (with

slightly different absolute constants) is valid for

max
{
N
((

ProjH1

(
Bn+1

1

))◦
, t
√
nBn

2

)
, N

(√
nBn

2 , t
(
ProjH1

(
Bn+1

1

))◦)}
.

We thus see that both
√
nSn and

√
nSn are in α-regular M -position for any α ∈ (0, 2) with

a constant of the same form as in Theorem 1 (in fact, here it suffices to know that one of them
is in regular position since

(
Sn

)◦
= (n+1)Sn). This now obviously implies that

√
nSn has the

same property as well.
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3. It should be clear from Subsection 2.4 that Klartag and Milman’s argument could also
be modified to work in the general case if there were a version of Fradelizi’s result:

min
F∈Gn,l

|K ∩ F |
max
y∈Rn

|K ∩ (y + F )| >
( l + 1

n+ 1

)l
(30)

also available when K has Santaló point at the origin.

Such a version, albeit with an estimate which, we should probably expect, is rather crude,
follows now by Theorem 2. Indeed, let K be a body with Santaló point at the origin and
1 6 l < n. Since the left-hand side of (30) is invariant under linear transformations, we may
assume that K is in βl-regular position with

βl =
2

5
− 1

5 log(en/l)
.

Then, for every F ∈ Gn,l,

max
{
|ProjF (K)|1/l, |ProjF (K◦)|1/l

}
6 eD

1/βl

βl

(n
l

)1/βl |Bl
2|1/l.

Combining this with the Bourgain-Milman inequality, we see that

|K ∩ F |1/l > c0
|Bl

2|2/l
|ProjF (K◦)|1/l >

c0

eD
1/βl

βl

( l

n

)1/βl |Bl
2|1/l

>
c0

e2D
2/βl

βl

( l

n

)2/βl |ProjF (K)|1/l > c0

e2D
2/βl

βl

( l

n

)2/βl

max
y∈Rn

|K ∩ (y + F )|1/l.

Noting that D
2/βl

βl
.

(
log(en/l)

)2
, we conclude that

min
F∈Gn,l

|K ∩ F |
max
y∈Rn

|K ∩ (y + F )| >
cl

(
log(en/l)

)2l
( l

n

)5l

for some absolute constant c > 0.

5.1 Comparison of volumes of projections of K and K when K is centred

By repeating the steps from Subsection 2.4, with the only modification being that we replace
Fradelizi’s result with the analogue we obtained above, we could only get |(ProjF (K))|1/l 6

C(n/l)7log2(en/l)|(ProjF (K))|1/l for F ∈ Gn,l. Instead, we can get a better estimate if we
apply the 1st step of the proof of Theorem 2 carefully.

Proof of Corollary 11. Fix 1 6 l < n, and set αl = 2− 1
log(en/l) . Since

sup
F∈Gn,l

|ProjF (K)|1/l
|ProjF (K)|1/l

is linearly invariant, we can choose a suitable position for the centred convex body K. As seen
in the proof of Theorem 2, if K is in αl-regular M position, and D is an αl-regular M -ellipsoid
for K, then

wl(D◦) = vl(D◦) 6 C C2/αl
αl

(n
l

)(2+3αl)/αl

.
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We can then write

|ProjF (K)|1/l 6 C C1/αl
αl

(n
l

)1/αl |Bl
2|1/l

6 C
1

v−l (D)
C1/αl
αl

(n
l

)1/αl |ProjF (D)|1/l

= C wl(D◦)C1/αl
αl

(n
l

)1/αl |ProjF (D)|1/l

6 C ′C3/αl
αl

(n
l

)(3+3αl)/αl |ProjF (D)|1/l

6 C ′′C4/αl
αl

(n
l

)(4+3αl)/αl |ProjF (K)|1/l.

The conclusion follows.

Remark 12. We could also use Theorem 2 as a black box (that is, rely only on its statement),
but we gave the above proof first, which indicates that the almost 2

5 -regularity that we got is
already hinted at in applications of the first step of the proof of the theorem. If instead we start
with a linear image Kl of the centred convex body K which satisfies

max {N(Kl, tB
n
2 ), N(K◦

l , tB
n
2 )} 6 exp

(
Dβl

n/tβl

)

for all t > D
1/βl

βl
with βl =

2
5 − 1

5 log(en/l) , then we can observe the following: since Kl is convex

and contains the origin in its interior, we have Kl = conv(Kl,−Kl) = {λx+ (1− λ)y : x,−y ∈
Kl, λ ∈ [0, 1]} ⊂ Kl −Kl, and hence

N(Kl, 2tB
n
2 ) 6 N(Kl −Kl, 2tB

n
2 ) 6

(
N(Kl, tB

n
2 )
)2

6 exp
(
2Dβl

n/tβl

)

for t in the same range. In the same way, we get

N(K◦
l , 2tB

n
2 ) 6

(
N(K◦

l , tB
n
2 )
)2

6 exp
(
2Dβl

n/tβl

)
,

which by the duality of covering numbers (see [1]) gives

N(Bn
2 , γ1tKl) = N

(
Bn

2 , γ1t
(
K◦

l

)◦)
6 exp

(
γ2Dβl

n/tβl

)

for some absolute constants γ1, γ2, and for t in the same range. We can now write, for any
F ∈ Gn,l,

|ProjF (Kl)|1/l 6 C D
1/βl

βl

(n
l

)1/βl |Bl
2|1/l 6 C ′

γ1,γ2 D
2/βl

βl

(n
l

)2/βl |ProjF (Kl)|1/l,

which by our choice of βl leads to the same estimates as above.

With this we can also conclude the necessity and sufficiency of an inequality such as (27) in
order to have regular covering of a non-symmetric convex bodyK (with 0 ∈ int(K)): by Klartag
and Milman’s suggested approach, such an inequality (for the specific body K) leads to regular
M -ellipsoids for K, while if we know that K has β-regularity, or almost β-regularity, then an
inequality such as (27) follows (with the exponent of the factor n/l being 2/β, or 2/β + o(1)).
Of course we don’t have precise equivalence, since the estimates become worse as we pass from
one result to the other.
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As an aside, we also give two more estimates for supF∈Gn,l

|ProjF (K)|1/l
|ProjF (K)|1/l when K is centred,

which could be useful in specific cases.

a. We have that

|Bl
2|2/l

|ProjF (K)|1/l 6 C|K◦∩F |1/l 6 C ′
(n
l

)
max
x∈Rn

|K◦∩ (x+F )|1/l 6 C ′′
(n
l

)2 ∣∣(K◦−b(K◦)
)
∩F

∣∣1/l

by the Bourgain-Milman inequality, Rudelson’s and Fradelizi’s results.
We now observe that

K◦ − b(K◦) ⊂ K◦ + ‖ − b(K◦)‖K◦K◦ = [1 + ‖ − b(K◦)‖K◦ ]K◦ = [1 + hK(−b(K◦))]K◦.

Thus

(n
l

)2 ∣∣(K◦ − b(K◦)
)
∩ F

∣∣1/l 6 [1 + hK(−b(K◦))]
(n
l

)2
|K◦ ∩ F |1/l

6 C[1 + hK(−b(K◦))]
(n
l

)3 |Bl
2|2/l

|ProjF (K)|1/l

6 C ′ [1 + hK(−b(K◦))]
(n
l

)3 |Bl
2|2/l

|ProjF (K)|1/l

with the penultimate inequality due to Theorem 4 (or the argument by Klartag and Milman in
Subsection 2.4).

We conclude that

sup
F∈Gn,l

|ProjF (K)|1/l
|ProjF (K)|1/l 6 C0[1 + hK(−b(K◦))]

(n
l

)3
(31)

for some absolute constant C0 > 0 (note that this statement also recovers the corresponding
estimate for convex bodies K with Santaló point at the origin, which was to be expected since
we tried to emulate that one).

b. Since supF∈Gn,l

|ProjF (K)|1/l
|ProjF (K)|1/l is linearly invariant, we may assume that K is in isotropic

position. Using both types of Rogers-Shephard inequalities that we stated (inequality (9) and
inequality (14)), we have that, for every F ∈ Gn,l,

|ProjF (K)|1/l ≃ |ProjF (K)|1/l 6 C
n

l

1

|K ∩ F⊥|1/l .

We now combine several of the properties of the isotropic position that we mentioned:

C
n

l

1

|K ∩ F⊥|1/l 6 C ′n
l

LK

LπF (1K)
6 C ′′n

l
LK

(given also that all isotropic constants are uniformly bounded from below), while K ⊃ c0LKBn
2

for some absolute constant c0 immediately gives K ⊃ c0LKBn
2 too. Thus

|ProjF (K)|1/l 6 C
n

l

√
l |LKBl

2|1/l 6 C
n√
l
|ProjF (K)|1/l.

Despite its apparent crudeness, this is a better estimate, even than (31), for small dimensions l
(in particular, for l 6 n4/5). Still, it has been unclear to us whether it could make a difference
in any part of the arguments of this paper.

23



5.2 Application to results around the mean norm of isotropic convex bodies

Aside from its namesake conjecture, the isotropic position is a very useful normalisation that
comes up in other problems too, including ones that are motivated by algorithmic applications.
It thus appears natural to also examine how the position behaves with respect to parameters
which have been introduced in completely different contexts and are optimised in/characterise
different positions of a convex body. In certain cases we can observe a substantially worse
behaviour compared to the optimal position for the parameter in question (see e.g. [30] and the
results there regarding surface area), and in other cases we have a very comparable behaviour.

Here we focus on the corresponding questions regarding the parameters of mean width and
mean norm. First, let us recall that, by results of Figiel–Tomczak-Jaegermann [17], Lewis [29]
and Pisier [38], we have that, if K ⊂ R

n is origin-symmetric, then

inf
T∈GL(n)

M(TK) ·M∗(TK) = inf
T∈GL(n)

M(TK) ·M((TK)◦) 6 C log(n) (32)

where C is an absolute constant. Also, that

1

M(K)
6 vrad(K) 6 M∗(K),

where the first inequality follows by Jensen’s inequality, while the second one is the classical
Urysohn inequality (see e.g. [40, Corollary 1.4] for a proof). Thus, for every symmetric convex
body K of volume 1 in R

n, we can find T0 ∈ GL(n) such that

M(T0K) 6 C̃
log(n)√

n
and M∗((T0K)◦) 6 C̃

√
n log(n). (33)

In the case of a not-necessarily symmetric convex body L with 0 ∈ int(L), we can instead use
the relations hL(θ) = hL−0(θ) 6 hL−L(θ) = max{〈x − z, θ〉 : x, z ∈ L} 6 hL(θ) + hL(−θ) to
obtain

M∗(L) 6 M∗(L− L) 6 2M∗(L),

and then we can suitably transform L−L or L◦−L◦ to upper-boundM∗(L) or M(L) = M∗(L◦)
respectively by the same, almost optimal, bounds above (that is, if we also assume that |L| = 1,
and in the latter case if we can also say that vrad((L◦ − L◦)◦) ≃ vrad(L ∩ (−L)) is ≃ vrad(L);
by the Rogers-Shephard, Blaschke-Santaló and Bourgain-Milman inequalities, this will in fact
hold true if L has barycentre of Santaló point at the origin).

We should also remark that the best known analogue of (32) in the not-necessarily symmetric
case is by Rudelson [44] (in a companion paper to [43]), who showed that

inf
{
M(T (L− x)) ·M∗(T (L− x)) : T ∈ GL(n), x ∈ int(L)

}
6 Cn1/3 loga(n)

for some absolute positive constant a 6 9.

Going back to the question of estimating the mean width and the mean norm in the isotropic
position, obviously we are no longer allowed to transform K (or K−K or K◦−K◦) further. In
the case of mean width, E. Milman [33] showed that, for every isotropic convex body K in R

n,

M∗(Zn(K)) 6 C
√
n log2(n)LK

where Zn(K) is the Ln-centroid body of K (its definition is not relevant here, see e.g. [33]
or [11] for references). One should then recall that Zn(K) ≃ K − K (see e.g. [11, Corollary
3.2.9]), whence M∗(Zn(K)) ≃ M∗(K −K) ≃ M∗(K) (regardless of whether K is symmetric or
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simply centred). In fact, following the recent breakthroughs leading to logarithmic bounds for
the isotropic constant, the bound here is now essentially optimal for all practical purposes.

In the case of mean norm however, it is not clear at all whether we should expect the
symmetric and the non-symmetric case to exhibit comparable behaviours. For symmetric n-
dimensional isotropic convex bodies, an approach by Giannopoulos and E. Milman [20] leads to
the following upper bound:

M(K) 6 C
logb(n)

n1/6LK

where the exponent b 6 0.5 (note that at the time Giannopoulos and Milman didn’t have access
to the improved bounds for the isotropic constant that we can now plug into their intermediate
results). Their approach involved the following main steps.

First, Dudley’s entropy estimate:

√
nM∗(K) 6 C

n∑

l=1

1√
l
el(K,Bn

2 ) (34)

(see [40, Theorem 5.5] for this formulation, and also note that, due to standard volumetric
estimates in an n-dimensional space, summation can be taken up to l = n). Observe that
this estimate holds true for non-symmetric convex bodies as well: we have already seen that
M∗(K) ≃ M∗(K −K). Moreover, for every even integer l we have

el−1(K −K,Bn
2 ) 6 2el/2(K,Bn

2 )

(since N(K −K, 2t0B
n
2 ) 6 N(K, t0B

n
2 )N(−K, t0B

n
2 ) 6 2l−2 if t0 = el/2(K,Bn

2 )).

Secondly, the following proposition:

Proposition 13. ([20, Theorem 1]) Let K be an origin-symmetric convex body in R
n. For

every l ∈ {1, 2, . . . , n} we have

el(K,Bn
2 ) 6 C

n

l
log

(en
l

)
sup

{
2−

l
3mwm(K) : 1 6 m 6 l

}

≃ C
n

l
log

(en
l

)
sup

{
2−

l
3m

1

v−m(K◦)
: 1 6 m 6 l

}
.

Note that the second inequality did not need to be stated in [20, Theorem 1] as it is an
immediate consequence of the Blaschke-Santaló and Bourgain-Milman inequalities. However,
in the non-symmetric case, as we have already seen, we would sometimes have to pay an extra
factor of n

l to pass from one quantity to the other one, so in what follows we will aim to show
the one of the two inequalities which is ‘less expensive’ to get (and which fortunately is also the
most convenient one for our application).

Furthermore, Giannopoulos and Milman obtain similar upper bounds for the Gelfand num-
bers of a symmetric convex body K (which due to Carl’s theorem (see Subsection 2) could
replace the bounds for the entropy numbers in the application to the mean norm of K, and in
the end allowed them to slightly simplify those computations).

Proposition 14. ([20, Theorem 2]) Let K be an origin-symmetric convex body in R
n. For

every l ∈ {1, 2, . . . , ⌊n2 ⌋} we have

c2l−1(K,Bn
2 ) 6 C

n

l
log

(en
l

)
wl(K) ≃ C

n

l
log

(en
l

) 1

v−l (K
◦)
.
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We can now give some analogous versions of these two propositions for not-necessarily
symmetric convex bodies.

Proposition 15. Let K be a convex body in R
n, and let l ∈ {1, 2, . . . , n}. If K has barycentre

at the origin, then

el(K,Bn
2 ) 6 C

n

l
log

(en
l

)
sup

{
2−

l
3m

( n

m

)2
wm(K) : 1 6 m 6 l

}
(35)

and

el(K,Bn
2 ) 6 C

n

l
log

(en
l

)
sup

{
2−

l
3m

( n

m

)3 1

v−m(K◦)
: 1 6 m 6 l

}
.

On the other hand, if K has either barycentre or Santaló point at the origin, then

el(K,Bn
2 ) 6 C

(n
l

)5
log2

(en
l

)
sup

{
2−

l
3m

1

v−m(K◦)
: 1 6 m 6 l

}
. (36)

Finally, if K has Santaló point at the origin, then

el(K,Bn
2 ) 6 C

n

l
log

(en
l

)
[1 + ‖ − b(K)‖K ] sup

{
2−

l
3m

( n

m

)2
wm(K) : 1 6 m 6 l

}
. (37)

and

el(K,Bn
2 ) 6 C

n

l
log

(en
l

)
[1 + ‖ − b(K)‖K ] sup

{
2−

l
3m

( n

m

)3 1

v−m(K◦)
: 1 6 m 6 l

}
.

Proof. Aside from inequality (36), we can prove the rest by simply reducing to the symmetric
case, covered by Proposition 13, and then adjusting for the relevant parameters through the
volume comparison results we have seen. Indeed, if K has barycentre at the origin, then we can
write

el(K,Bn
2 ) 6 el(K −K,Bn

2 ) 6 C
n

l
log

(en
l

)
sup

{
2−

l
3mwm(K −K) : 1 6 m 6 l

}

and then recall that

wm(K −K) 6 C
n

m
sup
x∈Rn

wm(K − x) 6 C ′
( n

m

)2
wm(K)

by Rudelson’s and Fradelizi’s results. Finally, the companion inequality to (35) follows from
combining this with Theorem 4.

Similarly, if K has Santaló point at the origin, then we have

wm(K −K) 6 C
n

m
sup
x∈Rn

wm(K − x) 6 C ′
( n

m

)2
wm(K − b(K))

6 C ′
( n

m

)2
[1 + ‖ − b(K)‖K ]wm(K).

On the other hand, to prove (36), we adapt the proof of Proposition 13 (essentially repeating
it, except that we replace Theorem 1 by Theorem 2). For the reader’s convenience, we sketch
the argument.

Since l 7→ el(K,Bn
2 ) is decreasing, we can just try to bound el(K,Bn

2 ) for l in some arithmetic
progression of integers, and also for l = 1.

26



If l = 1, observe that v−1 (K
◦) > 2r(K◦) and recall that 1

2r(K◦) =
1
2R(K), while e1(K,Bn

2 ) =

R(K). Thus the inequality holds for l = 1 (and in fact it is very crude as n gets larger and
larger).

Assume now that l is a multiple of 3. By Theorem 2 we can find a β-regular M -ellipsoid Eβ
for K for any β ∈ (0, 25) (we will eventually choose β0 =

2
5 − 1

5 log(en/l)). We can write

el+1(K,Bn
2 ) 6 el/3+1(K, Eβ)e2l/3+1(Eβ, Bn

2 ) 6 D
1/β
β

(
3n

log(2) l

)1/β

e2l/3+1(Eβ , Bn
2 ).

At the same time, by Lemma 7 and Remark 8 (i) and (iii), we know that

e2l/3+1(Eβ, Bn
2 ) 6 C sup

16m6l
2−

2l
3mwm(Eβ) = C sup

16m6l
2−

2l
3m

1

v−m(E◦
β)

.

But for every F ∈ Gn,m and every t > D
1/β
β ,

vrad(ProjF (K
◦))

vrad(ProjF (E◦
β))

=
|ProjF (K◦)|1/m
|ProjF (E◦

β)|1/m
6 tN(ProjF (K

◦), tProjF (E◦
β))

1/m

6 tN(K◦, tE◦
β)

1/m 6 t exp(Dβn/(mtβ)),

and if we choose t = D
1/β
β

(
3n

log(2) l

)1/β
we obtain

vrad(ProjF (K
◦))

vrad(ProjF (E◦
β))

6 D
1/β
β

(
3n

log(2) l

)1/β

2l/(3m).

It follows that

e2l/3+1(Eβ , Bn
2 ) 6 CD

1/β
β

(
3n

log(2) l

)1/β

sup
16m6l

2−
l

3m
1

v−m(K◦)

and

el+1(K,Bn
2 ) 6 CD

2/β
β

(
3n

log(2) l

)2/β

sup
16m6l

2−
l

3m
1

v−m(K◦)

On setting β = 2
5 − 1

5 log(en/l) , we complete the proof.

Proposition 16. Let K be a convex body in R
n. If K has barycentre at the origin, then for

every l ∈ {1, 2, . . . , ⌊n2 ⌋} we have

c2l−1(K,Bn
2 ) 6 C

(n
l

)3
log

(en
l

)
wl(K)

and c2l−1(K,Bn
2 ) 6 C

(n
l

)4
log

(en
l

) 1

v−l (K
◦)

. (38)

On the other hand, if K has Santaló point at the origin, then, for l in the same range,

c2l−1(K,Bn
2 ) 6 C

(n
l

)5
log2

(en
l

) 1

v−l (K
◦)

. (39)
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Proof. Again for (38) we reduce to the corresponding proposition about the symmetric case,
Proposition 14:

c2l−1(K,Bn
2 ) 6 c2l−1(K −K,Bn

2 ) 6 C
n

l
log

(en
l

)
wl(K −K) .

As we have seen

wl(K −K) 6 C
(n
l

)2
wl(K) 6 C ′

(n
l

)3 1

v−l (K
◦)

for K centred.

On the other hand, for (39) we make the necessary adjustments to the proof of Proposition
14 (by substituting the use of Pisier’s Theorem 1 with Theorem 2 and Proposition 3; in fact
the proof of that proposition and of (39) are very similar).

Fix l ∈ {0, 1, 2, . . . , ⌊n−1
2 ⌋}. By Theorem 2 and Proposition 3, for any β ∈ (0, 25 ) we can find

a β-regular M -ellipsoid Eβ for K for which we will have

cl(K, Eβ) 6 C0D
1/β
β

(n
l

)1/β
.

Again we can assume that l > 1 since the desired inequality obviously holds for l = 1 (as
c1(K,Bn

2 ) = R(K) = 2
v−
1
(K◦)

). By the definition of the Gelfand numbers, we can find a subspace

F0 ∈ Gn,n−l+1 such that

K ∩ F0 ⊆ C0D
1/β
β

(n
l

)1/β
· Eβ ∩ F0 .

Let µ1 > µ2 > · · · > µn−l+1 be the lengths of the semiaxes of the ellipsoid Eβ ∩ F0, and let
F1 6 F0 be the subspace spanned by the n− 2l + 1 shortest of those. Then Eβ ∩ F1 ⊆ µl+1BF1

and

µl+1 6

( l∏

i=1

µi

)1/l

= vrad(Eβ ∩ F⊥
1 ∩ F0) 6 wl(Eβ) =

1

v−l (E◦
β)

.

As before, we can compare v−l (E◦
β) with v−l (K

◦) using the regularity of the covering numbers of
K◦ by E◦

β:

1

v−l (E◦
β)

6 CD
1/β
β

(n
l

)1/β 1

v−l (K
◦)
.

Thus

K ∩ F1 ⊆ C0D
1/β
β

(n
l

)1/β
· Eβ ∩ F1 ⊆ CD

2/β
β

(n
l

)2/β 1

v−l (K
◦)

·BF1
.

On setting β = 2
5 − 1

5 log(en/l) , we complete the proof.

Corollary 17. (Corollary to Proposition 15) Let K be a not-necessarily symmetric isotropic
convex body in R

n. Then

M(K) 6 C
log

5

22 (n)

n
1

22 LK

.

Moreover, we have the ‘conditional’ bound

M(K) 6 C [1 + hK(−b(K◦))]
log

1

6 (n)

n
1

18 LK

.
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Proof. We combine Dudley’s entropy estimate with (36) from Proposition 15 (which we apply
with the convex body K◦, that has Santaló point at the origin), and also the obvious bound
el(K

◦, Bn
2 ) 6 R(K◦) = 1

r(K) :

√
nM(K) =

√
nM∗(K◦) 6 C

n∑

l=1

1√
l
min

{
1

r(K)
,
(n
l

)5
log2

(en
l

)
sup

16m6l

{
2−

l
3m

1

v−m(K)

}}
.

By the properties of the isotropic position that we listed in Subsection 2.3, we have r(K) > c0LK ,
and moreover, for every F ∈ Gn,m,

vrad(ProjF (K)) &
√
m

LK

supM⊂Rm LM
.

By using the latest progress on the bounds for supM⊂Rm LM , we obtain

1

v−m(K)
6 C ′ 1√

m

√
log(m)

LK
6 C ′ 1√

m

√
log(n)

LK
,

and thus we can compute

sup
16m6l

{
2−

l
3m

1

v−m(K)

}
6 C ′′ 1√

l

√
log(n)

LK
.

By bounding log2(en/l) by log2(n) too for simplicity, we can finally conclude that

√
nM(K) 6 C

n∑

l=1

min

{
1√
l LK

,
n5

l6
log5/2(n)

LK

}
6 C ′ n

5

11 log
5

22 (n)

LK
.

Similarly we deduce the other bound, by using the inequality after (37) this time.
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[47] C. Schütt. “Entropy numbers of diagonal operators between symmetric Banach spaces”. Journal of
Approximation Theory 40 (1984): 121-128.

[48] J. Spingarn. “An inequality for sections and projections of a convex set”. Proc. Amer. Math.Soc.
118 (1993): 1219-1224.
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