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Abstract

We prove several inequalities estimating the distance between volumes of two bodies in terms
of the maximal or minimal difference between areas of sections or projections of these bodies.
We also provide extensions in which volume is replaced by an arbitrary measure.

1 Introduction

Volume difference inequalities are designed to estimate the error in computations of volume of a body out
of the areas of its sections and projections. We start with the case of sections. Let γn,k be the smallest
constant γ > 0 satisfying the inequality

(1.1) |K|
n−k
n − |L|

n−k
n 6 γk max

F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
for all 1 6 k < n and all origin-symmetric convex bodies K and L in Rn such that L ⊂ K. Here Grn−k is the
Grassmanian of (n− k)-dimensional subspaces of Rn, and |K| stands for volume of appropriate dimension.

Question 1.1. Does there exist an absolute constant C so that supn,k γn,k 6 C ?

Question 1.1 is stronger than the slicing problem, a major open problem in convex geometry [6, 7, 2, 35].
In fact, putting L = βBn2 in (1.1), where Bn2 is the unit Euclidean ball in Rn, and then sending β to zero,
one gets the slicing problem: does there exist an absolute constant C so that for any 1 6 k < n, and any
origin-symmetric convex body K in Rn

(1.2) |K|
n−k
n 6 Ck max

H∈Grn−k

|K ∩H| ?

The best-to-date general estimate C 6 O(n1/4) follows from the inequality

|K|
n−k
n 6 (cLK)k max

H∈Grn−k

|K ∩H|,

where LK is the isotropic constant of K (see e.g. [10, Proposition 5.1]), and the estimate LK = O(n1/4) of
Klartag [19] who improved an earlier result of Bourgain [8]. For several special classes of bodies the isotropic
constant is uniformly bounded, and hence the answer to the slicing problem is known to be affirmative; see
[9].

In the case where K is a generalized k-intersection body in Rn (we write K ∈ BPnk ; see definition in
Section 2) and L is any origin-symmetric star body in Rn, inequality (1.1) was proved in [23] for k = 1, and
in [25] for 1 < k < n :

(1.3) |K|
n−k
n − |L|

n−k
n 6 ckn,k max

F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
,

where ckn,k = ω
n−k
n

n /ωn−k, and ωn is the volume of the unit Euclidean ball in Rn. One can check that

cn,k ∈ ( 1√
e
, 1) for all n, k.
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Note that in Question 1.1 we added an extra assumption that L ⊂ K, compared to (1.3). Without extra
assumptions on K and L, inequality (1.1) cannot hold with any γ > 0, as follows from counterexamples to
the Busemann-Petty problem. The Busemann-Petty problem asks whether, for any origin-symmetric convex
bodies K and L, inequalities |K ∩ F | 6 |L ∩ F | for all F ∈ Grn−k necessarily imply |K| 6 |L|. The answer
is negative in general; see [22, Chapter 5] for details. Every counterexample provides a pair of bodies K
and L that contradict inequality (1.1). However, if K is a generalized k-intersection body, the answer to the
question of Busemann and Petty is affirmative, as proved by Lutwak [33] for k = 1, and by Zhang [40] for
k > 1. Inequality (1.3) is a quantified version of this fact.

Our first result extends (1.3) to arbitrary origin-symmetric star bodies. For a star body K in Rn and
1 6 k < n, denote by

(1.4) dovr(K,BPnk ) = inf

{(
|D|
|K|

)1/n

: K ⊂ D, D ∈ BPnk

}
the outer volume ratio distance from K to the class of generalized k-intersection bodies.

Theorem 1.2. Let 1 6 k < n, and let K and L be origin-symmetric star bodies in Rn such that L ⊂ K.
Then

(1.5) |K|
n−k
n − |L|

n−k
n 6 ckn,kd

k
ovr(K,BP

n
k ) max

F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
.

By John’s theorem [18] and the fact that ellipsoids are intersection bodies, if K is origin-symmetric and
convex, then dovr(K,BPnk ) 6

√
n. In fact the same is true for any convex body by K. Ball’s volume ratio

estimate in [4]. The outer volume ratio distance was also estimated in [31]. If K is an origin-symmetric
convex body in Rn, then

(1.6) dovr(K,BPnk ) 6 c
√
n/k [log(en/k)]

3
2 ,

where c > 0 is an absolute constant. In conjunction with Theorem 1.2, this estimate provides an affirmative
answer to Question 1.1 for sections of proportional dimensions.

Corollary 1.3. Let 1 6 k < n, let K be an origin-symmetric convex body in Rn, and let L be an origin-
symmetric star body in Rn such that L ⊂ K. Then

(1.7) |K|
n−k
n − |L|

n−k
n 6 Ck

(√
n/k [log(en/k)]

3
2

)k
max

F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
,

where C is an absolute constant.

It is also known that for several classes of origin-symmetric convex bodies the distance dovr(K,BPnk ) is
bounded by an absolute constant. These classes include unconditional convex bodies, duals of bodies with
bounded volume ratio (see [27]) and the unit balls of normed spaces that embed in Lp, −n < p < ∞ (see
[28, 34, 30]).

The inequality of Theorem 1.2 can be extended to arbitrary measures in place of volume, as follows.
Let f be a bounded non-negative measurable function on Rn. Let µ be the measure with density f so that
µ(B) =

∫
B
f for every Borel set B in Rn. Also, for every F ∈ Grn−k we write µ(B ∩F ) =

∫
B∩F f, where we

integrate the restriction of f to F against Lebesgue measure on F.
It was proved in [27] that for any 1 6 k < n, any origin-symmmetric star body K in Rn and any measure

µ with even non-negative continuous density f in Rn,

(1.8) µ(K) 6
n

n− k
ckn,k |K|

k
n dkovr(K,BP

n
k ) max

F∈Grn−k

µ(K ∩ F ).

Considering measures with densities supported in K \L in inequality (1.8), we get the following measure
difference inequality.

2



Theorem 1.4. Let 1 6 k < n, let K and L be origin-symmetric star bodies in Rn such that L ⊂ K, and let
µ be a measure with even non-negative continuous density. Then

(1.9) µ(K)− µ(L) 6
n

n− k
ckn,k |K|

k
n dkovr(K,BP

n
k ) max

F∈Grn−k

(
µ(K ∩ F )− µ(L ∩ F )

)
.

In Section 2 we provide an alternative proof of this result.

Moreover, using an approach recently developed in [10], we prove a different version of Theorem 1.4,
where the symmetry and continuity assumptions are dropped, but the body K is required to be convex.

Theorem 1.5. Let 1 6 k < n, let K be a convex body with 0 ∈ K and let L ⊆ K be a Borel set in Rn. For
any measure µ with a bounded measurable non-negative density, we have

(1.10) µ(K)n−k − µ(L)n−k 6
(
c0
√
n− k

)k(n−k)

|K|
k(n−k)

n max
F∈Gn,n−k

(
µ(K ∩ F )n−k − µ(L ∩ F )n−k

)
where c0 > 0 is an absolute constant.

A different kind of volume difference inequality was proved in [14]. If K is any origin-symmetric star
body in Rn, L is an intersection body, and minξ∈Sn−1

(
|K ∩ ξ⊥| − |L ∩ ξ⊥|

)
> 0, where ξ⊥ is the subspace

of Rn perpendicular to ξ, then

(1.11) |K|
n−1
n − |L|

n−1
n > c

1
√
nM(L)

min
ξ∈Sn−1

(
|K ∩ ξ⊥| − |L ∩ ξ⊥|

)
,

where c > 0 is an absolute constant, L = L/|L| 1n , M(L) =
∫
Sn−1 ‖θ‖Ldσ(θ), and σ is the normalized

Lebesgue measure on the sphere.
As shown in [15], there exist constants c1, c2 > 0 such that for any n ∈ N and any origin-symmetric

convex body K in Rn in the isotropic position,

(1.12)
1

M(K)
> c1

n1/10LK

log2/5(e+ n)
> c2

n1/10

log2/5(e+ n)
.

Also, if K is convex, has volume 1 and is in the minimal mean width position, then we have

(1.13)
1

M(K)
> c3

√
n

log(e+ n)
.

Inserting these estimates into (1.11) we obtain estimates independent from the bodies.
For a star body K in Rn and 1 6 k < n, we define

dk(K,BPnk ) = inf


(∫

Sn−1 ‖θ‖−kK dσ(θ)∫
Sn−1 ‖θ‖−kD dσ(θ)

) 1
k

: D ⊂ K, D ∈ BPnk

 .

By John’s theorem, if K is origin-symmetric and convex, then dk(K,BPnk ) 6
√
n.

We prove the following generalization of (1.11).

Theorem 1.6. Let 1 6 k < n, and let K and L be origin-symmetric star bodies in Rn such that L ⊂ K.
Then

(1.14) dkk(L,BPnk )
(
|K|

n−k
n − |L|

n−k
n

)
> ck

1

(
√
nM(L))k

min
F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
,

where c > 0 is an absolute constant.
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We introduce another method that gives a different generalization of (1.11).

Theorem 1.7. Let 1 6 k < n, and let K and L be bounded Borel sets in Rn with L ⊂ K. Then

(1.15)
(
|K| − |L|

)n−k
n > ckn,k min

F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
,

where ckn,k = ω
n−k
n

n /ωn−k.

Note that Theorem 1.7 holds true for an arbitrary pair of bounded Borel sets L ⊆ K and it no longer
involves the distance dk and M(L). Actually, the constant cn,k is sharp as one can check from the example
of the ball K = Bn2 and L = βBn2 where β → 0. Nevertheless, it is formally not stronger than Theorem 1.6

because |K|n−k
n − |L|n−k

n is smaller than (|K| − |L|)
n−k
n .

We deduce Theorem 1.7 from a more general statement for arbitrary measures.

Theorem 1.8. Let 1 6 k < n, and let K and L be two bounded Borel sets in Rn such that L ⊂ K. Let µ a
measure in Rn with bounded density g. Then,

(1.16)
(
µ(K)− µ(L)

)n−k
n > ckn,k

1

‖g‖
k
n∞

(∫
Grn−k

(
µ(K ∩ F )− µ(L ∩ F )

) n
n−k dνn,n−k(F )

)n−k
n

,

where νn,n−k is the Haar probability measure on Grn−k. In particular,

(1.17)
(
µ(K)− µ(L)

)n−k
n > ckn,k

1

‖g‖
k
n∞

min
F∈Grn−k

(
µ(K ∩ F )− µ(L ∩ F )

)
.

An inequality going in the direction opposite to (1.14) was proved in [27]. Suppose that K is an infinitely
smooth origin-symmetric convex body in Rn, with strictly positive curvature, that is not an intersection body.
Then there exists an origin-symmetric convex body L in Rn such that L ⊂ K and

(1.18) |K|
n−1
n − |L|

n−1
n < cn,1 min

ξ∈Sn−1

(
|K ∩ ξ⊥| − |L ∩ ξ⊥|

)
.

Here we prove a similar inequality going in the direction opposite to (1.5).

Theorem 1.9. Suppose that L is an infinitely smooth origin-symmetric convex body in Rn, with strictly
positive curvature, that is not an intersection body. Then there exists an origin-symmetric convex body K in
Rn such that L ⊂ K and

(1.19) |K|
n−1
n − |L|

n−1
n > c

1
√
nM(L)

max
ξ∈Sn−1

(
|K ∩ ξ⊥| − |L ∩ ξ⊥|

)
,

where c > 0 is an absolute constant.

Let us pass to projections. For ξ ∈ Sn−1 and a convex body L, we denote by L|ξ⊥ the orthogonal
projection of L to ξ⊥. Let βn be the smallest constant β > 0 satisfying

(1.20) β
(
|L|

n−1
n − |K|

n−1
n

)
> min
ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
for all origin-symmetric convex bodies K,L in Rn whose curvature functions fK and fL exist and satisfy
fK(ξ) 6 fL(ξ) for all ξ ∈ Sn−1. We prove

Theorem 1.10. βn '
√
n, i.e. there exist absolute constants a, b > 0 such that for all n ∈ N

a
√
n 6 βn 6 b

√
n.

4



It was proved in [23, 26] that if L is a projection body (see definition in Section 3) and K is an origin-
symmetric convex body, then

(1.21) |L|
n−1
n − |K|

n−1
n > cn,1 min

ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
.

Note that we formulate (1.20) with the condition fK 6 fL, which is not needed for (1.21). The reason is that
without an extra condition inequality (1.20) simply cannot hold in general with any β > 0. This follows from
counterexamples to the Shephard problem asking whether, for any origin-symmetric convex bodies K and L,
inequalities |K|ξ⊥| 6 |L|ξ⊥| for all ξ ∈ Sn−1 necessarily imply |K| 6 |L|. The answer is negative in general;
see [36, 38] or [22, Chapter 8] for details. However, if L is a projection body, the answer to the question of
Shephard is affirmative, as proved by Petty [36] and Schneider [38]. Inequality (1.21) is a quantified version
of this fact.

For a convex body L in Rn denote by

dvr(L,Π) = inf

{(
|L|
|D|

)1/n

: D ⊂ L, D ∈ Π

}

the volume ratio distance from L to the class of projection bodies. We extend (1.21) to arbitrary origin-
symmetric convex bodies, as follows.

Theorem 1.11. Suppose that K and L are origin-symmetric convex bodies in Rn, and their curvature
functions exist and satisfy fK(ξ) 6 fL(ξ) for all ξ ∈ Sn−1. Then

(1.22) dvr(L,Π)
(
|L|

n−1
n − |K|

n−1
n

)
> cn,1 min

ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
.

Again by K. Ball’s volume ratio estimate, for any convex body K in Rn, dvr(K,Π) 6
√
n. In Section 3

we show that this distance can be of the order
√
n, up to an absolute constant. The same argument is used

to deduce Theorem 1.10 from Theorem 1.11.

Denote by hK the support function, and by

w(K) =

∫
Sn−1

hK(ξ)dσ(ξ)

the mean width of the body K. Denote by

dw(K,Π) = inf

{
w(D)

w(K)
: K ⊂ D, D ∈ Π

}
the mean width distance from K to the class of projection bodies.

Theorem 1.12. Suppose that K and L are origin-symmetric convex bodies in Rn, and their curvature
functions exist and satisfy fK(ξ) 6 fL(ξ) for all ξ ∈ Sn−1. Then

(1.23) |L|
n−1
n − |K|

n−1
n 6 c dw(K,Π)

w(K)√
n

max
ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
,

where c is an absolute constant.

In Section 3 we show that the distance dw can be of the order
√
n, up to a logarithmic term. Note

that if K is a symmetric convex body of volume 1 in Rn and is in the minimal mean width position, then
w(K) 6 c

√
n(log n).

Theorems 1.11 and 1.12 are complemented by the following results, going in the opposite directions, that
were proved in [29]. The constant in Theorem 1.14 is written in a more general form than in [29].
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Theorem 1.13. Suppose that L is an origin-symmetric convex body in Rn, with strictly positive curvature,
that is not a projection body. Then there exists an origin-symmetric convex body K in Rn so that fL(ξ) >
fK(ξ) for all ξ ∈ Sn−1 and

max
ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
6

1

cn,1

(
|L|

n−1
n − |K|

n−1
n

)
.

Theorem 1.14. Suppose that K is an origin-symmetric convex body in Rn that is not a projection body.
Then there exists an origin-symmetric convex body L in Rn so that fL(ξ) > fK(ξ) for all ξ ∈ Sn−1 and

min
ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
>

c
√
n

w(K)

(
|L|

n−1
n − |K|

n−1
n

)
,

where c is an absolute constant.

In Section 2 we provide the proofs of the volume difference inequalities for sections, and in Section 3 we
give the proofs of the volume difference inequalities for projections. As we proceed, we introduce notation
and the necessary background information. We refer to the books [12] and [39] for basic facts from the
Brunn-Minkowski theory and to the book [1] for basic facts from asymptotic convex geometry.

2 Volume difference inequalities for sections

We need several definitions from convex geometry. A closed bounded set K in Rn is called a star body if
every straight line passing through the origin crosses the boundary of K at exactly two points different from
the origin, the origin is an interior point of K, and the Minkowski functional of K defined by

(2.1) ‖x‖K = min{a > 0 : x ∈ aK}

is a continuous function on Rn.
The radial function of a star body K is defined by

(2.2) ρK(x) = ‖x‖−1
K , x ∈ Rn, x 6= 0.

If x ∈ Sn−1 then ρK(x) is the radius of K in the direction of x.
We use the polar formula for the volume of a star body:

(2.3) |K| = 1

n

∫
Sn−1

‖θ‖−nK dθ,

where dθ stands for the uniform measure on the sphere with density 1.
The class BPnk of generalized k-intersection bodies was introduced by Lutwak [33] for k = 1, and by Zhang

[40] for k > 1. For 1 6 k 6 n − 1, the (n − k)-dimensional spherical Radon transform Rn−k : C(Sn−1) →
C(Grn−k) is a linear operator defined by

(2.4) Rn−kg(E) =

∫
Sn−1∩E

g(θ) dθ, E ∈ Grn−k

for every function g ∈ C(Sn−1). We say that an origin-symmetric star body D in Rn is a generalized k-
intersection body, and write D ∈ BPnk , if there exists a finite non-negative Borel measure µD on Grn−k so
that for every g ∈ C(Sn−1)

(2.5)

∫
Sn−1

ρkD(θ)g(θ) dθ =

∫
Grn−k

Rn−kg(H) dµD(H).

The class BPn1 is the original class of intersection bodies introduced by Lutwak.
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Proof of Theorem 1.2. For every H ∈ Grn−k we have

|K ∩H| − |L ∩H| 6 max
F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Writing volume in terms of the Radon transform, we get

1

n− k
(
Rn−k(‖ · ‖−n+k

K )(H)−Rn−k(‖ · ‖−n+k
L )(H)

)
6 max
F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Let D ∈ BPnk , K ⊂ D. Integrating both sides by H ∈ Grn−k with the measure µD corresponding to D by
(2.5), we get

(2.6)
1

n− k

∫
Sn−1

‖θ‖−kD
(
‖θ‖−n+k

K − ‖θ‖−n+k
L

)
dθ 6 max

F∈Grn−k

(|K ∩ F | − |L ∩ F |)µD(Grn−k).

We have ‖θ‖−1
D > ‖θ‖−1

K > ‖θ‖−1
L , because L ⊂ K ⊂ D. Using this, Hölder’s inequality and the polar formula

for volume, we estimate the left-hand side of (2.6) by

1

n− k

∫
Sn−1

‖θ‖−kK
(
‖θ‖−n+k

K − ‖θ‖−n+k
L

)
dθ >

n

n− k

(
|K| − |K| kn |L|

n−k
n

)
.

To estimate µD(Grn−k) from above, we combine the fact that 1 = Rn−k1(E)/|Sn−k−1| for every E ∈
Grn−k with (2.5) and Hölder’s inequality to write

µD(Grn−k) =
1

|Sn−k−1|

∫
Grn−k

Rn−k1(E)dµD(E)(2.7)

=
1

|Sn−k−1|

∫
Sn−1

‖θ‖−kD dθ

6
1

|Sn−k−1|
∣∣Sn−1

∣∣n−k
n

(∫
Sn−1

‖θ‖−nD dθ

) k
n

=
1

|Sn−k−1|
∣∣Sn−1

∣∣n−k
n n

k
n |D| kn .

These estimates show that

n

n− k

(
|K| − |K| kn |L|

n−k
n

)
6

1

|Sn−k−1|
∣∣Sn−1

∣∣n−k
n n

k
n |D| kn max

F∈Grn−k

(|K ∩ F | − |L ∩ F |)(2.8)

=
n

n− k
ckn,k|D|

k
n max
F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Finally, we choose D so that |D|1/n 6 (1 + δ)dovr(K,BPnk )|K|1/n, and then send δ to zero.

Next, we extend Theorem 1.2 to arbitrary measures in place of volume. Let f be a bounded non-negative
measurable function on Rn and let µ be the measure with density f . Writing integrals in polar coordinates,
we get

(2.9) µ(K) =

∫
K

f(x)dx =

∫
Sn−1

(∫ ρK(θ)

0

rn−1f(rθ)dr

)
dθ,

and for H ∈ Grn−k

µ(K ∩H) =

∫
K∩H

f(x)dx =

∫
Sn−1∩H

(∫ ρK(θ)

0

rn−k−1f(rθ)dr

)
dθ(2.10)

= Rn−k

(∫ ρK(·)

0

rn−k−1f(r·)dr

)
(H).
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Proof of Theorem 1.4. Let f be the density of the measure µ. For every H ∈ Grn−k we have

µ(K ∩H)− µ(L ∩H) 6 max
F∈Grn−k

(µ(K ∩ F )− µ(L ∩ F )) .

Using (2.10), we get

Rn−k

(∫ ρK(·)

ρL(·)
rn−k−1f(r·)dr

)
(H) 6 max

F∈Grn−k

(µ(K ∩ F )− µ(L ∩ F )) .

Let D ∈ BPnk , K ⊂ D. Integrating both sides by H ∈ Grn−k with the measure µD corresponding to D by
(2.5), we get

(2.11)

∫
Sn−1

ρkD(θ)

(∫ ρK(θ)

ρL(θ)

rn−k−1f(rθ)dr

)
dθ 6 max

F∈Grn−k

(µ(K ∩ F )− µ(L ∩ F ))µD(Grn−k).

We have ρD > ρK > ρL, because L ⊂ K ⊂ D. Using this and (2.9), we estimate the left-hand side of (2.11)
from below∫

Sn−1

ρkD(θ)

(∫ ρK(θ)

ρL(θ)

rn−k−1f(rθ)dr

)
dθ >

∫
Sn−1

ρkK(θ)

(∫ ρK(θ)

ρL(θ)

rn−k−1f(rθ)dr

)
dθ

>
∫
Sn−1

(∫ ρK(θ)

ρL(θ)

rn−1f(rθ)dr

)
dθ = µ(K)− µ(L).

Now estimate µD(Gn−k) and then choose D in the same way as in the proof of Theorem 1.2.

Remark 2.1. Note that in the case of volume (f ≡ 1), Theorem 1.4 implies that if K is an origin-symmetric
convex body in Rn, and L is an origin-symmetric star body in Rn such that L ⊂ K then

|K|
n−k
n − |L|

n−k
n 6

|K| − |L|
|K| kn

6
n

n− k
ckn,k d

k
ovr(K,BP

n
k ) max

F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
.

This estimate differs from the one of Theorem 1.2 by a factor n
n−k ; however, note that also (|K| − |L|)/|K| kn

is greater than |K|n−k
n − |L|n−k

n .

To prove Theorem 1.5 we use a technique that was introduced in [10]. It is based on the following
generalized Blaschke-Petkantschin formula (see [13]).

Lemma 2.2. Let 1 6 q 6 s 6 n. There exists a constant p(n, s, q) > 0 such that, for every non-negative
bounded Borel measurable function f : (Rn)q → R,∫

Rn

· · ·
∫
Rn

f(x1, . . . , xq)dx1 · · · dxq(2.12)

= p(n, s, q)

∫
Gn,s

∫
F

· · ·
∫
F

f(x1, . . . , xq) |conv(0, x1, . . . , xq)|n−sdx1 . . . dxq dνn,s(F ),

where νn,s is the Haar probability measure on Grs. The exact value of the constant p(n, s, q) is

(2.13) p(n, s, q) = (q!)n−s
(nωn) · · · ((n− q + 1)ωn−q+1)

(sωs) · · · ((s− q + 1)ωs−q+1)
.
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We will also use Grinberg’s inequality: If D is a bounded Borel set of positive Lebesgue measure in Rn
then, for any 1 6 k 6 n− 1,

(2.14) R̃k(D) :=
1

|D|n−k

∫
Gn,n−k

|D ∩ F |n dνn,n−k(F ) 6
1

|Bn2 |n−k

∫
Gn,n−k

|Bn2 ∩ F |n dνn,n−k(F ).

This fact was proved by Grinberg in [16]. It is stated for convex bodies D but the proof applies to bounded
Borel sets (see also [13]). For the Euclidean ball we have

(2.15) R̃k(Bn2 ) :=
1

|Bn2 |n−k

∫
Gn,n−k

|Bn2 ∩ F |n dνn,n−k(F ) =
ωnn−k

ωn−kn

= c−knn,k ,

where as before

(2.16) ckn,k := ω
n−k
n

n /ωn−k.

For any 1 6 k 6 n− 1 we define
p(n, s) := p(n, s, s).

It was proved in [10] that for every 1 6 k 6 n− 1 we have

(2.17) [c−nn,k p(n, n− k)]
1

k(n−k) '
√
n− k.

Proof of Theorem 1.5. Let g be the density of the measure µ. Applying Lemma 2.2 with q = s = n− k
for the functions f(x1, . . . , xn−k) =

∏n−k
i=1 g(xi)1K(xi) and h(x1, . . . , xn−k) =

∏n−k
i=1 g(xi)1L(xi) we get

µ(K)n−k − µ(L)n−k =

n−k∏
i=1

∫
K

g(xi)dx−
n−k∏
i=1

∫
L

g(xi)dx

(2.18)

= p(n, n− k)

∫
Gn,n−k

[ ∫
K∩F

· · ·
∫
K∩F

g(x1) · · · g(xn−k) |conv(0, x1, . . . , xn−k)|kdx1 . . . dxn−k

−
∫
L∩F
· · ·
∫
L∩F

g(x1) · · · g(xn−k) |conv(0, x1, . . . , xn−k)|kdx1 . . . dxn−k

]
dνn,n−k(F )

= p(n, n− k)

∫
Gn,n−k

∫
Pn−k(K,L;F )

g(x1) · · · g(xn−k) |conv(0, x1, . . . , xn−k)|kdx1 . . . dxn−k dνn,n−k(F ),

where
Pn−k(K,L;F ) = (K ∩ F )n−k \ (L ∩ F )n−k.

Note that
|conv(0, x1, . . . , xn−k)|k 6 |K ∩ F |k

for all (x1, . . . , xn−k) ∈ Pn−k(K,L;F ) by the convexity of K ∩F and the assumption that 0 ∈ K. Therefore,

µ(K)n−k − µ(L)n−k(2.19)

6 p(n, n− k)

∫
Gn,n−k

|K ∩ F |k
∫
Pn−k(K,L;F )

g(x1) · · · g(xn−k) dx1 . . . dxn−k dνn,n−k(F )

= p(n, n− k)

∫
Gn,n−k

|K ∩ F |k[µ(K ∩ F )n−k − µ(L ∩ F )n−k] dνn,n−k(F )

6 max
F∈Gn,n−k

[µ(K ∩ F )n−k − µ(L ∩ F )n−k] · p(n, n− k)

∫
Gn,n−k

|K ∩ F |k dνn,n−k(F ).
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From Grinberg’s inequality (2.14) we have

(2.20)

∫
Gn,n−k

|K ∩ F |k dνn,n−k(F ) 6 c−knn,k |K|
k(n−k)

n .

Using also (2.17) we see that

(2.21) µ(K)n−k − µ(L)n−k 6
(
c0
√
n− k

)k(n−k)

|K|
k(n−k)

n max
F∈Gn,n−k

[µ(K ∩ F )n−k − µ(L ∩ F )n−k],

as claimed.

Remark 2.3. Theorem 1.5 implies [10, Theorem 1.1]:

(2.22) µ(K) 6
(
c0
√
n− k

)k
|K| kn max

F∈Gn,n−k

µ(K ∩ F )

for every convex body K with 0 ∈ K and any measure µ. Considering measures with densities supported in
K \ L in (2.22), we get the following measure difference inequality:

(2.23) µ(K)− µ(L) 6
(
c0
√
n− k

)k
|K| kn max

F∈Gn,n−k

(
µ(K ∩ F )− µ(L ∩ F )

)
under the assumptions of Theorem 1.5.

The next inequalities estimate the distance between volumes of two bodies in Rn in terms of the minimal
difference between areas of their (n− k)-dimensional sections.

Proof of Theorem 1.6. For every H ∈ Grn−k we have

|K ∩H| − |L ∩H| > min
F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Writing volume in terms of the Radon transform, we get

1

n− k
(
Rn−k(‖ · ‖−n+k

K )(H)−Rn−k(‖ · ‖−n+k
L )(H)

)
> min
F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Let D ∈ BPnk , D ⊂ L. Integrating both sides by H ∈ Grn−k with the measure µD corresponding to D by
(2.5), we get

(2.24)
1

n− k

∫
Sn−1

‖θ‖−kD
(
‖θ‖−n+k

K − ‖θ‖−n+k
L

)
dθ > min

F∈Grn−k

(|K ∩ F | − |L ∩ F |)µD(Grn−k).

We have ‖θ‖−1
D 6 ‖θ‖−1

L 6 ‖θ‖−1
K , because D ⊂ L ⊂ K. Using this, Hölder’s inequality and the polar formula

for volume, we estimate the left-hand side of (2.24) from above by

1

n− k

∫
Sn−1

‖θ‖−kL
(
‖θ‖−n+k

K − ‖θ‖−n+k
L

)
dθ 6

n

n− k

(
|L| kn |K|

n−k
n − |L|

)
.

To estimate µD(Grn−k) from below, we combine the fact that 1 = Rn−k1(E)/|Sn−k−1| for every E ∈
Grn−k with (2.5) to write

(2.25) µD(Grn−k) =
1

|Sn−k−1|

∫
Grn−k

Rn−k1(E)dµD(E) =
|Sn−1|
|Sn−k−1|

∫
Sn−1

‖θ‖−kD dσ(θ).
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These estimates show that

n

n− k

(
|L| kn |K|

n−k
n − |L|

)
>
|Sn−1|
|Sn−k−1|

∫
Sn−1

‖θ‖−kD dσ(θ) min
F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Finally, for δ > 0, we choose D so that∫
Sn−1

‖θ‖−kD dσ(θ) >
1

(1 + δ)dkk(L,BPnk )

∫
Sn−1

‖θ‖−kL dσ(θ),

and send δ to zero. Then use Jensen’s inequality and homogeneity to get

(2.26)

(∫
Sn−1

‖θ‖−kL dσ(θ)

) 1
k

>

(∫
Sn−1

‖θ‖Ldσ(θ)

)−1

=
1

M(L)
|L| 1n ,

and apply standard estimates for the Γ-function.

Next we prove Theorem 1.8, which directly implies Theorem 1.7. For the proof we will use some basic facts
about Sylvester-type functionals. Let C be a bounded Borel set of positive measure in Rm. For every p > 0
we consider the normalized p-th moment of the expected volume of the random simplex conv(0, x1, . . . , xm),
the convex hull of the origin and m points from C, defined by

(2.27) Sp(C) =

(
1

|C|m+p

∫
C

· · ·
∫
C

|conv(0, x1, . . . , xm)|pdx1 · · · dxm
)1/p

.

It was proved by Pfiefer [37] (see also [13]) that

Sp(C) > Sp(B
m
2 ).

More generally, for any Borel probability measure ν on Rm, for any 1 6 q 6 m and every p > 0, we define

(2.28) Sp,q(ν) =

(∫
Rm

· · ·
∫
Rm

|conv(0, x1, . . . , xq)|pdν(x1) · · · dν(xq)

)1/p

.

A generalization of Pfiefer’s result appears in [11]. Let ν be a measure in Rn with a bounded non-negative
measurable density g. Then

(2.29) Spp,q(ν) >
‖g‖q+

pq
m

1

ω
q+ pq

m
m ‖g‖

pq
m∞
Spp,q(1Bm

2
).

Proof of Theorem 1.8. Let u(x) = g(x)1K(x) and v(x) = g(x)1L(x). Using Lemma 2.2 with s = n − k
and q = 1, we start by writing

µ(K)− µ(L) =

∫
Rn

u(x)dx−
∫
Rn

v(x)dx(2.30)

= p(n, n− k, 1)

∫
Gn,n−k

[ ∫
K∩F

g(x) ‖x‖k2dx−
∫
L∩F

g(x) ‖x‖k2dx
]
dνn,n−k(F )

= p(n, n− k, 1)

∫
Gn,n−k

∫
(K∩F )\(L∩F )

g(x) ‖x‖k2dx dνn,n−k(F ).
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(Note that |conv(0, x)| = ‖x‖2, the Euclidean norm of x). For every F set CF = (K ∩ F ) \ (L ∩ F ) and
consider the measure νF with density g on CF . Applying (2.29) with p = k, q = 1 and m = n− k we have

µ(K)− µ(L) > p(n, n− k, 1)

∫
Grn−k

Skk,1(νF ) dνn,n−k(F )(2.31)

> p(n, n− k, 1)

∫
Grn−k

‖g |CF
‖1+ k

n−k

1

ω
1+ k

n−k

n−k ‖g |CF
‖

k
n−k
∞

Skk (1Bn−k
2

) dνn,n−k(F )

=
p(n, n− k, 1)

ω
n

n−k

n−k

Sk2 (1Bn−k
2

)

∫
Grn−k

‖g |CF
‖

n
n−k

1

‖g |CF
‖

k
n−k
∞

dνn,n−k(F ).

Note that
p(n, n− k, 1) =

nωn
(n− k)ωn−k

and

Skk,1(1Bn−k
2

) =

∫
Bn−k

2

‖x‖k2dx =
n− k
n

ωn−k.

Therefore,
p(n, n− k, 1)

ω
n

n−k

n−k

Sk2 (1Bn−k
2

) =
ωn

ω
n

n−k

n−k

= c
kn

n−k

n,k .

On the other hand, for any F ∈ Grn−k we have

‖g |CF
‖1 = µ(K ∩ F )− µ(L ∩ F )

and
‖g |CF

‖∞ 6 ‖g‖∞.
Combining the above we get

µ(K)− µ(L) > c
kn

n−k

n,k

1

‖g‖
k

n−k
∞

∫
Grn−k

(µ(K ∩ F )− µ(L ∩ F )
n

n−k dνn,n−k(F ),

and the result follows.

Remark 2.4. Theorem 1.7 is an immediate consequence of Theorem 1.8. It corresponds to the case g ≡ 1,
for which we clearly have ‖g‖∞ = 1.

We pass to Theorem 1.9. We consider Schwartz distributions, i.e. continuous functionals on the space
S(Rn) of rapidly decreasing infinitely differentiable functions on Rn. The Fourier transform of a distribution

f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for every test function φ ∈ S(Rn). For any even distribution f , we have

(f̂)∧ = (2π)nf .
If K is an origin-symmetric convex body and 0 < p < n, then ‖ · ‖−pK is a locally integrable function on

Rn and represents a distribution acting by integration. Suppose that K is infinitely smooth, i.e. ‖ · ‖K ∈
C∞(Sn−1) is an infinitely differentiable function on the sphere. Then by [22, Lemma 3.16], the Fourier
transform of ‖ · ‖−pK is an extension of some function g ∈ C∞(Sn−1) to a homogeneous function of degree

−n+ p on Rn. When we write
(
‖ · ‖−pK

)∧
(ξ), we mean g(ξ), ξ ∈ Sn−1.

For f ∈ C∞(Sn−1) and 0 < p < n, we denote by

(f · r−p)(x) = f(x/‖x‖2)‖x‖−p2

the extension of f to a homogeneous function of degree −p on Rn. Again by [22, Lemma 3.16], there exists
g ∈ C∞(Sn−1) such that

(f · r−p)∧ = g · r−n+p.
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If K,L are infinitely smooth origin-symmetric convex bodies, the following spherical version of Parseval’s
formula can be found in [22, Lemma 3.22]: for any p ∈ (−n, 0)

(2.32)

∫
Sn−1

(
‖ · ‖−pK

)∧
(ξ)
(
‖ · ‖−n+p

L

)∧
(ξ) = (2π)n

∫
Sn−1

‖x‖−pK ‖x‖
−n+p
L dx.

It was proved in [20, Theorem 1] that an origin-symmetric convex body K in Rn is an intersection body
if and only if the function ‖ · ‖−1

K represents a positive definite distribution. In the case where K is infinitely
smooth, this means that the function (‖ · ‖−1

K )∧ is non-negative on the sphere.
We also need a result from [21] (see also [22, Theorem 3.8]) expressing volume of central hyperplane

sections in terms of the Fourier transform. For any origin-symmetric star body K in Rn, the distribution
(‖ · ‖−n+1

K )∧ is a continuous function on the sphere extended to a homogeneous function of degree -1 on the
whole of Rn, and for every ξ ∈ Sn−1,

(2.33) |K ∩ ξ⊥| = 1

π(n− 1)
(‖ · ‖−n+1

K )∧(ξ).

In particular, if K = Bn2 then for every ξ ∈ Sn−1

(2.34) (‖ · ‖−n+1
2 )∧(ξ) = π(n− 1)|Bn−1

2 |.

Note that every non-intersection body can be approximated in the radial metric by infinitely smooth non-
intersection bodies with strictly positive curvature; see [22, Lemma 4.10]. Different examples of convex bodies
that are not intersection bodies (in dimensions five and higher, as in dimensions up to four such examples
do not exist) can be found in [22, Chapter 4]. In particular, the unit balls of the spaces `nq , q > 2, n > 5
are not intersection bodies.

Proof of Theorem 1.9. Since L is infinitely smooth, the Fourier transform of ‖ · ‖−1
L is a continuous

function on the sphere Sn−1. Also, L is not an intersection body, so
(
‖ · ‖−1

L

)∧
< 0 on an open set Ω ⊂ Sn−1.

Let φ ∈ C∞(Sn−1) be an even non-negative, not identically zero, infinitely smooth function on Sn−1 with
support in Ω∪−Ω. Extend φ to an even homogeneous of degree -1 function φ · r−1 on Rn \ {0}. The Fourier
transform of this function in the sense of distributions is ψ · r−n+1 where ψ is an infinitely smooth function
on the sphere.

Let ε be a number such that |Bn−1
2 | · ‖θ‖−n+1

L > ε > 0 for every θ ∈ Sn−1. Define a star body K by

(2.35) ‖θ‖−n+1
K = ‖θ‖−n+1

L − δψ(θ) +
ε

|Bn−1
2 |

, θ ∈ Sn−1,

where δ > 0 is small enough so that for every θ

|δψ(θ)| < min

{
‖θ‖−n+1

L − ε

|Bn−1
2 |

,
ε

|Bn−1
2 |

}
.

The latter condition implies that L ⊂ K. Since L has strictly positive curvature, by an argument from [22,
p. 96], we can make ε, δ smaller (if necessary) to ensure that the body K is convex.

Now we extend the functions in (2.35) from the sphere to Rn \ {0} as homogeneous functions of degree
−n+ 1 and apply the Fourier transform. We get that for every ξ ∈ Sn−1

(2.36)
(
‖ · ‖−n+1

K

)∧
(ξ) =

(
‖ · ‖−n+1

L

)∧
(ξ)− (2π)nδφ(ξ) + π(n− 1)ε.

Here, we used (2.34) to compute the last term. By (2.36), (2.33) and the fact that the function φ is non-
negative and is equal to zero at some points, we have

(2.37) ε = max
ξ∈Sn−1

(|K ∩ ξ⊥| − |L ∩ ξ⊥|).

13



Multiplying both sides of (2.36) by
(
‖ · ‖−1

L

)∧
(ξ), integrating over Sn−1 and using Parseval’s formula on the

sphere, we get

(2π)n
∫
Sn−1

‖θ‖−1
L ‖θ‖−n+1

K dθ = (2π)nn|L| − (2π)nδ

∫
Sn−1

φ(θ)
(
‖ · ‖−1

L

)∧
(θ)dθ

+ π(n− 1)ε

∫
Sn−1

(
‖ · ‖−1

L

)∧
(θ)dθ.

Since φ is a non-negative function supported in Ω, where
(
‖ · ‖−1

L

)∧
is negative, the latter equality implies

(2π)nn|L|+ π(n− 1)ε

∫
Sn−1

(
‖ · ‖−1

L

)∧
(θ)dθ < (2π)n

∫
Sn−1

‖θ‖−1
L ‖θ‖−n+1

K dθ

6 (2π)n
(∫

Sn−1

‖θ‖−nK dθ

)n−1
n
(∫

Sn−1

‖θ‖−nL dθ

) 1
n

= (2π)nn|L| 1n |K|
n−1
n .

Finally, by (2.34), Parseval’s formula and Jensen’s inequality,

π(n− 1)

∫
Sn−1

(
‖ · ‖−1

L

)∧
(θ)dθ =

1

|Bn−1
2 |

∫
Sn−1

(
‖ · ‖−1

L

)∧
(θ)
(
‖ · ‖−n+1

2

)∧
(θ)dθ

=
(2π)n|Sn−1|
|Bn−1

2 |

∫
Sn−1

‖θ‖−1
L dσ(θ)

>
(2π)n|Sn−1|
|Bn−1

2 |
1

M(L)
|L| 1n

> c
(2π)n

√
n|L| 1n

M(L)
.

Combining these estimates we get

(2π)nn|L|+ cε
(2π)n

√
n|L| 1n

M(L)
6 (2π)nn|L| 1n |K|

n−1
n .

The result follows after we recall (2.37).

3 Volume difference inequalities for projections

The support function of a convex body K in Rn is defined by

hK(x) = max{〈x, y〉 : y ∈ K}, x ∈ Rn.

If K is origin-symmetric, then hK is a norm on Rn.
The surface area measure S(K, ·) of a convex body K in Rn is defined as follows. For every Borel set

E ⊂ Sn−1, S(K,E) is equal to Lebesgue measure of the part of the boundary of K where normal vectors
belong to E. We usually consider bodies with absolutely continuous surface area measures. A convex body
K is said to have the curvature function

fK : Sn−1 → R,

if its surface area measure S(K, ·) is absolutely continuous with respect to Lebesgue measure σn−1 on Sn−1,
and

dS(K, ·)
dσn−1

= fK ∈ L1(Sn−1),
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so fK is the density of S(K, ·).
By the approximation argument of [39, Theorem 3.3.1], we may assume in the formulation of Shephard’s

problem that the bodies K and L are such that their support functions hK , hL are infinitely smooth functions

on Rn\{0}. Using [22, Lemma 3.16] we get in this case that the Fourier transforms ĥK , ĥL are the extensions
of infinitely differentiable functions on the sphere to homogeneous distributions on Rn of degree −n − 1.
Moreover, by a similar approximation argument (see e.g. [17, Section 5]), we may assume that our bodies
have absolutely continuous surface area measures. Therefore, in the rest of this section, K and L are convex
symmetric bodies with infinitely smooth support functions and absolutely continuous surface area measures.

The following version of Parseval’s formula was proved in [32] (see also [22, Lemma 8.8]):

(3.1)

∫
Sn−1

ĥK(ξ)f̂L(ξ) dξ = (2π)n
∫
Sn−1

hK(x)fL(x) dx.

The volume of a body can be expressed in terms of its support function and curvature function:

(3.2) |K| = 1

n

∫
Sn−1

hK(x)fK(x) dx.

If K and L are two convex bodies in Rn the mixed volume V1(K,L) is equal to

V1(K,L) =
1

n
lim
ε→+0

|K + εL| − |K|
ε

.

We use the following first Minkowski inequality (see [39] or [22, p.23]): for any convex bodies K,L in Rn,

(3.3) V1(K,L) > |K|
n−1
n |L| 1n .

The mixed volume V1(K,L) can also be expressed in terms of the support and curvature functions:

(3.4) V1(K,L) =
1

n

∫
Sn−1

hL(x)fK(x) dx.

Let K be an origin-symmetric convex body in Rn. The projection body ΠK of K is defined as an origin-
symmetric convex body in Rn whose support function in every direction is equal to the volume of the
hyperplane projection of K to this direction: for every ξ ∈ Sn−1,

(3.5) hΠK(ξ) = |K|ξ⊥|.

If L is the projection body of some convex body, we simply say that L is a projection body. The Minkowski
(vector) sum of projection bodies is also a projection body. Every projection body is the limit in the Hausdorff
metric of Minkowski sums of symmetric intervals. An origin-symmetric convex body in Rn is a projection
body if and only if its polar body is the unit ball of an n-dimensional subspace of L1; see [39, 12, 22] for
proofs and more properties of projection bodies.

Proof of Theorem 1.11. By approximation (see [39, Theorem 3.3.1]), we can assume that K,L are
infinitely smooth. We have

(3.6) |L|ξ⊥| − |K|ξ⊥| > min
η∈Sn−1

(|L|η⊥| − |K|η⊥|).

It was proved in [32] that

(3.7) |K|ξ⊥| = − 1

π
f̂K(ξ), ξ ∈ Sn−1,

15



where fK is extended from the sphere to a homogeneous function of degree −n−1 on the whole Rn. Therefore,
(3.6) can be written as

(3.8) − 1

π
f̂L(ξ) +

1

π
f̂K(ξ) > min

η∈Sn−1
(|L|η⊥| − |K|η⊥|), ξ ∈ Sn−1.

Let D be a projection body such that D ⊂ L, then hD 6 hL in every direction. It was proved in [32] that

an infinitely smooth origin-symmetric convex body D in Rn is a projection body if and only if ĥD 6 0 on
the sphere Sn−1. Integrating (3.8) with respect to this negative density, we get

−
∫
Sn−1

ĥD(ξ)f̂L(ξ) dξ +

∫
Sn−1

ĥD(ξ)f̂K(ξ) dξ 6 π

∫
Sn−1

ĥD(ξ)dξ min
η∈Sn−1

(|L|η⊥| − |K|η⊥|).

Using Parseval’s formula (3.1), we get

(3.9) (2π)n
∫
Sn−1

hD(ξ)(fL(ξ)− fK(ξ))dξ > −π
∫
Sn−1

ĥD(ξ)dξ min
η∈Sn−1

(|L|η⊥| − |K|η⊥|).

We estimate the left-hand side of (3.9) from above using (3.2) and (3.4) (recall that fK 6 fL):

(2π)n
∫
Sn−1

hD(ξ)(fL(ξ)− fK(ξ))dξ 6 (2π)n
∫
Sn−1

hL(ξ)(fL(ξ)− fK(ξ))dξ(3.10)

6 (2π)nn(|L| − |K|
n−1
n |L| 1n ).

To estimate the right-hand side of (3.10) from below, note that, by (3.7), the Fourier transform of the
curvature function f2 of the unit Euclidean ball is equal to

f̂2(ξ) = −π|Bn−1
2 |, ξ ∈ Sn−1.

Therefore, by (3.1) and (3.4) (recall that f2 ≡ 1) ,

−π
∫
Sn−1

ĥD(ξ) dξ =
1

|Bn−1
2 |

∫
Sn−1

ĥD(ξ)f̂2(ξ) dξ =
(2π)n

|Bn−1
2 |

∫
Sn−1

hD(x)f2(x) dx

=
(2π)n

|Bn−1
2 |

nV1(Bn2 , D) >
(2π)nn

|Bn−1
2 |

|D| 1n |Bn2 |
n−1
n

= (2π)nn cn,1|D|
1
n .

Now for δ > 0 choose D so that (1 + δ) dvr(L,Π) |D| 1n > |L| 1n . Combine the resulting inequality with (3.9)
and (3.10) and send δ to zero.

Proof of Theorem 1.10. Putting K = δBn2 in (1.20) and sending δ to zero, we get

β|L|
n−1
n > min

ξ∈Sn−1
|L|ξ⊥|.

By a result of K. Ball [3], there exists an absolute constant c1 so that for each n ∈ N there is an origin-
symmetric convex body Ln in Rn satisfying

min
ξ∈Sn−1

|Ln|ξ⊥| > c1
√
n|Ln|

n−1
n .

This shows that βn > c1
√
n.On the other hand, since ellipsoids are projection bodies, we have dvr(L,Π) 6

√
n

for every origin-symmetric convex body L in Rn. By approximation (see [17]), one can assume that each of
the bodies Ln has a curvature function, so we can apply Theorem 1.11 to the bodies Ln and K = δBn2 , δ → 0,
to see that βn 6 (1/cn,1)

√
n <
√
en.
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Remark 3.1. From Theorem 1.11 we see that the bodies Ln defined in the proof of Theorem 1.10 satisfy

dvr(Ln,Π)|Ln|
n−1
n > cn,1 min

ξ∈Sn−1
|L|ξ⊥| > cn,1 c1

√
n|Ln|

n−1
n .

This shows that dvr(Ln,Π) > c1
√
n/e, and hence

sup
L

dvr(L,Πn) '
√
n,

where the supremum is over all origin-symmetric convex bodies L in Rn.

Proof of Theorem 1.12. Again, by approximation, we can assume that K,L are infinitely smooth. Let D
be a projection body such that K ⊂ D, then hK 6 hD in every direction. Similarly to the proof of Theorem
1.11,

(3.11) (2π)n
∫
Sn−1

hD(ξ)(fL(ξ)− fK(ξ))dξ 6 −π
∫
Sn−1

ĥD(ξ)dξ max
η∈Sn−1

(|L|η⊥| − |K|η⊥|).

We estimate the left-hand side of (3.11) from below using (3.2) and (3.4) (recall that fK 6 fL and hK 6 hD):

(2π)n
∫
Sn−1

hD(ξ)(fL(ξ)− fK(ξ))dξ > (2π)n
∫
Sn−1

hK(ξ)(fL(ξ)− fK(ξ))dξ(3.12)

> (2π)nn(|L|
n−1
n |K| 1n − |K|).

Now for δ > 0 choose D so that

w(D) 6 (1 + δ)dw(K,Π)w(K)|K| 1n .

As in the proof of Theorem 1.11,

−π
∫
Sn−1

ĥD(ξ) dξ =
(2π)n

|Bn−1
2 |

∫
Sn−1

hD(x) dx =
(2π)n|Sn−1|
|Bn−1

2 |
w(D)

6 (1 + δ)(2π)nc dw(K,Π)
√
n w(K)|K| 1n .

We get the result combining the latter with (3.11) and (3.12) and sending δ to zero.

Finally, we show that the distance dw can be of the order
√
n, up to a logarithmic term. We will use

the fact that projection bodies have positions with “small diameter”. More precisely, we have the following
statement: For every D ∈ Π there exists T ∈ GL(n) such that

(3.13) R(T (D)) 6

√
n

2
|T (D)|1/n.

In particular, this holds true if T is chosen so that T (D) in Lewis or Löwner or minimal mean width position
(see e.g. [9, Chapter 4]). Let K = Bn1 be the cross-polytope, and consider a projection body D such that
Bn1 ⊆ D. We may find T so that (3.13) is satisfied. We will use the next well-known result of Bárány and
Füredi from [5]: if x1, . . . , xN ∈ RBn2 then

|conv{x1, . . . , xN}|1/n 6
c3R

√
log(1 +N/n)

n
.

Since
T (Bn1 ) = conv{±Te1, . . . ,±Ten} ⊆ R(T (D))Bn2 ,

we get

|T (Bn1 )|1/n 6
c4√
n
|T (D)|1/n.
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It follows that
|Bn1 |1/n 6

c4√
n
|D|1/n.

From Urysohn’s inequality (see [1]) we know that w(D) > c5
√
n |D|1/n, and a direct computation shows that

w(Bn1 ) 6 c6
√
n log n|Bn1 |1/n. This shows that

w(D) > c7
√
n/ log nw(Bn1 ).

Since D ⊃ Bn1 was arbitrary, we conclude that

(3.14) dw(Bn1 ) > c
√
n/ log n,

where c > 0 is an absolute constant.
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